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Abstract 
 

Fault detection and isolation have become one of the most important aspects of automobile design. A fault detection (FD) 
scheme is developed for automotive engines in this paper. The method uses an independent Radial Basis Function (RBF) Neural 
Network model to model engine dynamics, and the modelling errors are used to form the basis for residual generation. A 
dependent RBFNN model is a model which uses output data of a plant as a target output then use it to train the neural network, 
while, The independent RBFNN model is a higher accuracy than the dependent model and the errors can be detected by this 
model, this is because this model does not dependent on the output of the plant and it will use its output as a target, so if any faults 
in the plant will be not effect in the model and this faults will be detected easily and clearly. The method is developed and the 
performance assessed using the engine benchmark, the Mean Value Engine Model (MVEM) with Matlab/Simulink. Five faults 
have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor 
faults considered are 10-20% change superimposed on the outputs of manifold pressure, temperature and crankshaft speed sensors; 
one component fault considered is air leakage in intake manifold and Exhaust Gas Recycle (EGR); the actuator fault considered is 
the malfunction of fuel injector. The simulation results showed that all the simulated faults can be clearly detected in the dynamic 
condition throughout the operating range.  
 
Keywords:  Automotive engine, independent RBFNN model, RBF neural network, fault detection. 

 
1. Introduction 

 
A fault is any type of malfunction of components that may happen in a system and this fault will degrade the system performance. 

Fault detection is the program which informs us that something wrong in the system and needs to be repaired. Also, fault isolation 
is way to determine which fault occurs among the possible faults. Over the last few years, many different fault detection and 
isolation methods have been proposed. To detect faults we usually compare the outputs of the real system which is in this paper the 
mean value engine model, and the outputs of a neural network model of the engine. Because a neural network is capable of 
approximating a nonlinear function to any desired degree of accuracy, it is used as a model of a dynamic system. The modelling 
error is then used as the residual for fault detection (Kimmich et al., 2005). Furthermore, a neural network can also be trained to 
isolate different faults (Capriglione et al., 2004). Sorsa et al. (1991) investigated a number of possible neural network architectures 
for fault diagnoses. The multilayer perceptron network with a hyperbolic tangent as the nonlinear element was reported to be best 
suited for the task. Yu et al. (1999) proposed RBF neural networks for process fault diagnosis. The use of the output prediction 
error, between a neural network model and a non-linear dynamic process, as a residual for diagnosing actuator, component and 
sensor faults was analysed. Jamsa-Jounela et al. (2002) had described a fault diagnosis system and discussed some application 
results from the Outokumpu Harjavalta smelter. Demetgul et al. (2009) investigated fault diagnosis of pneumatic systems with 
artificial neural network algorithms. A pneumatic manufacturing system was simulated with modular production system (MPS) 
and automated monitoring of the system was considered. FDI for automotive engines has been investigated for more than two 
decades. Isermann (2005) has proposed model-based fault-detection and diagnosis methods for some technical processes. The goal 
was to generate several symptoms indicating the difference between nominal and faulty status. Based on different symptoms fault 
diagnosis procedures follow, determining the fault by applying classification or inference methods. His contribution gave a short 
introduction into the field and showed some applications for an actuator, a passenger car and a combustion engine. For fault 
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diagnosis of Diesel engines three detection modules are proposed to generate symptoms based on mainly production- type sensors. 
The symptoms are generated with nonlinear output error and input error parity equations for special model-based characteristic 
quantities like volumetric efficiency, oscillations of pressure, flow and (not shown here) for angular speed and oxygen content. In 
many critical applications like nuclear plants, aircrafts, space vehicles and chemical processes, the use of fault tolerant 
measurement systems is strongly required. Thus, the hardware and/or software instrument fault detection, isolation and 
accommodation (IFDIA) schemes are more and more widespread in many contexts. Automotive is one of this, since in the last 
decade, private and public transportation vehicles have begin equipped with a lot of a sensor-based electronic systems devoted to 
grant the passenger safety and comfort (Anti-lock braking system, Anti-spin regulation, Electronic stability program, Airbag, air 
conditioning, and so on) as well as to control fuel injection and ignition and the pollution emissions of the engines. On-line Sensor 
fault Detection, isolation, and accommodation in automotive engines had studied by Capriglione et al. (2004). Their paper was 
described the hybrid solution, based on artificial neural networks (ANNs), and the production rule adopted in the realization of an 
instrument fault detection, isolation, and accommodation scheme for automotive applications. The fault accommodation has shown 
a good performance with maximum error of 5%. Fault detection for modern Diesel engines using signal- and process model-based 
methods have been proposed by Kimmich et al. (2005). Their contribution showed a systematic development of fault detection and 
diagnosis methods for two system components of Diesel engines, the intake system and the injection system together with the 
combustion process. The residuals were generated by applied semiphysical dynamic process models, identification with special 
neural networks, signal models and parity equations. The deflection of the residuals allowed the detection and diagnosis of 
different faults. Further residuals were developed for the exhaust system. The additional symptoms increase the fault detection 
coverage. Wu et al. (2009) in their paper had proposed an expert system for fault diagnosis system in internal combustion engines 
using wavelet packet transform (WPT) and ANNs techniques. To verify the effect of the proposed generalized regression neural 
network (GRNN) in fault diagnosis, a conventional back-propagation network (BPN) was compared with a GRNN network. The 
experimental results showed the proposed system achieved an average classification accuracy of over 95% for various engine 
working conditions. 

 
2. Spark ignition (SI) engine modelling using RBF neural networks  
 

The first step in the engine modelling by using RBFNN is the generation of a suitable training data set. As the training data will 
influence the accuracy of the neural network modelling performance, the objective of experiment design on training data is to 
make the measured data become maximally informative, subject to constraints that may be at hand. A set of random amplitude 
signals (RAS) were designed for the throttle angle position and the fuel mass flow to obtain a representative set of input data. The 
ranges of these excitation signals were bounded between 20 and 60 degrees for the throttle angle position and between 0.0005 and 
0.003 kg/s for the fuel mass flow. Before training or validating the neural network using RAS, all inputs and outputs data obtained 
from MVEM by simulation will be scaled to the range of [0, 1] in order to increase the accuracy of the neural network and 
decrease the error. The linear scale is used by equations 1 and 2 (Zhai et al., 2007)  
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Where umin and ymin are the minimum inputs and outputs, also, umax and ymax are the maximum inputs and outputs among the data 

set, while us and ys are the scaled input and output respectively. The first 300 samples of excitation signals for the throttle angle 
position and fuel injection, which are engine model inputs are shown in Figures 1 and 2. At the beginning the RBF neural network 
will be trained and tested, so, it will receives five inputs signals, which are manifold pressure, temperature, crankshaft speed, the 
throttle angle  and the fuel mass flow and has three outputs, manifold pressure, temperature, crankshaft speed. By using K-means 
algorithm and ρ – Nearest Neighbours method the width in hidden layer nodes of the RBF neural network σ and the centres c are 
calculated. For train the weights w of the RBF neural networks, the recursive least square algorithm was applied and the following 
data are used: µ=0.98, w(0) =1.0×10-6×U (nh×3), P(0)=1.0×108×I  (nh). Where µ is called the forgetting factor ranging from 0 to 1, I is 
an identity matrix and U is an ones matrix. To make this neural network behave as an independent model, the neural network 
model will use only the first three rows of the MVEM output matrix which are contain values of manifold pressure, manifold 
temperature and crankshaft speed, after that the output of the neural network will be used as a target matrix to train and test this 
neural network. The excitation signal to generate training data covers the whole possible operating points and then the training data 
was collected therefore the train model will be valid for all the operating point. The engine data was divided into two parts, the 
first 4000 data samples is used for training neural network and the 2000 data samples is used for neural network model validation, 
This procedure in order to confirm validity of the neural network model. The Figure 3, a,b and c shows the simulation result of the 
engine model output (speed, pressure and temperature respectively) and the RBF neural networks output during 100 samples for 
training and 100 samples for the test.  It can be seen that the perfect equivalent between the two outputs with a very stingy error, in 
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general, the modelling error of the training data set is often smaller than the test data set. The mean absolute error (MAE), which is 
given by equation (3) was used evaluate the modelling. 
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The MAE is an average of the absolute errors e (k) = f (k) – y (k) (Zhai et al., 2007). For modelling performance, f (k) is the 

prediction by neural network model and y (k) the output of SI engine. For this model the MAE values of crankshaft speed, 
manifold pressure and temperature are 0.0069, 0.0155 and 0.0059 respectively. Figure 4, a, b and c shows the 200 samples of the 
error signals between the engine model and the RBF neural networks for the three outputs, which are crankshaft speed, manifold 
pressure and temperature respectively. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Fault simulation 

One component, one actuator and three sensor faults with different levels of intensity have been investigated as practical 
examples of SI engine faults. The component fault is air leakage in the intake manifold. The actuator fault is injected fuel mass 
flow. The three sensor faults are intake manifold pressure, temperature and speed. The sample time is chosen as 0.02 sec. Details 
of the simulation of the faults are described in the following subsections. 
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Figure 1. Random Amplitude Signal 
                of the Throttle Angle Position. 

Figure 2. Random Amplitude Signal 
              of the Fuel Injection. 
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Figure 3, a, b and c. The simulation result of 
the speed, pressure and temperature engine 
model output and the RBF neural networks 

output respectively. 

Figure 4, a, b and c. The error signals between the 
speed, pressure and temperature engine model 

output respectively and the RBF neural networks. 
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3.1 Air leakage fault: To collect the engine data subjected to the air leakage fault, the equation (4) (Hendricks et al., 2000) of the 

manifold pressure is modified to equation (5):  
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Where ip&  is absolute manifold pressure (bar), atm&  is air mass flow past throttle plate (kg/sec),  apm&  is air mass flow into intake 

port (kg/sec), EGRm&  is EGR mass flow (kg/sec). l∆   is used to simulate the leakage from the air manifold, which is subtracted to 

increase the air outflow from the intake manifold. l∆ = 0 will represent no air leakage in the intake manifold.  The air leakage 
levels are simulated as 20% of total air intake in the intake manifold. This fault occurs from sample number 5401 to 5700, which 
means from second 108.02 to second 114, see Figure 5. 
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Figure 5. The simulated faults. 

 
3.2 Injected fuel mass fault: For SI engines, in term of control engineering, the target is to achieve an air–fuel mixture with a ratio 
of 14.7 kg air to 1 kg fuel. This means the normal value of air fuel ratio is 14.7. This value will be changed if there are faults on the 
fuel injector and the amount of fuel. The value of fuel is regulated as 20% of the total fuel mass flow from sample number 4801 to 
5100, see Figure 5. 
 
3.3 Speed, temperature and pressure sensor faults: Speed, pressure and temperature sensor faults considered are 10-20% change 
superimposed on the outputs of crankshaft speed, manifold pressure and temperature sensors. These faults are simulated from 
sample number 3001 to 3300, from sample number 3601 to 3900 and from sample number 4201 to 4500 respectively. The faulty 
data for the sensors is generated using multiplying factors (MFs) of 1.1 and 1.2 for the above over -reading respectively, see Figure 

5. Faulty data are generated by the Modified MVEM with throttle angle at different values between 20
o 
and 60

o 
for all the fault 

conditions. The 5 states with their MFs are given in Table 1. The engine data for the simulated faults and no fault condition covers 
almost all transient states of the engine dynamics. 
 
 

Table 1. The faults states and multiplying factors. 

No Fault Name MFs 
1 Air Leak 20%  
2 Injected fuel mass flow 20%  
3 Speed sensor 10% over reading 1.1 
4 Pressure sensor 20% over reading 1.2 
5 Temp. sensor 10% over reading 1.1 

 
 
4.  Fault detection 
  

The Figure 6 shows the flow chart of fault detection. The RBF neural network receives five inputs signals, the first three inputs 
signals are manifold pressure, temperature  and crankshaft speed which containing fault information, and the second two inputs 
signals are the throttle angle  and the fuel mass flow and has three outputs with each indicating one of the investigated states in 
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Table 1. This neural network will use at the beginning only the first three rows of the MVEM output matrix which consists of 
signals values of manifold pressure, manifold temperature and crankshaft speed, all these three inputs contain sensor, component 
and actuator faults, after that the output of the neural network will be used as a target matrix, that means this neural network is an 
independent model. The information flow for the fault detection is illustrated in Figure 7. The hidden nodes which are chosen by 
k-means method are 12, this is because the test result is very good and the size of neural network will be small, consequently the 
train and test time will be small. Width and weights are trained using ρ -nearest neighbours algorithms and the same data of µ, 
w(0), P(0) which were used to train neural network engine model are used here. The trained network is then tested for all faults 
occurring. Figure 8 shows the test results for fault detection for all faults (sensor, component and actuator) before filtering, it can 
be seen the errors are big. After the filtering operation the results were very good and the errors decreased, see Figure 9. The 
detection thresholds are chosen as 0.2, ±0.1 and 0.1 for crankshaft speed, manifold pressure and manifold temperature error signals 
respectively. High thresholds may lead to missed detections whilst low thresholds will cause false alarm. Thresholds are chosen as 
0.2, ±0.1 and 0.1 by utilising experience in minimising false alarm rate.  
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Figure 6. Flow chart of fault detection. 
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Figure 7.The information flow for the fault detection. 
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Figure 10 shows the residual error (re) which is generated by the equation (6)  
 
 

2
222

etepenre ++=                                                                                                             (6) 

 
Where en, ep and et are the error vectors of the speed, pressure and temperature respectively between the engine model and the 

RBF neural network. Thresholds are chosen as 0.18, If the residual greater than threshold that means the fault occurs.  
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Figure 10. The residual error of the fault detection after filtering with 12 hidden nodes. 
 

5.  Simulation results 
 

 We can summarize the results in the following points: 
 
5.1 Train and Test the Neural Network: The simulation results of train and test by using 12 hidden nodes were very good and the 
good match between the engine model output and the RBF neural network output was done, (see Figures 3 and 4 ) and the mean 
absolute errors between them are shown it Table 2 . 
 

Table 2. The Mean Absolute Error (MAE) between the Engine Model Output and the RBF Neural Network Output 

Outputs MAE 

Crankshaft speed 0.0016 

Pressure 0.013 

Temperature 0.0047 

 

5.2 Detect the sensor, components and actuator faults: The test results for fault detection for all kinds of faults were before and 
after filtering operation were done with 12 hidden nodes, and all the faults were detected after filtering were very clear (see Figure 
8) than faults before filtering (see Figure 9) and the detection thresholds were chosen as 0.2 for crankshaft speed, ±0.1 for manifold 
pressure and 0.1 for manifold temperature. 

 
6.  Conclusions 
 

The MVEM developed by Hendricks and et al (2000) is used for simulations during the research period after small modification. 
Expansion work has been done to the existing MVEM simulation by including air fuel ratio sensor time delay, temperature sensor 
dynamics etc. Three sensor faults (intake manifold pressure, temperature and speed), one component fault (leakage in the intake 
manifold) and one actuator fault (injected fuel mass flow) have been simulated when the simulation model is subjected to 
disturbances and noise. An independent RBF neural network model was used to model engine dynamics and the training 
algorithms are reviewed and derived. By using ρ – Nearest Neighbours method and K-means algorithm the width in hidden layer 
nodes of the RBF neural network σ and the centres c are calculated for RBFNN. The recursive least square algorithm was applied 
for training the weights w of the RBFNN. Fault detection for engine studied in this paper is using neural network modelling 
method, this method can detect dynamic faults, and this is because the modelling is for dynamic system, so can detect the faults in 
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dynamic condition and for other simulated three types of fault (sensor, actuator and component). From The simulation results it 
can be seen that the independent RBF neural networks were able to detect sensor, actuator and component faults clearly.   
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