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Abstract 
 
  The main aim of this paper is to assess the effects of the liquid presence and the bond imperfection while evaluating the non-
axisymmetric dynamic response of an imperfectly bonded liquid filled buried orthotropic thin cylindrical pipeline excited by 
shear horizontal wave (SH-wave) due to seismic excitation. Using thin shell theory, the effect of shear deformation and rotary 
inertia is not considered. The pipeline is modeled as an infinite thin cylindrical shell imperfectly bonded to surrounding. A thin 
layer is assumed between the shell and the surrounding medium (soil) such that this layer possesses the properties of stiffness 
and damping both. The degree of imperfection of the bond is varied by changing the stiffness and the damping parameters of this 
layer. For the wave propagation in the liquid inside the pipe, linear acoustic equation is used. The effects of the liquid presence 
on the shell displacement are studied for different soil condition and at various angles of incidence of the shear wave. The effect 
of the bond imperfection on the shell response is compared with the effects realized due to the presence of liquid inside the 
pipeline. It is found that magnitude of the response of liquid filled pipeline can become even more than that of an empty 
pipeline, and hence, it cannot be assumed that a liquid filled pipeline will always furnish safe and conservative response. 
Numerical results are presented for the case of an incident plane shear horizontal wave (SH- wave) only. Such studies are critical 
for design considerations for providing utility services through underground pipelines made of orthotropic material in seismic 
zones.   
 
Keywords: Buried Pipelines, Non-axisymmetric, Imperfect Bond, Seismic Wave, Thin Shell and Shear Wave. 
 
1. Introduction 
 
   Growing urbanization with increasing utility services requirement has led to increased used of underground pipes. It has 
necessitated the dynamic response analysis of such pipes under seismic excitation. Earlier researches have dealt with the pipes 
made of isotropic material. After arrival of reinforced plastic mortar (RPM) pipes need is felt to analyze the pipe of orthotropic 
materials.  As a result, during past few years a number of studies like Cole Ritter and Jordon (1979) and Singh et al (1987) on the 
axisymmetric dynamic response of buried orthotropic pipe/shells are reported. Later Chonan (1981); Dwivedi and Upadhyay 
(1989; 1990; 1991); and Dwivedi et al (1991) have analyzed the axisymmetric problems of imperfectly bonded shell for the pipes 
made of orthotropic materials. Upadhyay and Mishra (1988) have presented a good account of work on non-axisymmetric 
response of buried thick orthotropic pipelines under seismic excitation.  Again Dwivedi et al (1992a; 1992b); Dwivedi et al 
(1993a; 1993b; 1996); and Dwivedi et al. (1998) have analyzed the non-axisymmetric problems of imperfectly bonded buried 
thick orthotropic cylindrical shells. Kauretzis et al. (2007) have presented analytical calculations of blast induced strains on buried 
pipe lines. Hasheninajad and Kazemirad (2008) have reported dynamic response of eccentric tunnel in poro-elastic soil under 
sesmic excitation.  Lee et al. (2009) have done the risk analysis of buried pipelines using probabilistic method. But in all these 
analyses pipelines are modeled as thick shell. As far as the non-axisymmetric dynamic response of thin shell is concerned, no work 
is reported so far. There is no work available discussing the effect of bond imperfection on the non axisymmetric response of 
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buried thin pipes made of orthotropic materials. Therefore, in present paper, the effect of imperfect bond on the non- axisymmetric 
dynamic response of buried orthotropic thin pipelines is analyzed.  
 
2.  Basic Equations and Formulations 
 

The pipeline is modeled as an infinitely long cylindrical shell of mean radius R and thickness h. It is considered to be buried in a 
linearly elastic, homogeneous and isotropic medium of infinite extent.  Basic approach of the formulation is to obtain the mid 
plane displacements of the shell by solving the equations of motion of the orthotropic shell.  Traction terms in the equations of 
motion are obtained by solving the three-dimensional wave equation in the surrounding medium. Appropriate boundary conditions 
are applied at the shell surfaces.  Equations arising out of boundary conditions along with the equations of motion of the shell are 
simplified to yield a response equation in matrix form. 

Equation governing the non axis-symmetric motion of an infinitely long orthotropic cylinder is derived following the approach 
of Herrmann and Mirsky (1957), Figure 0.  
 

 
Figure 0.  An infinitely long cylindrical shell 

Considering an infinitely long cylindrical shell of mean radius R and thickness h buried in a linearly elastic, homogeneous and 
isotropic medium of infinite medium, a thin layer is assumed between the shell and the surrounding medium (soil). The degree of 
imperfection of the bond is varied by changing the stiffness and the damping parameters of this layer. The shell is excited by a 
shear horizontal wave (SH- wave). A wavelength Λ (=2Π/ξ) is considered which strikes the shell at an angle α with the axis of 
the shell. Let a cylindrical polar co-ordinate system (r,θ, x) which is defined in such a way that x coincides with the axis of the 
shell and, in addition, z is measured normal to the shell middle surface, which is given as  

 h/2zh/2-                         , ≤≤−= Rrz         (1) 
  

The basic equations which describe the dynamic behavior of cylindrical shells with bending resistance under arbitrary 
loads are derived from the system of equations which is presented by Upadhyay and Mishra (1988). But in the thin shell theory 
effect of shear deformation and rotary inertia is not considered.  After equating all the inertial and moment terms to zero, the 
equilibrium equations of thick shell in stress form (from above reference) reduces to  

  ;1
2

2
*

1
t
whP

R
N

x
QQ

R
x

∂

∂
=+−

∂
∂

+
∂
∂

ρ
θ

θθθ          (2a) 

 ;1
2

2
*
2

t
vhP

R
Q

x
NN

R
x

∂

∂
=++

∂
∂

+
∂
∂

ρ
θ

θθθθ          (2b) 

;01
=−

∂

∂
+

∂

∂
θ

θ
θ
θθ Q

x
xMM

R
                              (2c)

  

 ];[11
2

2
*
4

t
uhP

N
Rx

N
R

xxx

∂

∂
=+

∂
+

∂
∂

ρ
θ

θ                    (2d) 

01
=−

∂
∂

+
∂

∂
x

xxx Q
M

Rx
M

θ
θ

.
          (2e)

  
In connection with the equation of equilibrium, it can be argued that transverse shearing force θQ  makes a negligible contribution 
to equilibrium of forces in circumferential direction. So after making θQ  equal to zero in Eq. 2b and finding out the value of 

θQ and xQ  from Eq. 2c and 2e and putting into Eq. 2b and 2d, above equations reduce to  
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   For thin shell theory shear deformation is not considered due to negligible thickness. So, according to Herrman and Mirsky 
(1957), the shear strain components θγγ zxz  and  will be zero about z-axis in r-θ and r-x plane (no coupling is there due to 
negligible thickness) but at the same time shear stress component will be there due to Kirchhoff’s hypothesis (Herrman and 
Mirsky, 1957) 
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 Here xψ  and θψ  are angle of rotation in r-x and r-θ plane but in the r-θ plane the tangential deflection is negligible compared to 
component of  radial deflection in that direction.  So  
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From the above, stress resultants come out to be 
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When we put these values of stress resultants into above equation of equilibrium, we get the required equation of motion of shell in 
the matrix form as 
     [{L} {U}] + {P*} = 0                   (6)
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Where [L] is 3 3  a matrix operator with terms 

;4           

2

2

2

4

'

2

'

22

4

2

22

2

24

4

4

'

2

2

4

'

4

4

11

t
h

R
D

R
E

xR
IG

xR
D

R
D

R
D

x
DL

p
x

x

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂∂
∂

⎟
⎠
⎞

⎜
⎝
⎛+

∂∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

ρ
θ

θ
ν

θθ

θ

θ

 

;4

'

2

'

22

4

23

3

4

'

12 θθθ θ ∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂∂
∂

⎟
⎠
⎞

⎜
⎝
⎛−

∂
∂

=
R
D

R
E

xR
IG

R
DL p

x  

;
xR

IG
xR

E

xR
DL 2

3

3x
px

3

3

13
∂θ∂

∂
⎟
⎠
⎞

⎜
⎝
⎛+

∂
∂ν

+
∂
∂

−= θ
θ  

;1221 LL =  

;2

2

2

2

4

'

2

'

2

2

22 t
h

R
D

R
E

x
hGL p

x ∂
∂

−
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

= ρ
θθ  

           
;

22

23 xR
E

xR
hGL pxx

∂∂
∂

+
∂∂
∂

=
θ

ν
θ

θθ  

           ;1331 LL =  

           ;2332 LL =  

           

;2

2

222

2

33 θ
θ

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛+

∂
∂

=
R
Ih

R
G

x
EL x

p    and  {U} = [w   v    u] T  

With w, v and u as the displacement components of the middle surface of the shell in the radial, tangential and axial directions 
respectively, the elements of {P*} are given by Herrman and Mirsky (1957) as: 
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Where σij denotes the stresses with their usual meaning, but for thin shell *
3P  and *

5P  are zero. Different constants appearing in the 
expressions for Lij are defined as:  
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I=h3/12, where Ex, Eθ are elastic moduli, νxθ, νθx the Poisson ratio Gxθ, Gνxz and Gzθ the shear moduli and ρ is the density of the 
shell material. 
'n' indicate the mode in circumferential direction; n = 0 represents the axisymmetric mode. 
For the evaluation of {P*}, σij at z = ± (h/2) must be determined in the terms of incident and scattered field in the surrounding 
ground.  The total displacement field in the ground is written as  
                                               d=d(i) + d(s) 

Where i and s represents the incident and scattered parts respectively.  By solving the wave equation in the surrounding infinite 
medium the components of incident and scattered fields can be written as (Chonan, 1981): 
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With the help of above equations, the stresses at the outer surface of the shell (z = h/2 or r = R + h/2) can be obtained.  Thus {P*} 
in Eq. (2) can be determined.  
 For any disturbance propagating in liquid filled inside the pipe, Linear Acoustic Equations are the continuity equation 

0)..( =∇+
∂
∂

ff
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t
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                 (11a) 
and the Euler equation of motion:
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Displacement d(r, θ, x, t), at any point, satisfies the equation of motion :
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ρ
μλ are respectively the speeds of dilatational and shear waves in the infinite medium. λ and 

μ are the Lame’s constant and ρm is the density of the medium. Change in the density due to wave prorogation is assumed to be 
negligible.  
For getting the stresses at the inner surface of the shell, linear acoustic equation is solved for the liquid inside the shell. For the 
liquid inside the shell, the radial displacement  ( )f

ru  and the pressure 'p' are obtained as 
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Where, 
2)/(1( ff cc−= βδ

  
and  cf  is the speed of the dilational wave in the liquid.

 At the shell-liquid interface the continuity of the radial displacement has been assumed, i.e., 
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Now the mid plane displacement and slopes are assumed to be of the form; 
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       0ww = cosnθ exp[iξ(x-ct)]; 
       0vv = sinnθ exp[iξ(x-ct)];  
       0uu = cosnθexp[iξ(x-ct)].                                                                                        (12) 
Plugging Eq. (12) in Eq. (2) and (11) along with the expression for {P*}, a set of six simultaneous algebraic equations are 
obtained. 
Three more equations are obtained by imposing the boundary conditions at the inner and outer surfaces of the shell: i.e., 

2/
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xx ddhu +=+=+ ψ                                                         (13) 

Boundary conditions at the outer surface of the shell (r = R + h/2) are obtained by assuming that the shell and the continuum are 
joined together by a bond which is thin, elastic and inertia less. This implies that the stress at the shell-soil interface is continuous. 
To take the elasticity of the bond into account, the stresses in the bond are assumed proportional to relative displacements between 
the shell and continuum. µ shear modulus of medium and ρ density of shell material. 
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,
.RSr

R
μ

ζ =
RS .θ

θ
μ

ζ =  and RSx
x .

μ
ζ =  are the non dimensionalized stiffness coefficient of the bond in radial,  tangential 

and axial direction respectively.  

1cZr
r

μ
=Γ  1cZθ

θ
μ

=Γ  and 1cZ x
x

μ
=Γ  are the non dimensionalized damping coefficient of the bond in radial ,  

tangential and axial direction respectively.                                                                                                                Thus a total of seven algebraic equations are obtained.  These seven equations when simplified give the final response 
equation, which may be put into the form  
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10 B  B  F B  }}{{ FFUQ ++=                                  (15) 

Where [Q] is a (7x7)) matrix and {F1}, {F2} and {F3} are (7×1) matrices.  But for the response of horizontal shear wave the 
amplitudes due to shear waves 1B  and 3B  would be zero so the effect of {F2} and {F1} matrices would be eliminated.  Putting 

values of 1B = 3B = 0 and substituting values of 5B  from Eq. (8) Eq. (13) becomes as  

{ }3

3

3
0 F )1(  }}{{ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

ε
χ

AUQ n

                                                                                                   (16) 
Here it must be pointed out that for an incident P-wave ∈1 = β whereas, for an incident shear wave (SV- or SH- wave) ∈2 =β. In 
the present work the non-dimensional wave number of the incident wave, i.e. β (= 2π R/∧) is given as input, so either ∈1 or ∈2 is 
always known. The other ∈i can be obtained by using the following relations: 
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Where, νm is the Poisson ratio of the medium.  
 
3.  Results and Discussions 
 
   To study the effects of the liquid presence inside the pipe on the thin pipe displacement under different soil conditions at various 
angles of incidence of the shear wave under imperfect bonding, parametric results in graphical forms are generated. 

Results are presented for a transversely isotropic shell with r-θ  as the plane of isotropy leading to zEE =θ , θxxz GG = , 

xzx νν θ = , θθ νν zz = , )1(2/ zz EG θθθ ν+= , 23 ηη =  and )1(2// 14 zxz EG θθ νηη +== .  In addition 3.0== θθ νν xz  is taken in the 
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numerical calculations.  Shell orthotropy parameters 1η  and 2η  are taken as 0.5, 0.1, 0.05 and 0.1, 0.05, 0.02 respectively. Soil 

hardness parameter  μ  is varied from 0.1 to 10.0 to take into account different soil conditions around the pipe.  μ = 0.01 

corresponds to soft soil, μ = 0.1 corresponds to the medium hard soil whereas μ = 10.0 represent hard and rocky surroundings.  

For all the values of  μ  , Poisson ratio for pipe material ( mν ) is assumed as 0.25.  Thickness to radius ratio of the shell ( h ) is 

taken as 0.01 and the density ratio of the surrounding medium to the shell ( ρ ) is taken as 0.75.  Non-dimensional amplitudes of 

the middle surface of the shell in the radial and axial directions (W  andU ) are plotted against the non-dimensional wave number 
of the incident SH-wave (β=2πR/Λ).  The shell response is shown for empty and liquid filled shell for non-axisymmetric mode 
(Flexural mode, n = 1) taking stiffness coefficient (   xζ  rζ  ), damping coefficient (  xΓ rΓ   ) as parameters. 

Figures 1 to 3 show the effects of stiffness coefficient rζ . With the soft surrounding soil, the radial displacement of liquid 
filled pipe is negligible at small angle of incidence of SH wave as compared to empty pipe. Shell orthotropy parameters are also 
effecting the radial displacement significantly. 

 
Figure1.  Radial displacement )(W  vs. wave number ( β ) with stiffness coefficient ( rζ  ) as parameter  

 
Figure 2.  Radial displacement )(W  vs. wave number ( β ) with stiffness coefficient 10,1,1.0=rζ as   parameter  
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Figure 3. Radial displacement )(W  vs. wave number ( β ) with stiffness 10,1,1.0=rζ as parameter 

 
 
Figures 4 to 6 show the effect of damping coefficients (Γ ) on radial )(W  displacement of the shell at different values of 

orthotropic parameters 1η  and 2η   of the shell material and the different conditions of the soil )(μ  at different angle of incidence 

of the wave number. )(β . For larger angle of incidence radial deflection is higher in liquid filled pipe and it decreases with    
increasing wave number.  In empty pipe, radial deflection increases with increasing wave number. Under hard rocky surrounding, 
the radial displacement is comparable for empty and liquid filled pipe at higher wave number. The impact of bonding parameter on 
radial displacement is insignificant in both the cases i.e. empty as well as liquid filled. 
 

 
Figure 4. Radial displacement )(W  vs. wave number ( β ) with damping coefficient 10,1,1.0=Γr as parameter 
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Figure 5. Radial displacement )(W vs. wave number ( β ) with damping coefficient 10,1,1.0=Γr as parameter 

 
Figure 6 Radial displacement )(W vs. wave number ( β ) with 10,1,1.0=Γr as parameter  

 
Figures 7 to 9 show the effects of stiffness coefficient  xζ   on axial )(U  displacement of the shell at different values of 

orthotropic parameters 1η  and 2η of the shell material and the different conditions of the soil )(μ  at different angle of incidence of 

the wave number )(β . At higher wave number, the liquid presence has negligible effect on axial displacement as compared to 
empty pipe at low angle of incidence.  At higher angle of incidence, the axial displacement is higher in case of liquid filled pipe as 
compared to empty pipe with increasing wave number. In hard and rocky surrounding media and with a higher angle of incidence, 
the bond parameters play an important role in the axial direction dynamic response of empty pipe as compared to the response of 
liquid filled pipe.  
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Figure 7.  Axial displacement )(U  vs. wave number ( β ) with stiffness coefficient 10,1,1.0=xζ as parameter 

 
Figure 8.  Axial displacement )(U  vs. wave number ( β ) with stiffness coefficient 10,1,1.0=xζ as parameter 

 
Figure 9.  Axial displacement )(U  vs. wave number ( β ) with stiffness coefficient 10,1,1.0=xζ as parameter 
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Figure 10 shows the effect of damping coefficients (Γ ) on axial )(U  displacement of the shell at different values of 

orthotropic parameter 1η of the shell material and surrounded with soft soil )1.0( =μ  at high angle of incidence with increasing 

wave number )(β . It is found that magnitude of axial deflection of liquid filled pipeline can become substantially higher than that 
of an empty pipeline under soft soil surroundings, and hence, it cannot be assumed that a liquid filled pipeline will always furnish 
safe and conservative dynamic response.  
    

  
Figure 10. Axial displacement )(U  vs. wave number ( β ) with damping coefficient 10,1,1.0=Γx as parameter 

 
4. Conclusions  
 
    The effects of the liquid presence on the buried thin orthotropic pipe displacement are studied for different surrounding soil 
conditions under shear horizontal wave generated due to seismic excitation striking at various angles of incidence. Based on the 
presented results following general conclusions could be drawn: 

• With the soft surrounding soil, the radial displacement of liquid filled pipe is negligible at small angle 
of incidence of SH wave as compared to empty pipe. Shell orthotropy parameters are also effecting the 
radial displacement significantly. 

• In the soft surrounding soil, at higher angle of incidence of SH wave the initial displacement of the 
liquid filled shell higher and it decreases with increasing wave number at higher angle of incidence of 
SH wave.  In empty pipe, radial deflection increases with increasing wave number. 

• Under hard rocky surrounding, the radial displacement is comparable for empty and liquid filled pipe at 
higher wave number. The impact of bonding parameter on radial displacement is insignificant in both 
the cases i.e. empty as well as liquid filled. 

• In hard and rocky surrounding media and with a higher angle of incidence, the bond parameters play an 
important role in the axial direction dynamic response of empty pipe as compared to the response of 
liquid filled pipe.  

• It is observed that magnitude of axial deflection of liquid filled pipeline can become substantially higher 
than that of an empty pipeline under soft soil surroundings, and hence, it cannot be assumed that a 
liquid filled pipeline will always furnish safe and conservative dynamic response.  

 
 
Nomenclature 
A   Amplitude of the plane wave  

321 ;; AAA
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B1 ……  .,B6                                          Arbitrary constants    
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'
6

'
1.......BB                                            Arbitrary constants    

c                                                Apparent wave speed along the axis of the shell  
dr, dθ, dx  Components of  displacement vector 
ER, Eθ, EX                                                   Young modulus of the shell. 

xr eee ;; θ                                                     
Unit vector in co-ordinate direction 

{F1}, {F2}, {F3}                       Column vector  
Gxθ, Gxz, Gzθ                              Shear moduli of the shell 
H                                              Vector displacement in the medium  

H '                                              Displacement potential corresponding to SV wave  
Hr, Hθ, HX                                                               Components of vector potential 
                                                          (Hx corresponding to SH wave) 
h                                                     Thickness of the shell 
h (=h/R)                                Non dimensional thickness of the shell 
In ( )                                                Modified Bessel function of first kind  
Jn ( )                                                Bessel function of first kind 
Kn ( )                                      Modified Bessel function of second kind 
kx, kθ           Shear correction factor 
{L}                         Matrix operator  

xxxx MMMM θθθθ ;;;
                            

Stress resultant moments 

xxxx NNNN θθθθ ;;;
                                 

Stress resultants 
 n                                                   Mode shape number in the tangential direction 
{P*}                             Column matrix  
R                                 Mean radius of the shell 
r                                   Radial coordinate 
t                                  Time  
U                                             Non-dimensional amplitude of the shell in axial direction 
u                                               Displacement of  the shell middle surface in the axial direction 
u0                                                  Displacement amplitude of  the shell middle surface in the axial direction 
uz, uθ, ux                                    Displacement component of a point in the shell 
V                                            Non-dimensional amplitude of  the shell in the tangential direction 
v                                               Displacement of  the shell middle surface in the tangential direction 
v0                                              Displacement amplitude of shell middle surface in tangential direction 
W                                            Non-dimensional amplitude of the shell in the radial direction 
w                                               Displacement of  the shell middle surface in the radial direction 
w0                                              Displacement amplitude of  the shell middle in the radial direction 
x                  Coordinate along the shell axis 
z                                                Coordinate normal to middle surface of the shell  
φ                                Angle of incidence of the wave  
β(=2πR/Λ)                                  Non-dimensional wave number of incident wave 
η1, η2, η3, η4                                  Non-dimensional shell orthotropic parameters of the shell  
θz                           Normal to middle surface of the shell 
θ                                         Tangential direction 
Λ                                  Wave length of the incident wave 
λ                                  Lame’s constant 
μ                                 Modulus of rigidity 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

xzG
μμ                              Non-dimensional modulus of rigidity of medium 

νm              Poisson ratio the medium 
νxθ, νθx, νθz, νzx, νxz                    Poisson ratios of the shell 
ξ (= 2π cos α/Λ )             Apparent wave number 
ρ              Density of the shell material 
ρm              Density of the medium 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρρ m               Non-dimensional density of the medium 

σij              Components of stress tensor 
φ                                               Scalar displacement potential in the medium 
ψx                                             Angle of rotation in r-x plane 
χ                                              Symmetry constantχ =1for n=0, χ =2 for n=1 
ψxo                                            Amplitude of ψx 
ψθ                                             Angle of rotation in r-θ plane 
 
Subscripts 
m                                       Medium 
r                                        Radial direction 
x                                       Axial direction 
z              Normal to middle surface of  the shell  
θ                                        Tangential direction 
 
Superscripts 
i                                        Incident wave  
s                                       Scattered wave  
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