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Abstract 
 
   Three dimensional wave propagation in poroelastic plate immersed in an inviscid elastic fluid is studied employing Biot’s 
theory. Frequency equations are derived for pervious and impervious surfaces.  Frequency equation each for a pervious and 
impervious surface is obtained for poroelastic plate in contact with an inviscid elastic fluid and poroelastic plate in vacuum as a 
particular case and also when the wavenumbers vanish. Phase velocity as a function of propagation constant is computed for 
pervious and impervious surfaces in each case, i.e., poroelastic plate immersed in an acoustic medium, poroelastic plate in 
contact with an inviscid elastic fluid and poroelastic plate in vacuum in absence of dissipation.  It is observed that the phase 
velocity of pervious and impervious surfaces is same for water saturated sandstone while it is not for kerosene saturated 
sandstone in each of these three cases.  Results of previous investigations are obtained as a particular case of the present study.  
 
Keywords: Biot’s theory, poroelastic plate, pervious surface, impervious surface, propagation constant, phase velocity, elastic 
fluid. 
 
1. Introduction 
 
   Stress free waves in elastic bars of rectangular cross section are studied by Mindlin and Fox (1960). Walter and Anderson (1970) 
studied wave propagation in an infinite elastic plate in contact with an inviscid liquid layer. Account on loose bonding of elastic 
half-spaces was given by Banghar et al. (1976) along with different limiting cases. Gazis (1959) discussed the propagation of free 
harmonic waves along a hollow elastic circular cylinder of infinite extent and presented numerical results. Mindlin (1986) studied 
flexural vibrations of rectangular plates with free edges. Flexural vibrations of rectangular thin plates with free boundary 
conditions are studied by Shuyu (2001). Employing Biot’s (1956) theory, Tajuddin and Ahmed (1991) studied the dynamic 
interaction of a poroelastic layer and half-space. Malla Reddy and Tajuddin (2003) solved the problem of edge waves in 
poroelastic plate under plane stress conditions. Kanj and Abousleiman (2004) presented poromechanical solutions of Lame′ 
problem and discussed different cases in detail. Chao et al (2004) studied the shock-induced borehole waves in porous formations. 
Tajuddin and Shah (2006, 07, 09, 10(b,c)) studied different problems on wave propagation in poroelastic cylinders. Shah 
(2008,10(a)) investigated the axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells of various wall-
thicknesses and flexural vibrations of coated poroelastic cylinders of infinite extent in absence of dissipation.  
   In the present analysis, wave propagation in an infinite poroelastic plate submerged in an inviscid elastic fluid is studied in 
absence of dissipation.  Frequency equation each for a pervious and an impervious surface is obtained employing Biot’s (1956) 
theory of wave propagation in liquid saturated poroelastic solid. Biot’s model consists of an elastic matrix permeated by a network 
of interconnected spaces saturated with liquid. Frequency equation each for a pervious and impervious surface is obtained for 
poroelastic plate in contact with an inviscid elastic fluid and poroelastic plate in vacuum as a particular case and also when the 
wavenumber vanishes.  
   Non-dimensional phase velocity as a function of propagation constant is computed for pervious and impervious surfaces in each 
case, i.e., poroelastic plate immersed in an inviscid elastic fluid, poroelastic plate in contact with an inviscid elastic fluid and 
poroelastic plate in vacuum in absence of dissipation. The results are presented graphically for two types of poroelastic materials 
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and then discussed.  It is observed that the phase velocity of pervious and impervious surfaces, in general, is same in case of water 
saturated sandstone while it not for kerosene saturated sandstone. Results of previous investigations are obtained as a particular 
case of the present study.  Thus the present investigation is more generalized. 
 
2. Governing equations 
 
The equations of motion of a homogeneous, isotropic poroelastic solid (Biot, 1956) in presence of dissipation  b  are  

                                                                                                                                                                                                             (1)                  
where ∇2 is the Laplace operator, and  are displacements of solid w)v,(u,u =

r and liquid W)V,(U,U =
r respectively, e and ∈ are the 

dilatations of solid and liquid; A, N, Q, R are all poroelastic constants and  ρij   (i,j=1,2) are the mass coefficients following Biot 
(1956).  The poroelastic constants A, N correspond to familiar Lame′ constants in purely elastic solid.  The coefficient N 
represents the shear modulus of the solid.  The coefficient R is a measure of the pressure required on the liquid to force a certain 
amount of the liquid into the aggregate while total volume remains constant.  The coefficient Q represents the coupling between 
the volume changes of the solid to that of liquid. 
   We consider three dimensional wave propagation in poroelastic plate such that the displacements of solid w)v,(u,u =

r    and 
liquid W)V,(U,U =

r  are expressed in terms of dilatational and vector potentials 
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Substituting equation (3) into equation (2), displacements of solid and liquid are 

                                                                                                                                                                           (4) 

where Φ1, Φ2, Ψ1, Ψ2, Ψ3, Ψ*
1, Ψ*

2, Ψ*
3 are functions of x, y, z and time t.  

 
Substitution of equations (2), (3) and (4) into equation (1) yield 

                                                                                                                                                                                                             (5) 
where P=A+2N and  i=1,2,3. 
The equation of motion for a homogeneous, isotropic, inviscid elastic fluid is 

                                                                                                                                                                           (6)                  

where Φf is displacement potential function and Vf  is the velocity of sound in the fluid.  The displacement of fluid is 
).w,v,(uu ffff =

r   
   The stresses σij and the liquid pressure s of the poroelastic solid are  
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                                                                                                                                                                                                             (7) 
where  δij  is the well-known Kronecker delta function. 
The fluid pressure Pf is given by 

                                                                                                                                                                                                             (8) 
In equation (8), ρf is the density of the fluid. 
The dilatations of solid and liquid are 

                                                                                                                                                                           (9) 
Displacement of fluid is given by  

                                                                                                                                                                         (10) 
The subscript ‘f1’ or ‘f2’ associated with a fluid quantity represents that the quantity is related to fluid f1 or fluid f2.  For example, 

Vf1 is the velocity of sound in the fluid f1 and Pf2 is the pressure of fluid f2. 

 

3. Formulation and solution of the problem 
 
   Let (x, y, z) are rectangular co-ordinates. Consider a homogeneous, isotropic, infinite poroelastic plate of thickness 2δ immersed 
in an inviscid elastic fluid.  The central plane of the plate lie at z=0 and the parallel surfaces of the plate lie at z=±δ. The 
poroelastic plate is considered to be in contact with fluids on either side. These fluids are denoted by f1 and f2.  The geometry of 
the considered problem is:  

For poroelastic plate  : -δ ≤ z ≤ δ,        -∞ < x < ∞,   -∞ < y < ∞, 
For fluid f1   :  δ ≤ z < ∞,        -∞ < x < ∞,   -∞ < y < ∞, 
For fluid f2   : -∞ < z ≤ -δ,      -∞ < x < ∞,    -∞ < y < ∞. 
 

The solution of equation (5) is 

                                                                                                                                                                                                           (11) 
where C1, C2, C3, C4, A1, B1, A2, B2, A3, B3 are constants; n, k are wavenumbers,  ω is circular frequency and                                                     

                                                                                                                                                                                                           (12) 

                                                                                                                                                                                                           (13) 

                                                                                                                                                                                                           (14) 
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In equation (13), Vj  (j = 1, 2) are dilatational wave velocities of first and second kind respectively, V3 is shear wave velocity.  
Similarly, the suitable solution of equation (6) each for fluid f1 and f2 respectively, is 

                                                                                                                                                                                                           (15) 
where A4, A5 are constants and  

                                                                                                                                                                                                           (16) 
Substituting equation (15) into equation (8), the fluid pressure each for fluid f1 and f2 is given by 

                                                                                                                                                                                                           (17)  
 
   Similarly employing equation (15) into equation (10) the displacement components each for fluids f1 and f2 are obtained.  
Substituting equation (11) into equation (4) we obtain the displacements of solid and liquid.  With the help of strain displacement 
relation we find the strain components.  Then employing these strains into equation (7), the stresses and liquid pressure in the 
infinite poroelastic plate are given by 

                                                                                                                                                                                                           (18) 
The gauge invariance property, following the analysis of Gazis (1959), is used to eliminate two integration constants from equation 
(12).  Without loss of generality of the solution we set Ψ3=0 and obtain the required displacement, stresses and liquid pressure. 
 
4. Boundary conditions - Frequency equation 

 
   For contact between the poroelastic plate and the fluids, we assume that the normal stresses and displacement components in 
direction of z-axis are continuous at the interfaces z=δ and z=-δ. Thus the boundary conditions in case of a pervious surface are 

                                                                                                                                                                                                    (19) 

The boundary conditions in case of an impervious surface are 

                                                                                                                                                                                                    (20) 

Substitution of equations (17) and (18) into the equation (19) result in a system of ten homogeneous algebraic equations in ten 
constants C1, C2, C3, C4, A1, B1, A2, B2, A4, and A5. For a non-trivial solution, the determinant of the coefficients must vanish. By 
eliminating these constants, the frequency equation of wave propagation in a poroelastic plate in contact with fluids on either side 
for a pervious surface is           
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In equation (21), the elements Cij are 
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C10,10 represents the element appearing in 10th row and10 column. 
Arguing on similar lines, employing the boundary conditions (20) frequency equation of an impervious surface is  
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Elements Cij appearing in equation (24) are defined in equation (22). 
Equation (23) is the frequency equation of three dimensional wave propagation in an infinite poroelastic plate immersed in an 
inviscid elastic fluid for an impervious surface. 
 
4.1 Poroelastic plate in contact with fluid 
   When the fluid in the domain -∞ < z ≤ -δ,     -∞ < x < ∞,   -∞ < y < ∞, that is, fluid f2 vanish (or ρf2→0), then the considered 
problem reduce to a problem of three dimensional wave propagation in poroelastic plate in contact with an inviscid elastic fluid.  
In this case, the frequency equation of a pervious surface (21) under suitable boundary conditions is reduced to 

                                                                                                                                                                                                           (25) 
where the elements Cij are defined in equation (22) are now evaluated for ρf2=0. 
Similarly, for ρf2=0 equation (23) reduce to 

                                                                                                                                                                                                           (26) 
Where the elements Dij appearing in equation (26) are defined in equation (24) are now evaluated for ρf2=0.   
Equations (25) and (26) are the frequency equations of three dimensional wave propagation in poroelastic plate in contact with an 
inviscid elastic fluid for a pervious and an impervious surface respectively.   
 
4.2 Poroelastic plate in vacuum 
   When the fluids f1 and f2 vanish, that is, ρf1→0 and ρf2→0 the considered problem reduce to the problem of three dimensional 
wave propagation in an infinite poroelastic plate in vacuum. Thus equation (21) under suitable boundary conditions reduce to 
 

                                                                                                                                                                                                           (27) 
where the elements Cij are defined in equation (22) are now evaluated for ρf1=0, ρf2=0. 
Similarly, equation (23) under the conditions ρf1=0, ρf2=0 reduce to  
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where the elements Dij are defined in equation (24) are now evaluated for ρf1=0, ρf2=0. 
Equations (27) and (28) are the frequency equations of three dimensional wave propagation in poroelastic plate in vacuum for a 
pervious and an impervious surface, respectively.   
 
4.3 Motion having infinite wavelength – Cut-off frequency 
   When the wavelength is very long compared to thickness of the poroelastic plate, the wavenumber is zero.  The frequencies 
obtained by equating the wavenumber to zero are referred to as the cut-off frequencies. Thus for k=0, the frequency equation of 
pervious surface (21) reduce to the product of two determinants  

 
                                                                       D1D2=0,                                                                                                                      (29) 
where D1 and D2 are 
 

                               
,

C0CCCCCC
0000CCCC
00CCCCCC

C0CCCCCC
0CCCCCCC
0000CCCC
00CCCCCC
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D
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1 =

           .
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D
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2 =

                                                 (30) 

Similarly, equation (23) for infinite wavelength (that is, k=0) reduce to the product of two determinants 
 
                                                              D3D4=0,                                                                                                                               (31) 
where D3 and D4 are 
 

                              
,

D0DDDDDD
0000DDDD
00DDDDDD
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         .
DD
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D
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                                              (32) 

In equations (30) and (32), the elements Cij, Dij are defined in equations (22) and (24) are now evaluated for k=0.  Equation (29) is 
satisfied if D1=0, or D2=0.   Equation D1=0 give the cut-off frequency of poroelastic plate immersed in fluid for a pervious surface.  
In a similar way, D2=0 is the frequency equation of shear vibrations of a poroelastic plate immersed in fluid. The frequency 
equation of shear waves are unaffected by the presence of fluid on either side of the poroelastic plate.  From equation (31), it can 
be seen that D3=0 gives the cut-off frequency of a poroelastic plate immersed in fluid for an impervious surface and D4=0 is the 
frequency equation of shear waves.  From equations (22) and (24), it is clear that D2 and D4 are same.  Hence the shear waves are 
independent of nature of surface also.  When simplified, D2=0 or D4=0 reduce to 
                                                      .1,2,3,....q    ,]n

4δ
πq[Vω 2

1
2

2

22

3 =+=                                                                                                 (33)               

Equation (33) gives the cut-off frequencies of shear vibrations of poroelastic plate of thickness 2δ.   
    
   When the wavenumber along y-axis vanish, that is, n=0, the frequency equation of a pervious surface (22) and the frequency 
equation of an impervious surface (24) are reduced to the product of frequency equations considered by Tajuddin and Ahmed Shah 
(2007, 2010(c)). 
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5. Non-dimensionalization of frequency equation 
 
   In a non-dissipative medium for propagating modes wavenumber k is real. Phase velocity C is the ratio of frequency to 
wavenumber, that is, C=ω/k. To analyze the frequency equations (21), (23), (25), (26), (27) and (28) it is convenient to introduce 
the following non-dimensional parameters:      

                                                                                                                                                                                                           (34) 

where ξ is non-dimensional phase velocity, β is propagation constant, α is ratio of wavenumbers, Ω is non-dimensional frequency,  
H=P+2Q+R,   ρ=ρ11+2ρ12+ρ22, C0, V0 are the reference velocities (C0

2=N/ρ, V0
2=H/ρ) and 2δ is thickness of the poroelastic plate. 

                                                                                                                                                                                                               
6. Numerical results and discussion 
 
   Two types of poroelastic materials namely, sandstone saturated with kerosene (Fatt, 1959) and sandstone saturated with water 
(Yew and Jogi, 1976) are considered to carry out the computational work. Sandstone saturated with kerosene is designated as 
Material-I   (Mat-I) and sandstone saturated with water is designated as Material-II (Mat-II). Non-dimensional physical parameters 
of Material-I and II are given in Table-I.  

Table – I 

Material/ 

Parameter 
a1 a2 a3 a4 m11 m12 m22 x~  y~  z~  

I 0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

II 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

 
   Frequency equations of three dimensional wave propagation of poroelastic plate immersed in fluid for a pervious surface (46) 
and an impervious surface (48), constitute a relation between non-dimensional phase velocity ξ and propagation constant β for 
given physical parameters and for fixed value of ratio of wavenumbers, that is α.  Non-dimensional phase velocity ξ is determined 
for different values of β each for a pervious and an impervious surface for fixed values of α taken as α=1, 2.   The values of β are 
taken in the interval [5, 10] in steps of 0.5.  When k=0, the values of t0 are taken in the interval [5, 10] in steps of 0.5 to find the 
non-dimensional frequency.  For poroelastic plate immersed in an inviscid elastic fluid (fluids f1 and f2 are same) or a poroelastic 
plate in contact with an inviscid elastic fluid, the values of m1, m2, t1 and t2 are taken as m1=m2=6.5 and t1=t2=0.4. Phase velocity 
as a function of propagation constant is presented in fig.1-3 and fig.4-6 for poroelastic plate immersed in an elastic fluid, in contact 
with fluid and poroelastic plate in vacuum each for a pervious and an impervious surface and for the considered materials when 
α=1  and α=2, respectively. 
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Fig.1     Phase velocity as a function of propagation constant  (Mat-I,  Mat-II)
Plate immersed in an inviscid elastic fluid   (α = 1)
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Fig.2     Phase velocity as a function of propagation constant  (Mat-I,  Mat-II)

Plate in contact with an  inviscid elastic fluid   (α=1)
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Fig.1 shows the phase velocity of poroelastic plate immersed in an elastic fluid when α=1.  From fig.1 it is seen that the phase 
velocity of an impervious surface is higher than that of a pervious surface in case of Material-I in 5≤β≤6. Otherwise, phase 
velocity of pervious and impervious surface is same.  Phase velocity of pervious and impervious surface is same for Material-II.  
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Phase velocity of Material-II is less than that of phase velocity of Material-I each for a pervious and an impervious surface in 
6.5≤β≤8.5. Fig.2 shows the phase velocity of poroelastic plate in contact with an elastic fluid when α=1.  From fig.2 it is seen that 
the phase velocity of pervious and impervious surface is same for Material-II while the phase velocity of a pervious surface is 
higher than that of impervious surface for Material-I in 5≤β≤6 and 8.5≤β≤10.  Again phase velocity of Material-II is less than that 
of Material-I in 6.5≤β≤8.  Phase velocity of a poroelastic plate in vacuum is presented in fig.3 for the considered materials each for 
a pervious and an impervious surface when α=1. 
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From fig.3 it is seen that phase velocity of a pervious surface is higher than that of an impervious surface in 7≤β≤8 in case of 
Material-I.  Otherwise the phase velocity of pervious and impervious surface is same.  Phase velocity of pervious and impervious 
surface is same in case of Material-II.  Phase velocity of Material-II is higher than that of Material-I each for a pervious and an 
impervious surface in 5≤β<7.5.   
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   Fig.4 shows the phase velocity of poroelastic plate immersed in an elastic fluid when α=2.  From fig.4 it is seen that the phase 
velocity of pervious and impervious surface is same for Material-I 5≤β<6.5 otherwise, phase velocity of pervious surface is 
different from that of an impervious surface.  Phase velocity of pervious and impervious surface is same for Material-II. Also, it is 
observed that, in general, the phase velocity each for a pervious and an impervious surface is higher when α=2 than that of the 
phase velocity when α=1, for the considered materials.  The variation of phase velocity of a poroelastic plate in contact with fluid 
for the considered materials is shown in fig.5 when α=2.  From fig.5 it is seen that phase velocity of a pervious surface is higher 
than that of an impervious surface in 5≤β<6.5 in case of Material-I otherwise, it is same.  Similarly, the phase velocity of pervious 
and impervious surface is same in case of Material-II.  Here too, in general, the phase velocity each for a pervious and an 
impervious surface is higher when α=2 than that of the phase velocity when α=1.  Variation of phase velocity of a poroelastic plate 
in vacuum for α=2 is presented in fig.6 for the considered materials. From fig.6 it is seen that the phase velocity of a pervious 
surface is higher than that of an impervious surface in 9≤β≤10 in case of Material-I otherwise, it is same.  The phase velocity of 
Material-II is same for pervious and impervious surfaces.  Also the phase velocity of Material-II is less than that of Material-I each 
for a pervious and an impervious surface.  Here it is observed that the phase velocity of in case of Material-II is higher for α=2 than 
that of α=1, while this is not true for Material-I.  Frequency as a function of t0 is presented in fig.7-9 for poroelastic plate immersed 
in an elastic fluid, in contact with fluid and poroelastic plate in vacuum each for a pervious and an impervious surface and for the 
considered materials when k=0.  From fig.7 it is seen that there is a gradual increase in frequency with the increase of the values of 
t0 for both the considered materials for a poroelastic plate immersed in fluid.  The frequency of pervious and impervious surface is 
same each for the considered materials.  The frequency of Material-I is higher than that of Material-II each for a pervious and an 
impervious surface. 
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Plate immersed in an inviscid elastic fluid   (k = 0)
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Similar trend is observed in the variation of frequency of poroelastic plate in contact with fluid (see fig.8) and poroelastic 

plate in vacuum (see fig.9).  In fact, the frequency of poroelastic plate in contact with fluid and poroelastic plate in vacuum is 
nearly same for the considered materials each for a pervious and an impervious surface and it can be said that the presence of fluid 
on one side of the poroelastic plate has no significant effect on frequency.  This is not true in case of a poroelastic plate immersed 
in elastic fluid. 
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7. Concluding remarks 
 
   The study of three dimensional wave propagation in poroelastic plate immersed in fluid, poroelastic plate in contact with fluid 
and poroelastic plate in vacuum has lead to following conclusions: 
(i) Phase velocities of pervious and impervious surface is same for Material-II for each of the three considered cases, that is,  

poroelastic plate immersed in fluid, poroelastic plate in contact with fluid and poroelastic plate in vacuum. 
(ii) Phase velocity of the considered materials each for a pervious and an impervious is less when α=1 than that of when α=2. 
(iii) Dilatational and shear waves of a poroelastic plate immersed in fluid are uncoupled when both the wavenumbers vanish. 
(iv) Shear waves are independent of nature of surface and presence of fluids on either side of the poroelastic plate. 
(v) When the wavenumber k is zero, the frequency of Material-II is less than that of Material-I for all the considered cases. 
(vi) When the wave number k vanishes, the presence of fluid on one side of the poroelastic plate has no significant effect on  

frequency. 
 
  
References 
       
Banghar, A.R., Murty, G.S., and Raghavacharyulu, I.V.V., 1976. On the parametric model of loose bonding of elastic half spaces,  

J.Acoust.Soc.Am., Vol. 60, pp.1071-1078. 
Biot, M.A., 1956. Theory of propagation of elastic waves in fluid-saturated porous solid, J.Acoust.Soc.Am.,  vol.28,  pp.168-178. 
Chao, G., Smeulders, D.M.J., and van Dongen, M.E.H., 2004. Shock-induced borehole waves in porous formations: Theory and 

experiments,  J.Acoust.Soc.Am., Vol. 116,  pp. 693-702. 
Fatt, I., 1959. The Biot-Willis elastic coefficients for a sandstone,  J.Appl.Mech., Vol. 26,  pp.296-297. 
Gazis, D.C., 1959. Three-dimensional investigation of the propagation of waves in hollow circular cylinders, I., Analytical 

foundation, J.Acoust.Soc.Am., Vol.31,  pp.568-573. 
Kanj, M., and Abousleiman, Y., 2004. The Generalized Lame′ Problem – Part I: Coupled Poromechanical Solutions, Trans.ASME, 

J.Appl.Mech.,  Vol.71,  pp.168-179. 
Tajuddin, M., and Ahmed, S.I., 1991. Dynamic interaction of a poroelastic layer and a half-space, J.Acoust.Soc.Am., Vol. 89,  

pp.1169-1175. 



Shah and Tajuddin  / International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 1-11 

 

11

 

Malla Reddy, P., and Tajuddin, M., 2003. Edge waves in poroelastic plate under plane-stress conditions, J.Acoust.Soc.Am.,  Vol. 
114,  pp.185-193. 

Mindlin, R.D., and Fox, E.A., 1960. Vibrations and waves in elastic bars of rectangular cross section, J.Appl.Mech.,  vol.27,  
pp.152-158. 

Mindlin, R.D., 1986. Flexural vibrations of rectangular plates with free edges, Mechanics Research Communications, vol.13, 
pp.349-357. 

Shah, S.A., 2008. Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells,  Journal of Sound and 
Vibration,  Vol.318,  pp.389-405. 

Shah, S.A., 2010(a) Flexural wave propagation in coated poroelastic cylinders with reference to fretting fatigue, Journal of 
Vibration and Control.(In print). 

Shah, S.A., and Tajuddin, M., 2009. Axially symmetric vibrations of finite composite poroelastic cylinders, International Journal 
Applied Mechanics and Engineering, Vol.14,  pp. 865-877. 

Shah, S.A., and Tajuddin, M., 2010(b). On flexural vibrations of poroelastic circular cylindrical shells immersed in an acoustic 
medium, Special Topics and Reviews in Porous Media - An International Journal,  Vol.1,  pp.67-78. 

Shah, S.A., and Tajuddin, M., 2010(c). Dispersion of waves in an infinite poroelastic plate immersed in an inviscid elastic fluid, 
Special Topics and Reviews in Porous Media - An International Journal,  Vol.1,   pp.269-278.    

Shuyu, L., 2001. Study on the flexural vibration of rectangular thin plates with free boundary conditions, Journal of Sound and 
Vibration.,  Vol.239,  pp.1063-1071. 

Tajuddin, M., and Ahmed Shah, S., 2006. Circumferential waves of infinite hollow poroelastic cylinders, Trans.ASME, 
J.Appl.Mech., Vol.73,  pp.705-708. 

Tajuddin, M., and Ahmed Shah, S., 2007. On torsional vibrations of infinite hollow poroelastic cylinders, Journal of Mechanics of 
Materials and Structures, Vol.2,  pp.189-200. 

Tajuddin, M., and Ahmed Shah, S., 2010. Radial vibrations of thick-walled hollow poroelastic cylinders, Journal of Porous Media, 
Vol.13,  pp.307-318. 

Walter, W.W., and Anderson, G.L., 1970. Wave propagation in an infinite elastic plate in contact with an inviscid liquid layer,  
J.Acoust.Soc.Am., Vol.47, pp.1398-1407. 

Yew, C.H. and Jogi, P.N., 1976. Study of wave motions in fluid-saturated porous rocks,  J.Acoust.Soc.Am., Vol. 60,  pp. 2-8. 
 
Biographical notes 
 
Dr. S. Ahmed Shah is professor in the Department of Mathematics, Deccan College of Engineering and Technology Hyderabad, India.  He has more than 19 years 
of teaching experience.  He published papers in referred national and international journals and has more than 11 years of research experience.  He attended and 
presented papers in national and international conferences. His area of research includes stress wave propagation in poroelastic solids. 
 
Late Dr.M.Tajuddin was a Professor in the Department of Mathematics Osmania University, Hyderabad, India. He had more than 30 years of experience in 
teaching and research. His area of research includes wave phenomena aspects in elastic porous media.  He had published more than forty papers in referred national 
and international journals. He had also presented several research articles in national and international conferences.   
 
 
Received September 2010 
Accepted March 2011 
Final acceptance in revised form March 2011 
 
 


