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Abstract 
 
   Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a 
longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a 
semi-infinite domain while in the second case the dispersion and the velocity both have spatially dependent expressions. 
Analytical solutions are obtained by introducing new independent variables with the help of certain transformations. Result and 
discussions are given by different graphs. 
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1. Introduction 
 
   The contaminants in aquifer systems migrate with ground water flow, any factors that may affect groundwater flow are also 
likely to influence the migration of contaminants in aquifers. Because contaminants are chemicals or bacteria or virus which are 
mostly physically, chemically and biologically active, the transport of contaminants are subject to physical, chemical and 
biological activities, such as contaminant density, adsorption and desorption, retardation, degradation and chemical-biological 
reactions. Analytical solutions, numerical simulations, and experiment and field observations are used to address groundwater flow 
and contaminant transport problems in aquifers.  
   Contaminant (solute) transport through a medium is described by a partial differential equation of parabolic type and it is usually 
known as advection-dispersion equation. Advection-dispersion equation is applicable in many disciplines like groundwater 
hydrology, chemical engineering bio sciences, environmental sciences and petroleum engineering to describe the behavior of 
solute concentration. In earlier, this equation along with a set of initial and boundary conditions has been solved for uniform 
dispersion and velocity. A list of previous investigators are Bastian and Lapidus (1956), Banks and Ali (1964), Ogata (1970) and 
Marino (1974), Al-Niami and Rushton (1977). Most of them take into account the effects of adsorption, first order decay, zero 
order production. Such solutions have been compiled by Lindstrom and Boersma (1989). Coming nearer to real problems, Banks 
and Jerasate (1962), Hunt (1978), Kumar (1983) considered the porous media flow unsteady/ non-uniform. Yates (1990) 
developed an analytical solution for describing the transport of dissolved substances in heterogeneous porous media with a 
distance dependent dispersion which may be used to characterize differences in the transport process relative to classical 
convection–dispersion equation for constant hydrodynamic dispersion in the porous medium. van Kooten (1996) has given a 
method to solve the transport equations for a kinetically adsorbing solute in a porous medium with spatially varying velocity field 
and dispersion coefficients.  
   Chen et al. (2003) presented a novel mathematical model to describe solute transport in a radially convergent flow field with 
scale-dependent dispersion. The scale-dependent advection-dispersion equation in cylindrical coordinates derived based on the 
dispersivity is assumed to increase linearly with the distance of the solute transported from its input source. The Laplace 
transformed power series technique is applied to solved the radially scale-dependent advection-dispersion equation with variable 
coefficients. Meerschaert and Tadjeran (2004) used fractional advection–dispersion equations in groundwater hydrology to model 
the transport of passive tracers carried by fluid flow in a porous medium. They developed practical numerical methods to solve one 
dimensional fractional advection–dispersion equations with variable coefficients on a finite domain. The practical application of 
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these results is illustrated by modeling a radial flow problem. Use of the fractional derivative allows the model equations to 
capture the early arrival of tracer observed at a field site. Su et al. (2005) presented a specific form of the Fokker–Planck equation 
with a time- and scale-dependent dispersivity for modeling solute transport in saturated heterogeneous porous media. By taking a 
dispersivity in the form of separable power-law dependence on both time and scale, they show the existence of similarity solutions. 
Explicit closed-form solutions are then derived for an instantaneous point-source (Dirac delta function) input, and for constant 
concentration and constant flux boundary conditions on a semi-infinite domain. Moreira et al. (2006) reported the state-of-art of 
the ADMM (Advection Diffusion Multilayer Model) model, with solutions of the one and two-dimensional, steady state and time 
dependent advection-diffusion equation obtained by Laplace transform application. They also presented the novelty of solution of 
the advection-diffusion equation considering non-local effects in the turbulence closure and a critical evaluation of the influence of 
Gaussian quadrature points in the solutions. Sirin (2006) assumed pore flow velocity to be a non divergence-free, unsteady and 
non-stationary random function of space and time for ground water contaminant transport in a heterogeneous media. 
   Smedt (2006) presented analytical solutions for solute transport in rivers including the effects of transient storage and first order 
decay. Kartha and Srivastava (2008) studied one-dimensional numerical simulation is carried out of the effect of immobile water 
content on the time of appearance of contaminant at the bottom of an unsaturated column. Jaiswal et al. (2009) and Kumar et al. 
(2010) obtained analytical solutions for temporally and spatially dependent solute dispersion of point source input concentration in 
one dimensional semi-infinite media. Mohebbi and Dhghan (2010) proposed a high-order accurate method for solving the one-
dimensional heat and advection-diffusion equations in addition to high-order of accuracy of the proposed method. Numerical 
results show that the compact finite difference approximation of fourth-order and the cubic 1C - spline collocation method give an 
efficient method for solving the one-dimensional heat and advection-diffusion equations. 
   Warrick et al. (1972) examined miscible displacement processes with time-varying velocity and dispersion coefficients and 
solutions are used in the analysis of experimental data, both for field infiltration with a slug of solute and for psychrometric 
measurements of salt fronts in a laboratory sand column. Zoppou and Knight (1997) presented one-dimensional analytical 
solutions for equation in which they considered solute dispersion varying with square of position variable while velocity varies 
with the position variable. In the present work two dispersion problems are addressed using Laplace Transform Technique, 
analytical solutions are obtained for one-dimensional advection diffusion equations describing the dispersion of pulse type input 
point source along temporally dependent and spatially dependent flow domains, respectively, through semi-infinite medium. The 
point source of varying nature is considered. The spatial dependence due to inhomogeneity of the medium is demonstrated by 
linearly interpolated velocity in position variable. Introduction of new space variables enable to reduce the advection-dispersion 
equation in both the problems into one-dimensional equation with constant coefficients.  
  
2. Analytical solutions 
 
In one space dimension the linear advection-dispersion equation may be written as   

 ( , ) ( , )C CD x t u x t C
t x x

∂ ∂ ∂⎡ ⎤= −⎢ ⎥∂ ∂ ∂⎣ ⎦
                                                                                                              (1) 

where C  is the solute concentration, x  is space variable, t  is time, ( , )D x t  is solute dispersion and is called the dispersion 
coefficient if it is uniform and steady, and ( , )u x t  is the velocity of the medium . It is derived on the principle of conservation of 
mass and Fick’s laws of diffusion. If the medium is porous the velocity of flow satisfies the Darcy’s law. 

 Let us write ( ) 0 1, ( , )D x t D f x t=  and ( ) 0 2, ( , )u x t u f x t=  in Eq. (1) as 

 0 1 0 2( , ) ( , )C CD f x t u f x t C
t x x

∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
,                                                                                                                                       (2) 

where 0D  and 0u are constants.  
Let us introduce a new independent variable, X  by following transformation (Jaiswal et al., 2009, Kumar et al., 2010) 

 
1

1  
( , )

X
x f x t

∂
= −

∂
 or  

1( , )
dxX

f x t
= −∫                                                                                                   (3) 

 
As a result Eq. (2) becomes 

 ( )
2

1 0 0 22( , ) ( , )C Cf x t D u f x t C
t XX

∂ ∂ ∂
= +

∂ ∂∂
                                                                                                                                    (4)   

 
   Two cases are considered. In the first case a time dependent dispersion along a uniform flow is considered while the second case 
deals with space dependent dispersion along a non-uniform flow in a semi-infinite domain. 
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2.1 Temporally dependent dispersion along uniform flow  

Let ( )1 , ( )f x t f mt= , and f2 (x,t) = 1, where m  is a resistive coefficient whose dimension is inverse of that of the time variable t . 
( )f mt  is chosen such that for 0m =  or 0t = , ( ) 1f mt = . Thus ( )f mt  is an expression in the non-dimensional variable mt . 

Then   from Eq. (3) we have  

 
( )
xX

f mt
= −                                                                                                                                                                                (5) 

Eq. (4) will become 

 
2

0 02( ) C C Cf mt D u
t XX

∂ ∂ ∂
= +

∂ ∂∂
                                                                                                                                                  (6) 

Let us introduce a new time variable using the following transformation (Crank, 1975) 

 
0 ( )

t dtT
f mt

= ∫                                                                                                                                                                                  (7) 

The partial differential equation (6) reduces into that with constant coefficients as  

 
2

0 02

C C CD u
T XX
∂ ∂ ∂

= +
∂ ∂∂

                                                                                                                                                            (8) 

Let the domain is initially solute free. The input source concentration is not always uniform due to many reasons. For it, varying 
pulse type input source concentration is considered. An input concentration of varying nature is assumed at the origin of the 
domain. It is assumed to be 0C  until 0t t=  and beyond that it starts decrease instead of becoming zero. The second boundary 
condition is considered of solution type of homogeneous nature.  Thus the initial and boundary conditions in mathematical form 
are as follows: 
 ( ), 0 0C x t = = , 0x ≥ ,                                                                                                                                                                 (9) 

 ( ) 0 0( , ) ( , ) ,
0
u CCD x t u x t C x t

x
⎧∂

− + = ⎨
∂ ⎩

   , 0

0

0 t t
t t
< ≤
>

, 0x =                                                                                                          (10a) 

 ( ), 0C x t = , x →∞ , 0t ≥                                                                                                                                                         (10b) 
These conditions in terms of new space and time variable may be written as 
 ( ), 0C X T = ,   0X−∞ < ≤ , 0T = ,                                                                                                                                       (11) 

 ( ) 0 0
0 0 ,

0
u CCD u C X T

X
⎧∂

+ = ⎨
∂ ⎩

  , 0

0

0 T T
T T
< ≤
>

 0X =                                                                                                                   (12a)    

 ( ), 0C X T =       , X → −∞ ,  0T ≥                                                                                                                                         (12b) 
Using  
 Z X= − ,                                                                                                                                                                                     (13) 
The initial and boundary value problem becomes 

2

0 02

C C CD u
T ZZ
∂ ∂ ∂

= −
∂ ∂∂

                                                                                                                                                              (14) 

 ( ), 0C Z T = ,   0Z ≥ ,  0T = ,                                                                                                                                                   (15) 

 0 0
0 0 0

u CCD u C
Z

⎧∂
− + = ⎨

∂ ⎩
  , 0

0

0 T T
T T
< ≤
>

 0Z =                                                                                                                             (16a)    

 ( ), 0C Z T =        , Z →∞ , 0T ≥                                                                                                                              (16b) 
Now introducing a new dependent variable by following transformation 

 ( ) ( )
2

0 0

0 0

, , exp
2 4
u u

C Z T K Z T Z T
D D

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
,                                                                                                                          (17) 

 
The set of Eqs. (14) to (16) reduced into 

   
2

0 2

K KD
T Z
∂ ∂

=
∂ ∂

                                                                                                                                                                            (18) 

 ( ), 0K Z T = , 0T = , 0Z ≥                                                                                                                                                         (19)    
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 ( )2
0 00

0

exp
2 0

u C TuKD K
Z

α⎧∂ ⎪− + = ⎨∂ ⎪⎩
, 0

0

0 T T
T T
< ≤
>

, 0Z = ;    
2

2 0

04
u
D

α =                                                                                    (20a)  

 ( , ) 0K Z T = ,   Z →∞ , 0T ≥                                                                                                                                                   (20b) 
Eqs. (18) and (20b) are satisfied by a solution (Crank, 1984) 

 
0

( , ) erfc
2

ZK Z T A
D T

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
,                                                                                                                                    (21) 

where A is an arbitrary constant and may be obtained by using (20a). Further reusing (17) the desired solution is 
 ( , ) ( , )C Z T F Z T= ,  00 T T< ≤                                                                                                                                                (22a)                  
 0( , ) ( , ) ( , )C Z T F Z T F Z T T= − − , 0T T>                                                                                                                             (22b) 

where 

0

0
0 0

000

exp
2

( , ) erfc
2

2

u Z
D ZF Z T u C

D TDu
Tπ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟⎜ ⎟

⎝ ⎠

, 
( )
xZ

f mt
=  and 

0 ( )

t

t

dtT
f mt=

= ∫ . 

2.2 Spatially dependent dispersion along non-uniform flow  

In this case let us consider following expressions for dispersion and velocity  
 ( ) 2

1 , (1 )f x t ax= + ,    and   2 ( , ) (1 )f x t ax= + , 
where ax   is a non-dimensional and a  is non-zero real constant has the dimension of inverse of space variable accounting for the 
variations in velocity and dispersion due to inhomogeneity. To have these variations small, let 0 1ax< ≤ . Different values of a  
will represent different media having different inhomogeneous nature. From the Eq. (3) we will have 

 1
(1 )

X
a ax

=
+

                                                                                                                                                                          (23) 

Eq. (4) will become 

 
2

2 2
0 0 02

C C Ca D X au X au C
t XX

∂ ∂ ∂
= + −

∂ ∂∂
                                                                                                                                  (24) 

Let us assume initial and boundary conditions same as of case first in a longitudinal semi-infinite domain and using Eq. (3) and the 
following transformation 

 logZ aX= −                                                                                          (25) 

respectively. The initial and boundary value problem in terms of the new independent variables ( , )Z T may be written as 

 
2

2 2
0 0 0 02 ( )C C Ca D au a D au C

t ZZ
∂ ∂ ∂

= − − −
∂ ∂∂

                                                                                                                             (26) 

 ( ), 0C Z t = ,   0Z ≥ , 0t = ,                                                                                                                                               (27) 

 0 0
0 0 0

u CCaD u C
Z

⎧∂
− + = ⎨∂ ⎩

  , 0

0

0 t t
t t
< ≤

>
, 0Z =                                                                                                                          (28a)    

 ( ), 0C Z t = , Z →∞ , 0t ≥                                                                                                                                                       (28b) 
Further using a new dependent variable by transformation 

( ) ( )
2

0 0
02

0 0

, , exp
2 4

w w
C Z t K Z t Z au t

aD a D
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 2
0 0 0w au a D= − ,                                                                             (29) 

the set of Eqs. (26) to (28) reduces into 

   
2

2
0 2

K Ka D
t Z

∂ ∂
=

∂ ∂
                                                                                                                                                                        (30) 

 ( ), 0K Z t = , 0t = , 0Z ≥                                                                                                                                                            (31) 
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2
0 0 0

020 0
0 0

0

exp
4

2
0

u C w
au tu aDK K aD a D

Z aD

⎧ ⎧ ⎫⎛ ⎞⎪ ⎪+⎪+∂ ⎨ ⎬⎜ ⎟− + = ⎨ ⎪ ⎪⎝ ⎠⎩ ⎭∂ ⎪
⎩

, 0

0

0 t t
t t
< ≤

>
, 0Z = ,                                                                       (32a)    

 ( ), 0K Z t = , Z →∞ , 0t ≥                                                                                                                                                       (32b) 
Eqs. (30) and (32b) are satisfied by a solution (Crank, 1984) 

 
0

( , ) erfc
2

ZK Z t B
a D t

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
,                                                                                                                                                       (33) 

where B is an arbitrary constant and may be eliminated from the general solution by using the condition (32a) and lastly using back 
transformation, one may get the desired solution as 
 ( , ) ( , )C Z t G Z t=    , 00 t t< ≤                                                                                                                                                   (34a) 
 0( , ) ( , ) ( , )C Z t G Z t G Z t t= − − , 0t t>                                                                                                                                 (34b) 

where   

0
0 0 2

0

00 0
0

0 0

exp
2

( , ) erfc
21

2

wu C Z
a D ZG Z t

a D tu aDaD
aD D tπ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟⎜ ⎟⎛ ⎞+ ⎝ ⎠+⎜ ⎟⎜ ⎟

⎝ ⎠

, 2
0 0 0w au a D= − , log{(1 )}Z ax= + . 

 
3. Result and discussions 
 
   The analytical solutions are illustrated with the help of set of input data to understand the concentration distribution behavior in 
the two cases, respectively. All the figures are drawn for varying pulse type input source concentration along a flow in a finite 
domain 0 (km) 1x≤ ≤ of semi-infinite region. The set of input data for case-I i.e., for time dependent are 0 1.0C = , 

0 0.27u = (km/yr), 0 0.39D =  (km2/yr) and 10.1 ( )m yr −= . The time of elimination of the source concentration is considered 

0 1.2t =  (yr). The figures are drawn at  t (yr) = 0.4, 0.7 and 1.0 for 0t t≤  and at  t (yr) =  1.3, 1.6 and 1.9 for 0t t> . Fig. 1a and 1b 
depicts the distribution of concentration for ( ) exp( )f mt mt= −  which is of decreasing nature, at different time for 0t t≤  and 

0t t> , respectively. From Fig. 1a, it is observed that the solute concentrations are increase with increasing time at initial stage in 
the presence of source. 
 
 

t = 0.4 (yr)
t � 0.7 �yr�t = 1.0 (yr)

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

 
 
 
 
 

     

x 

Figure 1a. Distribution behavior of solute in presence of source concentration for time dependent 
dispersion of decreasing function      at different time. 

C/C0
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t = 1.3 (yr)
t = 1.6 (yr)

t = 1.9 (yr)

0.2 0.4 0.6 0.8 1.0

0.25

0.30

0.35

0.40

0.45

 
 
 
 
 
 
   In Fig. 1b, when source is absent i.e., absence of source the distribution of solute concentration achieve reverse trained. The 
trained of distribution of concentration is similar in all function of ( )f mt .  
   Fig. 2a and 2b, shows the concentration values for case-II i.e., for spatially dependent dispersion and velocity for 0t t≤  at time t 
(yr) = 0.4, 0.7, 1.0 and for 0t t>  at time t (yr) = 1.3, 1.6, 1.9 respectively where a =1.0 (km)-1. The input data for this case are 

0 1.0C = , 0 0.21u = (km/yr) and 0 0.31D =  (km2/yr).  The source of elimination is considered same as in case first i.e., 

0 1.2t = (yr). 
 

t = 0.4 (yr)

t = 0.7 (yr)

t = 1.0 (yr)

0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

0.35

 
 

 
 

 
 
 
 

x

     

x 
Figure 1b. Distribution behavior of solute in absence of source concentration for time dependent 
dispersion of decreasing function at different time. 

Figure 2a. Distribution behavior of solute in presence of source concentration for spatially 
dependent dispersion at different time. 

C/C0

C/C0
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   Nature of solute distribution of spatially dependent dispersion in Fig. 2a, in presence of source concentration at initial point is 
higher for higher time but dispersion is faster for lower time in comparison of higher time although, in Fig. 2b in absence source, 
dispersion of solute is faster for higher time.  
 

t = 1.3 (yr)

t = 1.6 (yr)

t = 1.9 (yr)

0.2 0.4 0.6 0.8 1.0

0.20

0.25

0.30

0.35

0.40

 
 
 
 
 
 
   It may be observed that in the presence of pollutants source, concentration values decrease with position and increase with time. 
Once the source of the pollution is removed, the input concentration becomes zero and at a particular position concentration level 
starts decreasing with time, and appears to settle at a minimum level. The decrease (in the presence of the source) or increase (in 
the absence of the source) is faster at the initial stage. Analytical methods basically provide solutions to governing equations of 
groundwater flow and contaminant transport with simplified boundary conditions and hydro-geological and chemical properties 
and are useful to predicting the more comprehensive numerical solutions. But it is extremely difficult or even impossible to derive 
analytical solutions to solute transport when a more complex system is considered, e.g., a system with one or more aspects among 
moving and periodic boundary conditions, variable-density flow, heterogeneity of geological settings, physical, chemical, and 
biological degradations, and multiple dimensions.   
  
4. Conclusion 
 
   In the present work, the advection-dispersion equation in one-dimension are solved analytically for varying pulse type input 
source in semi-infinite domain for time dependent dispersion along uniform flow and spatially dependent solute dispersion along 
non-uniform flow. It has been possible with the introduction of a new transformation in independent variable. Solute transport due 
to dispersion and advection, originating from a point stationary source of pulse type of varying nature through a 
homogeneous/heterogeneous semi-infinite horizontal medium, is studied. The heterogeneity is described by position dependent 
linear non-homogeneous expression for the velocity. The variation in dispersion parameter due to heterogeneity is considered 
proportional to square of that in the velocity. 
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