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Abstract 
 
   The steady two-dimensional free convection flow of a Walter’s fluid (Model B’) in a vertical double passage wavy channel has 
been investigated analytically in the presence of heat source. The channel is divided into two passages by means of thin, 
perfectly conductive plane baffle and each stream will have its own pressure gradient and hence the velocity will be individual in 
streams. The governing equations of the fluid and the heat transfer have been solved subject to the relevant boundary conditions 
by assuming that the solution consists of two parts; a mean part and disturbance or perturbed part. To obtain the perturbed part 
of the solution, the long wave approximation has been used and to solve the mean part, well known approximation used by 
Ostrach has been utilized. Numerical results are presented graphically for the distribution of velocity and temperature fields for 
varying physical parameters such as baffle position, Grashof number, wall temperature ratio, viscoelastic parameter and product 
of non-dimensional wave number and space co-ordinate at different positions of the baffle. The relevant flow and heat transfer 
characteristics namely, skin friction and the rate of heat transfer at both the walls has been discussed in detail. 
 
Keywords: vertical wavy channel; baffle; double passage; heat source. 
 
1. Introduction 
 

The corrugated wall channel is one of the several devices employed for enhancing the heat transfer efficiency of industrial 
transport processes. It is necessary to study the heat transfer from irregular surfaces because irregular surfaces are often present in 
many applications. Mixed convection from wavy surfaces can be used for transferring heat in several heat transfer devices, such as 
flat-plate solar collectors and flat-plate condensers in refrigerators. The presence of roughness elements disturbs the flow past 
surfaces and alerts the heat transfer rate. Viscous flow in wavy channels was first treated analytically by Burns and Parks (1962). 
The solution was obtained by expressing the stream function in a Fourier series under the assumption of Stokes flow. Vajravelu 
(1980) studied the flow and heat transfer effects accounting for the convection contributions by a perturbation method using the 
long-wave approximation, where the solution consist of a mean part and perturbed part. 
 Yao (1983) proposed a simple transformation to study the natural convection heat transfer from isothermal vertical surfaces, 
such as sinusoidal surfaces, in Newtonian fluids. Chiu and Chou (1994) studied the transient and steady natural convection along a 
vertical wavy surface in micropolar fluids. They have found that increasing the micropolar parameter results in decreasing the heat 
transfer rate. Rees and Pop (1994) studied the free convection flow along a vertical wavy surface with constant wall temperature. 
Rees and Pop (1995) also studied the natural convection flow along a vertical wavy surface with uniform wall flux. 
 Wang and Vanka (1995) determined the rates of heat transfer for a flow through a periodic array of wavy passage. They 
observed that for the steady-flow regime, the average Nusselt numbers for the wavy-wall channel were only slightly larger than 
those for a parallel-plate channel. However, in the transitional-flow regime, the enhancement of heat transfer was by a factor of 
approximately 2.5. Friction factors for the wavy channel were about twice those for the parallel-plate channel in the steady-flow 
region, and remained almost constant in the transitional regime. Although some studies for steady and unsteady flows have been 
reported, example, Blancher et. al. (1998), Selvarajna et. al. (1998), Greiner  et. al. (1991), little knowledge is available on the 
flow in these wavy channels.  
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 The analyses of the flow properties of non-Newtonian fluids are very important in the fields of fluid dynamics because of their 
technological application. Mechanics of non-Newtonian fluids present challenges to engineers, physicists and mathematicians. Due 
to the complex stress-strain relationships of non-Newtonian fluids, not many investigators have studied the flow behavior of the 
fluids in various flow fields. Hot rolling, extrusion of plastics, flow in journal bearings, lubrication, and flow in a shock absorber 
are some typical examples to name just a few (Bőhme, 1981; Huilgol et. al., 1997). Non-Newtonian fluids are of increasing 
importance in modern technology due to its growing use in many activities, such as molten plastic, paints, drilling, and petroleum 
and polymer solutions. The Walters fluid is one of such fluids.  
 The most commonly used technique for internal cooling enhancement is the placement of periodic ribs. Ribs are generally 
mounted on the heat transfer between the surfaces, which disturb the boundary layer growth and enhance the heat transfer between 
the surface and the fluid. In addition to ribs and impingement, a third common internal cooling enhancement technique is the 
placement of internal flow swirls, tape twisters, or baffles. The convective heat transfer in a vertical channel could be enhanced by 
using special inserts which can be specially designed to increase the included angle between the velocity vector and the 
temperature gradient vector rather than to promote turbulence. This increases the rate of heat transfer without a considerable drop 
in the pressure (Guo et. al., 1998).A plane baffle may be used as an insert to enhance the rate of heat transfer in the channel. A thin 
and perfectly conductive baffle is used so as to avoid a considerable increase in the transverse thermal resistance into the channel. 
Cheng  et al. (1989) studied analytically heat transfer aspects of a laminar fully developed forced-convection within an 
asymmetrically heated horizontal double-passage channel and concluded that the thermal characteristics of fully developed flow 
could be significantly affected by the position of the baffle, the pressure gradient ratio and the thermal boundary conditions. 
Similar mixed convection problem in a vertical double-passage channel has been investigated analytically by Salah El-Din (1994). 
His results showed that the presence of the baffle may lead to a higher value of Nusselt number according to the baffle position 
and the value of ReGr . Dutta and Hossain (2005) reported experimental results of the enhancement of heat transfer with inclined 
solid and perforated baffles. In that study, the effects of baffle size, position were studied for internal cooling heat transfer 
augmentation. Chen and Chen (1998) experimental results showed that for small baffle widths, the local heat transfer coefficient 
decreases with an increase in the baffle wall gap. For large baffle widths, there is an optimum distance between the baffle and the 
solid wall which give rise to a higher heat transfer coefficient. More over recently Chang and Shiau (2005) studied numerically the 
effects of horizontal baffle on the heat transfer characteristics of pulsating opposing mixed convection in a vertical channel. They 
found that the flow pulsation with a baffle gives the optimal heat transfer. Also with large Reynolds number, the inlet flow 
pulsation dominates the velocity field in the channel. 
 The purpose of the present study focuses attention on the fully developed free convection flow of a Walter’s fluid (Model B’) in 
a vertical wavy double-passage channel in the presence of heat source. The buoyancy force, temperature ratio, heat source/sink, 

xλ  and viscoelastic parameter at different baffle positions are all considered so as to extensively investigate their distinct 
influence on the velocity, temperature, skin friction and rate of heat transfer. 
 
2. Mathematical formulation 
 
Case 1: Free convection of Walter’s fluid in a vertical channel with baffle 

 
Consider a steady two dimensional laminar free convection Walter’s fluid flow in an open-ended vertical channel with one wavy 

wall and another flat wall as shown in Fig. 1. The channel is divided into two passages by means of a perfectly conducting thin 
baffle, for which the transverse thermal resistance can be neglected (Cheng et al., 1989 and Salah El Din, 1994, 2002). The X  axis 
is taken upwards and parallel to the flat wall, while the Y-axis is taken perpendicular to it in such a way that the wavy wall is 
represented by ( )cosY kXε ∗=   and the flat wall byY d= . The wavy and flat walls are maintained at a constant temperature wT  
and 1T , respectively. The following assumptions are made 
a. All the fluid properties except the density in the buoyancy force are constant. 
b. The dissipative effects and the work of deformation are neglected in the energy equation. 
c. The wavelength of the wavy wall is large compared with the width of the channel. 
d. For fully developed flow, it is assumed that the transverse velocity and temperature gradient in the axial direction are zero. 
e. The volumetric heat source/sink term in the energy is constant.  
f. Boussinesq approximation is assumed, i.e., ( )( )1s sT Tρ ρ β= − −  
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Figure.1 Physical configuration of the double-passage channel 

 
Following the above assumptions the basic equations governing the flow are (Rita and Alok, 2000) 
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1 1 1 0, wU V T T= = =     on ( )cosY kXε ∗=  

                               1 1 2 2
1 2 1 2 1 20,  0, ,

T T T T
U U V V T T

Y X Y X
∂ ∂ ∂ ∂

= = = = = + = +
∂ ∂ ∂ ∂

 on Y d ∗=                     (5) 

2 2 2 0, fU V T T= = =      on   Y d=  
Introducing the following non-dimensional variables in the governing equations for velocity and temperature as, 

                                        
( )2, , , , ,i i s

i i
w s

U d V d T TX Y px y u v p
d d T T d
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∗−
= = = = = =

−
                       (6) 

where sT  is the fluid temperature in static condition. Doing this, Eqs. (1) to (5) become 
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        2 2 2 0,u v mθ= = =      on 1y =                                                                                         
where 

0 ,pP c kη=   the Prandtl number 

,dε ε ∗=                    the dimensionless amplitude parameter 
,kdλ =                         the dimensionless frequency parameter 

( ) ( )1 ,s w sm T T T T= − −  the wall temperature ratio 

( )2
w sQd k T Tα = − ,     the dimensionless heat source/sink parameter 

( )2
02K K dρ=  , the dimensionless viscoelastic parameter 
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2
x w sd g T T

G
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ν
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= , the Grashof number 

 
where the subscript s denotes quantities in the static fluid condition.  
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The term 0η  is the limiting viscosity at small rate of shear which is given by 

( ) ( )0 0
0 0

andN d k N dη τ τ τ τ τ
∞ ∞

= =∫ ∫  

where ( )N τ  being the relaxation spectrum as introduced  by Walters (1960, 1962). This idealized model is a valid approximation 

of Walter’s fluid (model 'B ) taking very short memories into account so that terms involving  

( )
0

, 2n N d nτ τ τ
∞

≥∫  

are neglected (Rita and Alok, 2000). 
 
3. Solutions 
 

  Equations (8) to (10) are coupled non-linear partial differential equations and hence finding exact solutions is out of scope. 
However, for small values of the amplitude parameter ε , approximate solutions can be extracted through   the perturbation 
method. The amplitude parameter ε  is usually small and hence regular perturbation method can be strongly justified. Adopting 
this technique, solutions for velocity and temperature are assumed in the form 

                     ( ) ( ) ( )0 1, ,j j ju x y u y u x y= +   ( ) ( )1, ,j jv x y v x y=  

                                                    ( ) ( )0 1 ,j j jp p y p x y= + , ( ) ( ) ( )0 1, ,j j jx y y x yθ θ θ= +                  (12) 

where the perturbations  1 1 1 1, , andj j j ju v p θ  are small compared with the mean or zeroth order quantities. Equations (7) to (11) 
yield the following equations. 
Zeroth order equations 
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First order equations 
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In deriving the Eq. (13), the constant pressure gradient term ( )0 sp p
x
∂

−
∂

 has been taken equal to zero following (Ostrach, 

1952). In view of Eq. (12) the boundary condition in Eq. (11) can be split up into the following two parts. 
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First order boundary conditions 
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where rp  represents the real part                                                                   
The solutions for zeroth order velocity 0ju and zeroth order temperature 0jθ  satisfying the Eq. (13) and the boundary conditions 

Eq. (17) are given by 
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In order to solve Eqs. (14) to (17) for the first order quantity it is convenient to introduce stream function ψ  in the following 
form 
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j
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The stream function approach reduces the number of dependent variables to be solved and also   eliminates pressure from the list 
of variables. Differentiate Eq. (15) with respect to y and differentiate Eq. (16) with respect to x  and then subtract Eq. (15) with 
Eq. (16) which will result in the elimination of pressure 1ip . We assume stream function and temperature in the following form 

                                      ( ) ( )1 1, ,i x
j jx y e yλψ ε ψ=  ( ) ( )1 1, i x

j jx y e t yλθ ε=  

From the above Eqs. (14) to (17) after elimination of 1jP , can be expressed in terms of the stream function ψ  and t  in the form  
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where i is the coefficient of imaginary part and suffix ( )1, 2j =  denotes stream-1 and stream-2 respectively. 
Boundary conditions as defined in Eq. (19) can be written in terms of ψ  and  t  as 
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We restrict our attention to the real parts of the solutions for the perturbed quantitiesψ , t , 1ju  and 1jv . 

Consider only small values of λ . On substituting  
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into Eqs. (25) to (27) we obtain to the order of λ , the following set of ordinary differential equations 
Zeroth order 
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Zeroth order boundary conditions in terms of stream function and temperature are 
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First order boundary conditions in terms of stream function and temperature are  
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The set of Eqs. (25) to (28) subject to boundary conditions Eqs. (29) and (30) have been solved exactly for ψ  and t . From these 
solutions, the first order quantities can be put in the form,   

                                       ( ) 0 1i ,rp ip j jψ ψ ψ ψ λψ= + = +     ( ) 0 1irp ip j jj
t t t t tλ= + = +                        (35) 

where suffix rp  denotes the real part and ip  denotes the imaginary part. Considering only the real part, the expression for first 
order velocity and temperature become 

                                                               ( ) ( )( )' '
1 0 1cos sinj j ju x xε λ ψ λψ λ= − +                                  (36) 

                                                               ( ) ( )( )2
1 1 0cos sinj j jv x xε λ λ ψ λψ λ= − −                              (37) 

                                                                 ( ) ( )( )1 0 1cos ( ) sinj j jx t t xθ ε λ λ λ= −                                    (38) 

The first order and total solutions are given in Appendix. 
 
3.1. Skin friction and Nusselt number 
 

The shearing stress xyσ at any point in the fluid in non-dimensional form is given by 

       
( ) ( ) ( ) ( ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ))

2
' ' ' ' '
0 1 1 0 1 0 12

'' 2 '
0 1 0 1 0 1

3xy i x i x i x i x
xy

i x i x i x

d
u y e u y i e v y K u e v y u i e u y

u y e v y u y e v y u y i e u y

λ λ λ λ

λ λ λ

σ
σ ε ελ ε λ

ρν

λ λ

= = + + + +

− +

         (39) 

At the wavy wall, ( )cosy xε λ=  skin friction takes the form 

                              
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 '' '' ''
0 10 11 10

0 ' '
0 10 11

0 cos 0 sin 0 cos

2 0 0 sin 0 cos

w u x x x

K x x

σ σ ε λ λψ λ ψ λ

λε σ ψ λ λψ λ

= + + −

− +
                   (40)              

and at the flat wall, 1y =  skin friction takes the form   

                   
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
0 '' ''
1 20 21

'' ' ' '
20 21 20 21 21

0 1 cos 1 sin

1 1 cos 2 1 1 sin cos

f x x

K u x u x x

σ σ ε ψ λ λψ λ

ελ λ ψ λ ψ λ λψ λ

= + − +

− − +
            (41) 

where ( )0 10
0

0

0
y

du
dy

σ
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and ( )0 20
1

1

1
y

du
dy

σ
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 are the zeroth order skin-friction at the walls, and ( )1u y and ( )1v y  are given 

by 
( ) ( )1, i xu x y e u yλ= , ( ) ( )1 1, i xv x y e v yλ=  

The non-dimensional heat transfer coefficient known as Nusselt number ( )Nu  is given by 

                                                             ( ) ( )( )' '
0 1Re i xNu y e y

y
λθ θ ε θ∂

= = +
∂

                         (42) 

At the wavy wall ( )1 cosy xε λ= − +  Nusselt number wNu  takes the form 

                                     ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 ' ' '
0 10 10 110 0 cos 0 cos 0 sinwNu Nu x t x t xε θ λ λ λ λ= + + −         (43) 
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and at the flat wall 1y = , 

                                                         ( ) ( ) ( ) ( ) ( )( )0 ' '
1 20 211 1 cos 1 sinfNu Nu t x t xε λ λ λ= + −                    (44) 

where ( )0 10
0

0

0
y

d
Nu

dy
θ

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and ( )0 20
1

1

1
y

d
Nu

dy
θ

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 are zeroth order Nusselt number at the walls. 

Velocity and temperature solutions are numerically evaluated for several sets of values of the governing parameters.  Also, the 
wall skin friction ,w fσ σ  and the wall Nusselt number ,w fNu Nu  are calculated numerically and some of the qualitative 
interesting features are presented. 

 
Case 2a: Comparison of the Solutions with Salah El Din (2002) in the presence of baffle 
 

To validate the results of the present model, the problem is solved in the absence of viscoelastic parameter, product of non-
dimensional wave number and space co-ordinate, pressure gradient and heat source. The dimensionless basic equations (7) to (10) 
in the absence of the above parameters become 

              
2

0
2
id

dy
θ

α= −                                              (45) 

             
2

0
02

0j
j

d u
G

dy
θ+ =                              (46) 

To compare the results, the boundary conditions on temperature are taken as in Salah El Din (2002), i.e.., 

                                       
1 2

1 2
1 2

1 1on 0; on 1
2 2

, on

y y

d d y y
dy dy

θ θ

θ θ
θ θ ∗

= − = = =

= = =
                                                     (47) 

The boundary conditions on velocity are no-slip conditions on the boundary and vanishing of velocity at the baffle. That is 

         1 2

1 2

0 on 0; 0 on 1

0 on

u y u y

u u y y∗
= = = =

= = =
                                                                (48) 

The solutions of Eqs. (45) and (46) using boundary conditions (47) and (48) become 

   1
1
2

yθ = − ,  
3 2

1 1 22 3 2
y yGu d y d

⎛ ⎞
= − − + +⎜ ⎟⎜ ⎟

⎝ ⎠
       (49) 

   2
1
2

yθ = − , 
3 2

2 3 42 3 2
y yGu d y d

⎛ ⎞
= − − + +⎜ ⎟⎜ ⎟

⎝ ⎠
       (50) 

The above solutions agree very well with the solutions of Salah El Din (2002) 
 
Case 2b: Comparision of the Solutions with Rita and Alok (2000) in the absence of baffle 
 

The above case validates the results for viscous fluid. To validate the results for Walter’s fluid, the problem is solved in the 
absence of the baffle and compared the results with Rita and Alok (2000). The comparison of the present model is carried out in 
two ways, 

1. Shifting the baffle to the right wall and comparing the solutions of stream-1 with Rita and Alok (2000). 
 The boundary conditions for this case become 

 

10

10
'

10 10
' '
10 10 10

1 on 0
0 on 0

on 0

, 0 on 0

y
u y

t y

u y

θ

θ

ψ ψ

= =

= =

= − =

= = =

   

10

10

10
'
10 10

on 1
0 on 1
0 o n 1

0, 0 on 1

m y
u y
t y

y

θ

ψ ψ

= =
= =

= =

= = =

  

                   11
'
11 11

0 on 0

0, 0 on 0

t y

yψ ψ

= =

= = =
  11

'
11 11

0 on 1

0, 0 on 1

t y

yψ ψ

= =

= = =
                  (51) 

The solution of stream-1 with above boundary conditions become 
2

10 1 22
y

c y c
α

θ
−

= + +  
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4 3 2
10 1 2 3 1 2u l y l y l y d y d= + + + +  

10 3 4t c y c= +  

4 3 23 4
10 4 5 66 2

d d
l y y y d y dψ = + + + +  

( )7 6 5 4 3 2
11 1 2 3 4 5 6 5 6t P i m y m y m y m y m y m y c y c= + + + + + + +  
10

9 8 7 6 5 4 4 33 5 6 7 8 71 2 4
11

28
9 10

5040 3024 1680 840 360 120 24 24 6

2

n n n n n dn n n
i y y y y y y y y y

d
y d y d

ψ
⎞⎛

= + + + + + + + +⎟⎜
⎝ ⎠

+ + +

 

With the above solutions the velocity and temperature field become 
   ( ) ( )( )' '

1 10 10 11cos sinu u x xε λ ψ λψ λ= + − +       (52)     

( ) ( )( )2
1 11 10cos sinv x xε λ λ ψ λψ λ= − −        (53)     

( ) ( )( )1 10 10 11cos ( ) sinx t t xθ θ ε λ λ λ= + −        (54) 
 Equations (52) to (54) are computed and are tabulated in Table 5. The above solutions agree very well with Rita and Alok (2000) 

2. Shifting the baffle to the left wall and comparing the solutions of stream-2 with Rita and Alok (2000). 
 The boundary conditions for this case become 

          

20

20
'

20 10
' '
20 20 20

21
'
21 21

0 on 0
0 on 0

on 0

, 0 on 0
0 on 0

0, 0 on 0

y
u y

t y

u y
t y

y

θ

θ

ψ ψ

ψ ψ

= =

= =

= − =

= = =

= =

= = =

   

20

20

20
'
20 20

21
'
21 21

on 1
0 on 1
0 o n 1

0, 0 on 1
0 on 1

0, 0 on 1

m y
u y
t y

y
t y

y

θ

ψ ψ

ψ ψ

= =

= =

= =

= = =
= =

= = =

               (55) 

The solutions of stream-2 with above boundary conditions become 
2

20 7 82
y

c y c
α

θ
−

= + +  

4 3 2
20 7 8 9 11 12u l y l y l y d y d= + + + +  

20 9 10t c y c= +  

4 3 213 14
20 10 15 166 2

d d
l y y y d y dψ = + + + +  

( )7 6 5 4 3 2
21 7 8 9 10 11 12 11 12t P i m y m y m y m y m y m y c y c= + + + + + + +  

10 9 8 7 6 5 4 4 313 15 16 17 18 1711 12 14
21

218
19 20

5040 3024 1680 840 360 120 24 24 6

2

n n n n n dn n n
i y y y y y y y y y

d
y d y d

ψ
⎞⎛

= + + + + + + + +⎟⎜
⎝ ⎠

+ + +

 

With the above solutions the velocity temperature filed become 
   ( ) ( )( )' '

2 20 20 21cos sinu u x xε λ ψ λψ λ= + − +       (56)     

( ) ( )( )2
2 21 20cos sinv x xε λ λ ψ λψ λ= − −        (57)     

( ) ( )( )2 20 20 21cos ( ) sinx t t xθ θ ε λ λ λ= + −       (58) 
Equations (56) to (58) are computed and are tabulated in Table 5. These solutions agree very well with Rita and Alok (2000).  The 
constants are defined in the Appendix section 
 
4. Results and discussion 

 
The objective of the present study is to examine the characteristics of free convection of Walter’s fluid (model B’) in a vertical 

channel one of whose wall is wavy, containing a thin conducting baffle in the presence of heat source. Non –linear partial 
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differential equations governing the motion has been solved by linearization technique wherein, the flow is assumed to consist to 
be in two parts; a mean part and a perturbed part. Exact solutions are obtained for the mean part and the perturbed part using long 
wave approximation. Prandtl number, wave number, amplitude parameters are fixed as 0.7, 0.01, 0.1 respectively for all 
computations, whereas, Grashof number, wall temperature ratio, internal heat source, viscoelastic parameter and xλ are fixed as 
20, 1.0, 2,0 and 1.57079632 respectively for all the graphs except the varying one. 

The effect of Grashof number G on the main and cross velocities are shown in Figures 2 and 3 at three different baffle 
positions ( )0.2, 0.5 and 0.8y∗ = , keeping wavy and flat walls at equal temperatures. As the Grashof number G increases main 
velocity u  increases in both the streams at different positions of the baffle. Since the wall temperatures at both the walls are equal, 
the maximum point of the velocity profiles is equal in both the streams when the baffle is positioned in the centre of the channel. 
However when the baffle is placed near the left wall, the maximum point of velocity is in stream-2 and when the baffle is placed 
near the right wall, the maximum point of velocity is in stream-1 as seen in Figure 2. Irrespective of the baffle position, velocity 
increases as Grashof number G  increases, because as G  increases both the velocity and temperature fields are enhanced. 
Physically, an increase in Grashof number means an increase of the buoyancy force, which supports the motion. Similar result is 
found in the single passage flow examined by Aung and Worku (1986) for flat wall. 

The effect of Grashof   number G on cross velocity as shown in Figure 3 is exactly opposite to its effect on main velocity. As G  
increases cross velocity decreases in both the streams at any position of the baffle. Also the minimum point of cross velocity is in 
stream-1 only at any position of the baffle. The effect of Grashof number G on temperature is shown in Table-1. It is noticed that 
the temperature remains invariant up to 10-3. 
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Table 1. Temperature values for different Grashof number and baffle position. 
y∗  = 0.2 y∗  = 0.5 y∗  = 0.8 y 

G=10 G=200 
y 

G=10 G=200 
y 

G=10 G=200 
0 1 1 0 1 1 0 1 1 

0.1 1.08999 1.08986 0.1 1.09 1.08993 0.1 1.08999 1.08982 
0.2 1.15999 1.15972 0.2 1.15999 1.15987 0.2 1.15998 1.15966 
0.2 1.15999 1.15972 0.3 1.20999 1.20983 0.3 1.20998 1.20953 
0.3 1.20998 1.20958 0.4 1.23999 1.23982 0.4 1.23997 1.23946 
0.4 1.23997 1.23949 0.5 1.24999 1.24983 0.5 1.24997 1.24946 
0.5 1.24997 1.24946 0.5 1.24999 1.24983 0.6 1.23998 1.23951 
0.6 1.23997 1.23949 0.6 1.23999 1.23984 0.7 1.20998 1.20962 
0.7 1.20998 1.20958 0.7 1.20999 1.20986 0.8 1.15999 1.15974 
0.8 1.15999 1.1597 0.8 1.15999 1.1599 0.8 1.15999 1.15974 
0.9 1.08999 1.08985 0.9 1.09 1.08995 0.9 1.08999 1.08987 
1 1 1 1 1 1 1 1 1 

 
Figure 4 shows the effect of wall temperature ratio m  on the main velocity ( 1m = −  means that the average of the temperatures 

of the two walls is equal to that of the static temperature, 0m =  corresponds to the  temperature of the flat wall is equal to static 
temperature and 1m =  means that the wavy and flat wall are maintained at equal temperature and 1m > implies wall temperatures 
are unequal). As m  increases, main velocity u increases in both streams at the baffle positions 0.2, 0.5 and 0.8 and the flow 
reversal is observed in stream-2 for 1m = − . The effect of m  on the main velocity is similar to the result obtained by Malashetty et. 
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al. (2001) for single passage with wavy wall. Physically, an increase in m , increases the temperature and hence buoyancy force 
increases which results in the increase of velocity field. It is also observed that main velocity profiles for 0m =  lies in between 

1m = −  (below) and 1 (above). When the baffle position is near left wall, the variations of m  are not very effective on main 
velocity but its effect is dominant when the baffle position moves to the centre and near to the right wall as seen in Figure 4.  

The effect of m  on the cross velocity is opposite to its effect on main velocity. That is as m  increases, cross velocity decreases 
at all the baffle positions as seen in Figure 5. The velocity profiles for 0m =  lies in between 1m = (below) and -1(above). The 
effect of m on the cross velocity is not effective for the baffle position at the right wall when compared to the baffle position at the 
left and at the centre of the channel.  

The effect of wall temperature ratio  m  on the temperature field is shown in Figure 6. As m  increases, temperature increases at 
all the baffle positions and magnitude of promotion also remains the same for 0.2, 0.5y∗ =  and 0.8. 
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 The effect of internal heat source α on the main and cross velocity is shown in Figures 7 and 8 respectively. As α (>0) 
increases the main velocity u increases in both the streams for the baffle positions 0.2, 0.5y∗ =  and 0.8 . However, the 
magnitude of promotion is effectively very large in stream-2 when the baffle is placed near the left wall, the magnitude of main 
velocity is equal when the baffle is in the centre of the channel and the peak value for main velocity is in stream-1 when the baffle 
is placed near the right wall. The effect of heat sink ( )0α <  is to reduce the main velocity in both the streams at the baffle 

positions 0.2, 0.5y∗ = and 0.8 as seen in Figure 7. The effect of source ( )0α >  increases the temperature distribution which 

enhances the velocity field whereas sink ( )0α <  suppresses the temperature distribution which causes reduction in the velocity 
field. As sink parameter increases, reversal flow occurs irrespective of baffle position. The effect of either source or sink on the 
flow field is similar to the results obtained by Umavathi et. al. (2006) for single passage. 

The effect of heat source/sink on cross velocity v  is shown in Figure 8. The effect of heat source/sink on cross velocity is 
exactly opposite to its effect on main velocity i.e. as ( )0α > increases cross velocity decreases and as ( )0α <  increases cross 

velocity increases in both the streams. The peak values of cross velocity is in stream-2 for 0.2, 0.5y∗ =  and in stream-1 for  
0.8y∗ = as seen in Figure 8.  

The effect of heat source ( )0α >  and heat sink ( )0α < on temperature is shown in Figure 9. As ( )0α > increases temperature 

increases and as ( )0α < increases temperature decreases in both the streams. It is also observed that effect of heat source/sink on 
temperature do not vary with the baffle position.  

The effect of viscoelastic parameter K  on main and cross velocity is shown in Table 2a and 2b respectively. As the viscoelastic 
parameter K  increases main velocity remains constant up to the order of 410− . However there is no effect of viscoelastic 
parameter K  on cross velocity (Table 2b) and on temperature (Table 2c). As K  increases main velocity decreases very slightly, 
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which is the similar result observed by Rita and Alok (2000) for single passage. That is as K  increases skin friction decreases to 
the order of 410−  at both the walls in Rita and Alok (2000). 
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Figure 8: Cross velocity profiles for differnt values of source/sink α. 
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Table 2a. Main velocity for different viscoelastic parameter and baffle position. 
y∗  = 0.2 y  

K =0.0 K =0.15 K =0.25 
0 0 0 0 

0.1 0.1088331235177 0.1088331254581 0.1088331267518 
0.2 0 0 0 
0.2 0 0 0 
0.3 0.8528314350671 0.8528482924837 0.8528595307615 
0.4 1.4639960277544 1.4640159751829 1.4640292734686 
0.5 1.8274958323083 1.8275085293440 1.8275169940345 
0.6 1.9413313793788 1.9413313306169 1.9413312981090 
0.7 1.8075016873718 1.8074889304075 1.8074804257647 
0.8 1.4320047651680 1.4319848405966 1.4319715575490 
0.9 0.8248382713951 0.8248214868118 0.8248102970896 
1 0 0 0 

y∗ = 0.5 y  
K =0.0 K =0.15 K =0.25 

0 0 0 0 
0.1 0.4592416468904 0.4592416057237 0.4592415782793 
0.2 0.7009327122020 0.7009328992020 0.7009330238687 
0.3 0.7110328796923 0.7110329966923 0.7110330746923 
0.4 0.4794478480932 0.4794476719265 0.4794475544821 
0.5 0 0 0 
0.5 0 0 0 
0.6 0.4793314574786 0.4793333513595 0.4793346139468 
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0.7 0.7109987322420 0.7109997068134 0.7110003565277 
0.8 0.7010007559614 0.7009997705329 0.7009991135805 
0.9 0.4593355490563 0.4593336629373 0.4593324055246 
1 0 0 0 

y∗ = 0.8 y  
K =0.0 K =0.15 K =0.25 

0 0 0 0 
0.1 0.8240736400061 0.8240723974644 0.8240715691033 
0.2 1.4309904807698 1.4309904201984 1.4309903798174 
0.3 1.8067008853415 1.8067025047522 1.8067035843593 
0.4 1.9410981127098 1.9411002826145 1.9411017292177 
0.5 1.8279949361907 1.8279959836014 1.8279966818752 
0.6 1.4650962110966 1.4650952545252 1.4650946168109 
0.7 0.8539675520714 0.8539655535298 0.8539642211687 
0.8 0 0 0 
0.8 0 0 0 
0.9 0.1088333049525 0.1088333049049 0.1088333048732 
1 0 0 0 

 
Table 2b. Cross velocity for different viscoelastic parameter and baffle position. 

y∗ = 0.2 y∗ = 0.5 y∗ = 0.8 y  
K = 0.0, 0.15, 0.25 

y  
K = 0.0, 0.15, 0.25 

y  
K = 0.0, 0.15, 0.25 

0 0 0 0 0 -7.145833X10-4 
0.1 -5.308333X10-5 0.1 -3.613333X10-4 0.1 -0.0010560 
0.2 0 0.2 -4.08E-4 0.2 -0.00110625 
0.2 0 0.3 -2.73E-4 0.3 -9.49333X10-4 
0.3 -4.083337X10-6 0.4 -9.133333X10-5 0.4 -6.7125X10-4 
0.4 -1.2E-5 0.5 0 0.5 -3.6E-4 
0.5 -1.875E-5 0.5 0 0.6 -1.055833X10-4 
0.6 -2.133334X10-5 0.6 -1.3333X10-6 0.7 0 
0.7 -1.875E-5 0.7 -2.99998X10-6 0.8 0 
0.8 -1.2E-5 0.8 -3.00001X10-6 0.8 -8.33546X10-8 
0.9 -4.08331X10-6 0.9 -1.33331X10-6 0.9 1.1102X10-19 
1 0 1 0 1 -7.14583X10-4 

     
Table 2c. Temperature values for different viscoelastic parameter and baffle position. 

y∗ = 0.2 y∗ = 0.5 y∗ = 0.8 y  
K = 0.0, 0.15, 0.25 

y  
K = 0.0, 0.15, 0.25 

y  
K = 0.0, 0.15, 0.25 

0 1.000000000 0 1.000000000 0 1.000000000 
0.1 1.089985643 0.1 1.089993097 0.1 1.089982338 
0.2 1.159971603 0.2 1.159987100 0.2 1.159965967 
0.2 1.159971603 0.3 1.209983242 0.3 1.209953161 
0.3 1.209958492 0.4 1.239981989 0.4 1.239946019 
0.4 1.239949365 0.5 1.249982530 0.5 1.249945576 
0.5 1.249946228 0.5 1.249982530 0.6 1.239951412 
0.6 1.239949388 0.6 1.239983697 0.7 1.209961790 
0.7 1.209957956 0.7 1.209986108 0.8 1.159974288 
0.8 1.159970358 0.8 1.159989966 0.8 1.159974288 
0.9 1.089984843 0.9 1.089994804 0.9 1.089987112 
1 1.000000000 1 1.000000000 1 1.000000000 

 
  The effect of xλ  on main velocity is shown in Figure 10. As xλ  increases, main velocity increases near the wavy wall and 
reverses its direction near the baffle position and remains constant at the flat wall at all baffle positions 
 The effect of xλ  on cross velocity is shown in Figure 11. As xλ  increases, cross velocity decreases in stream 1 and stream-2 
for the baffle positions at the left, centre and right walls. However there is no effect of xλ  at the right wall when 0.5,0.8y∗ = . 
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The effect of xλ  on the temperature field is shown in Figure 12. As xλ  increases, temperature increases at all the baffle 
positions and magnitude of promotion also remains the same for 0.2, 0.5y∗ =  and 0.8. The effect of the product of non-
dimensional wave length and space co-ordinate on the temperature is the similar  result obtained by Jang et. al. (2003) and Wang 
and Vanka (1995)  for single passage.  Jang et al. (2003) showed that, as the wave length increases, rate of heat transfer increases 
at the wavy wall.  Wang and Vanka (1995) observed that in the steady flow regime, the average Nusselt number for the wavy wall 
channel were larger than those for a parallel plate channel. 
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 Figure 10: Main velocity profiles for different values of  λx.    
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 Figure 11: Cross velocity profiles for different values of λx.    
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The values of skin friction and Nusselt numbers on different physical parameters are shown in Tables 3a and 3b respectively for 
the values of 20, 0.0, 1,G K m= = = 0.01, 0.1λ ε= = except the varying parameter. The skin friction increases at the wavy wall 
and decreases at the flat wall for increasing Grashof number, heat source/sink and wall temperature ratio for the wider passage. 
The viscoelastic parameter, wave number and amplitude parameter reduces the skin friction at both the walls. 

The effect of Grashof number, wave number and the amplitude parameter is to decrease the Nusselt number at the wavy wall 
and increase at the flat wall, while the effect of heat source/sink enhances the Nusselt number at the wavy wall and reduces at the 
flat wall.  The effect of viscoelastic parameter remains constant at both the walls at all baffle positions. The Nusselt number 
increases at both the walls with increase of wall temperature ratio. 
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 Figure 12: Temperature profiles for different values of λx.  
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Table 3a. skin friction values at the wavy and flat wall. 
 wσ   fσ  

G  *y = 0.2 *y = 0.5 *y = 0.8 G  *y = 0.2 *y = 0.5 *y = 0.8 
20 2.12001 5.62498 9.2798 20 -9.28008 -5.62505 -2.12003 
100 10.6002 28.1245 46.395 100 -46.402 -28.1264 -10.6008 
200 21.2009 56.2479 92.7801 200 -92.8082 -56.2555 -21.2032 

m     m     
-1 1.85333 3.95832 5.01335 -1 2.45367 2.70859 1.61342 
0 1.98667 4.79165 7.14659 0 -3.41333 -1.45834 -0.253338 
1 2.12001 5.62948 9.2798 1 -9.28008 -5.62505 -2.12003 
K     K     

0 2.12001 5.62948 9.2798 0 -9.28008 -5.62505 -2.12003 
0.15 2.11866 5.61548 9.25394 0.15 -9.27984 -5.62502 -2.12003 
0.25 2.11776 5.60915 9.23669 0.25 -9.27968 -5.62499 -2.12003 
λ     λ     

0 2.12 5.625 9.28 0 -9.28 -5.625 -2.12 
0.1 2.12009 5.62479 9.27801 0.1 -9.28082 -5.62555 -2.12032 
0.5 2.12043 5.62393 9.27006 0.5 -9.28409 -5.62773 -2.12158 
ε     ε     

0 2.12 5.625 9.28 0 -9.28 -5.625 -2.12 
0.1 2.12001 5.62498 9.2798 0.1 -9.28008 -5.62505 -2.12003 
0.5 2.12004 5.62489 9.27901 0.5 -9.28041 -5.62527 -2.12016 
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Table 3b.  Nusselt number values at the wavy and flat wall. 
 wNu   fNu  

G  *y = 0.2 *y = 0.5 *y = 0.8 G  *y = 0.2 *y = 0.5 *y = 0.8 
20 0.999856 0.99993 0.999822 20 -0.99984 -0.99994 -0.99987 
100 0.99928 0.999651 0.999111 100 -0.99924 -0.99973 -0.99935 
200 0.998559 0.999301 0.998223 200 -0.99847 -0.999477 -0.99871 

m     m     
-1 -0.99998 -1.00001 -1.00008 -1 -3.0001 -2.99999 -2.99995 
0 -6.67X10-7 -2.09X10-5 -1.024E-4 0 -2.000 -1.99999 -1.99993 
1 0.999856 0.99993 0.999822 1 -0.99984 -0.99994 -0.99987 
K     K     

0 0.999856 0.99993 0.999822 0 -0.99984 -0.99994 -0.99987 
0.15 0.999856 0.99993 0.999822 0.15 -0.99984 -0.99994 -0.99987 
0.25 0.999856 0.99993 0.999822 0.25 -0.99984 -0.99994 -0.99987 
λ     λ     

0 1.0 1.0 1.0 0 -1.0 -1.0 -1.0 
0.1 0.998559 0.999301 0.998223 0.1 -0.99847 -0.99947 -0.99871 
0.5 0.992797 0.996506 0.991113 0.5 -0.99239 -0.99738 -0.99355 
ε     ε     

0 1.0 1.0 1.0 0 -1.0 -1.0 -1.0 
0.1 0.999856 0.99993 0.999822 0.1 -0.99984 -0.99994 -0.99987 
0.5 0.99928 0.99965 0.999111 0.5 -0.99924 -0.99973 -0.99935 

 
The results obtained in case 2a and the results obtained by Salah El Din (2002) are displayed in    Table 4. There is a very good 

agreement for the values of velocity at different baffle positions which will justify the present model with baffle. 
 
Table 4. Comparison of velocity at different baffle positions with Salah El-Din (2002) for 
                         10,G =  1, 0, 2, 0.7 and 0.01m K Pα λ= = = = =  

Present 
Model 

Salah 
El-Din 
(2002) 

Present 
Model 

Salah 
El-Din 
(2002) 

Present 
Model 

Salah 
El-Din 
(2002) y  

* 0.2y =  * 0.2y =  

y  
* 0.5y =  * 0.5y =  

y  
* 0.8y =  * 0.8y =  

0 0 0 0 0 0 0.1 0 0 
0.1 -0.02 -0.02 0.1 -0.06 -0.06 0.2 -0.07 -0.07 
0.2 0 0 0.2 -0.08 -0.08 0.3 -0.1 -0.1 
0.2 0 0 0.3 -0.07 -0.07 0.4 -0.1 -0.1 
0.3 0 0 0.4 -0.04 -0.04 0.5 -0.08 -0.08 
0.4 0.02 0.02 0.5 0 0 0.6 -0.05 -0.05 
0.5 0.05 0.05 0.5 0 0 0.7 -0.02 -0.02 
0.6 0.08 0.08 0.6 0.04 0.04 0.8 0 0 
0.7 0.1 0.1 0.7 0.07 0.07 0.8 0 0 
0.8 0.1 0.1 0.8 0.08 0.08 0.9 0 0 
0.9 0.07 0.07 0.9 0.06 0.06 1 0.02 0.02 
1 0 0 1 0 0 0 0 0 

 
The solutions obtained in case 2b and the solutions obtained by Rita and Alok (2000) are shown in Table 5. When the baffle is 

shifted to the right wall (stream-1), the problem reduced to single passage whose solutions agree with Rita and Alok (2000) which 
justifies the solutions of stream-1. To justify the solutions obtained in stream-2, the baffle is shifted to the right wall, which again 
reduces to single passage. The solutions obtained in stream-2 agree very well with Rita and Alok (2000). 
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Table 5. Validity of the present model with stream-1 (shifting the baffle to the right wall) and stream-2 (shifting the baffle to the 
left wall) with Rita and Alok (2000) for 10, 1, 0, 2, 0.7G m K Pα= = = = =  and 0.01λ = . 

                       Present  Model Rita and Alok (2000)    
   y           Stream-1        Stream-2  
    1u         1v  1θ     2u         2v  2θ     u         v  θ  

0.0 0 0 1 0 0 1 0 0 1 
0.1 0.531 -4.75E-4 1.089 0.531 -4.75E-4 1.089 0.531 -4.758E-4 1.089 
0.2 0.954 -7.57E-4 1.159 0.954 -7.57E-4 1.159 0.954 -7.573E-4 1.159 
0.3 1.261 -8.758E-4 1.209 1.261 -8.7E-4 1.209 1.261 -8.758E-4 1.209 
0.4 1.448 -8.64E-4 1.239 1.448 -8.64E-4 1.239 1.448 -8.64E-4 1.239 
0.5 1.510 -7.552E-4 1.249 1.510 -7.552E-4 1.249 1.510 -7.552E-4 1.249 
0.6 1.448 -5.84E-4 1.239 1.448 -5.84E-4 1.239 1.448 -5.84E-4 1.239 
0.7 1.261 -3.858E-4 1.209 1.261 -3.858E-4 1.209 1.261 -3.858E-4 1.209 
0.8 0.954 -1.973E-4 1.159 0.954 -1.973E-4 1.159 0.954 -1.973E-4 1.159 
0.9 0.531 -5.587E-5 1.089 0.531 -5.58E-5 1.089 0.531 -5.587E-5 1.089 
1.0 0 0 1 0 0 1 0 0 1 

 
Conclusion 
 

The characteristics of flow and heat transfer of viscoelastic (Walters Fluid Model B’) fluid in a vertical channel one of whose 
walls is wavy in a double-passage channel with a perfectly conducting baffle are investigated.  According to the results the 
following conclusions can be drawn. 
1. The maxima of main velocity profiles are obtained for increasing values of Grashof number, wall temperature ratio, heat 

source/sink especially in the wider passage.  The effect of viscoelastic parameter reduces the main velocity in stream-1 and 
increases stream-2 for wider passage with equal wall temperature.  As xλ increases, the main velocity increases at the wavy 
wall and remains constant at the flat wall at all baffle positions.  The effects of Grashof number, wall temperature ratio and 

xλ on cross velocity are exactly opposite to their effect on main velocity. The effect of viscoelastic parameter on cross 
velocity remains invariant. 

2. The temperature profiles remain almost invariant with changes in the Grashof number and viscoelastic parameter at all baffle 
positions.  The effect of wall temperature ratio promotes the temperature and  xλ  also increases the temperature at the wavy 
wall and remains constant at the flat wall. 

3. The skin friction increases at the wavy wall and decreases at the flat wall for increasing Grashof number, heat source/sink and 
wall temperature ratio for the wider passage. The viscoelastic parameter, wave number and amplitude parameter reduces the 
skin friction at both the walls. 

4. The effect of Grashof number, wave number and the amplitude parameter is to decrease the Nusselt number at the wavy wall 
and increase at the flat wall, while the effect of heat source/sink enhances the Nusselt number at the wavy wall and reduces at 
the flat wall.  The effect of viscoelastic parameter remains constant at both the walls at all baffle positions. The Nusselt 
number increases at both the walls with increase of wall temperature ratio. 

5. The results of the present model agreed very well with the results obtained by Salah El Din (2002) for flat wall and for viscous 
fluid in the presence of baffle. 

6. The results of the present model were in good agreement with the results of Rita and Alok (2000) for single passage with 
wavy wall for Walter’s fluid B’model. 

 
Nomenclature 

  d channel width  ( )m  

 *d   width of passage 1 ( )m  

pc  dimensionless specific heat at constant pressure  

xg  acceleration due to gravity ( )-2ms  

G  Grashof number ( )( )3 2
x w sd g T Tβ ν−  

K  dimensionless viscoelastic parameter  
k  wavelength ( )m  
m  wall temperature ratio 
Nu  Nusselt number 
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p  pressure ( )-2Nm  
p  dimensionless pressure  

P  Prandtl number ( )0pc kη  

sp  static pressure ( )-2Nm  
rp  real part 
,i ip  imaginary part 

T  temperature ( )K  

sT  static temperature ( )K  

,U V  velocities along X and Y  directions  ( )-1ms  
,u v  dimensionless velocities  
,X Y  space co-ordinates ( )m  

,x y  dimensionless space co-ordinates 
 
Greek Symbols 
β  dimensionless co-efficient of thermal expansion  

ε  non-dimensional amplitude parameter ( )dε ∗  

ε ∗  amplitude ( )m  

λ  non-dimensional wave number ( )k d  

μ  viscosity ( )-1 -1kg m s  
ν  kinematic viscosity  
θ  dimensionless temperature 
α           the non-dimensional heat source/sink parameter ( )2 ( )w sQd k T T−  

ρ  density ( )-3kg m  

0ρ  static density ( )-3kg m  

xyσ  skin friction 
ψ  stream function 
 
Subscripts 
j  refers to quantities for the fluids in stream-1 and stream-2 respectively. 

 
Appendix 
 
Case 1: Free convection of Walter’s fluid in a vertical channel with baffle 

2

10 1 22
y c y cα

θ
−

= + +                                                                             

4 3 2
10 1 2 3 1 2u l y l y l y d y d= + + + +  

2

20 7 82
y c y cα

θ
−

= + +                                                                                             

4 3 2
20 7 8 9 11 12u l y l y l y d y d= + + + +  

( ) ( )3 2 9 8 7 6 53 3 51 2 4
11 4 4 5

4 3 3 26 7 8 7
8 9

cos 4 sin
2 504 336 210 120 60

24 6 6 2

d n nn n n
u x l y y d y d x y y y y y

n n n d
y y y y d y d

λ λ λ⎛ ⎞ ⎛= − + + + + + + + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞+ + + + + + ⎟
⎠
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( ) ( )3 2 9 8 7 6 5 413 13 15 1611 12 14
21 10 14 15

3 3 217 18 17
18 19

cos 4 sin
2 504 336 210 120 60 24

6 6 2
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Case 2a: Comparison of the Solutions with Salah El Din (2002) in the presence of baffle 

10
1
2

yθ = − , 20
1
2

yθ = −  

3 2

10 1 22 3 2
y yGu d y d

⎛ ⎞
= − − + +⎜ ⎟⎜ ⎟

⎝ ⎠
, 

3 2

20 3 42 3 2
y yGu d y d

⎛ ⎞
= − − + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

2

1
* *

2 3 2
y yGd

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
, 2 0d = , 3 8 12

Gd c= − − , 
( )

3 2

4
* * *

2 1 * 3 2 6
y y yGd

y
⎛ ⎞

= − +⎜ ⎟⎜ ⎟− ⎝ ⎠
 

 
Case 2b: Comparison of the Solutions with Rita and Alok (2000) in the absence of baffle 
 
1. Shifting the baffle to the left wall and comparing the solutions of stream-1 with Rita and Alok (2000). 
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