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Abstract 
 
   The problem of an elliptical crack embedded in an unbounded transversely isotropic piezoelectric medium and subjected to 
remote normal loading is considered first. The integral equation method developed by Roy and his coworkers has been applied 
suitably with proper modifications to solve the problem. The method has been further applied to solve the problem of a rigid 
elliptical punch indenting a transversely isotropic piezoelectric half space. 
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1. Introduction 
 
   Mechanics of piezoelectric materials have become an emerging topic of research due to its wide application in piezoelectric 
ceramics and composites used in many important technologies. To improve the performance and to predict the reliable service life 
of piezoelectric components, it is necessary to obtain a detailed analysis of the fracture mechanical behavior of such materials with 
embedded cracks subjected to mechanical and electric loading. Three-dimensional analysis of cracks in piezoelectric media, when 
subjected to mechanical and electric loading, is essential for having a better understanding of the fracture behavior of such 
materials. In three-dimensional analysis, cracks may often be modeled as penny-shaped or elliptical cracks. It is essential to 
analyze the coupling effect of the loads when piezoelectric solids with such type of embedded cracks are subjected to mechanical 
as well as electric loading.  
   The problem of an elliptical crack embedded in an unbounded transversely isotropic piezoelectric medium and subjected to 
remote normal loading is considered first. The problem has been successfully reduced to a pair of coupled integral equations that 
are suitable for the application of the integral equation method of Roy and his coworkers (see Mukhopadhyay 1990, Roy and 
Chatterjee 1992, Roy and Saha 2000). The crack plane is considered to be parallel to the plane of isotropy of the medium and both 
the mechanical and electric loadings are considered to be arbitrary polynomial functions of the crack-plane coordinates. Solution to 
the mechanical displacement and electric potential are obtained for prescribed uniform loadings. Variation of both the non-
dimensional intensity factors with variation in eccentric angle and aspect ratio is shown graphically. The above method has been 
further applied to solve the problem of a rigid flat-ended elliptical punch indenting a transversely isotropic piezoelectric half space 
surface with the plane of isotropy parallel to the surface. Solution to mechanical stress and electric displacement are obtained for 
prescribed constant normal displacement and constant electric potential interior to the elliptical region. 
 
2.  Formulation of the problem 
 
Let the elliptic crack/punch occupy the region 
 
_______________ 
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The plane of the crack/punch coincides with the plane of isotropy of the medium. The crack/punch center is taken as the origin of 
the coordinate system and z-axis along the axis of symmetry. A pair of identical mechanical loads p(x,y) and a pair of identical 
electrical loads q(x,y) are applied to the upper and lower surface of the crack. On the other hand, in case of punch, normal 
indentation p′ (x,y) and electric potential q′ (x,y) are prescribed within the punch area. 
   The boundary conditions on the crack and punch plane are written separately as follows: 
 
2.1 Boundary conditions on the crack plane z=0: 
 

                           ( ) ( ), , 0 , , 0 0 , , ,z x z yx y x y x yσ σ= = ∀                                                                      (2) 
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where all the notations have usual meaning.  
 
2.2 Boundary conditions on the contact surface z=0: 
 

     ( ) ( ), , 0 , , 0 0 , , ,z x z yx y x y x yσ σ= = ∀                                                                   (5) 
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and,    
                                                                                                                                                                                 

( )
( ) ( )

, , 0 0
, ,

, , 0 0
z z

z

x y
x y S

D x y
σ = ⎫⎪ ∀ ∉⎬= ⎪⎭

                                                                                        (7) 

 
   and in both the above cases,  

  as ( )2 2 2x y z+ + →∞        

  0 ,x x y y z z x y y z z xσ σ σ σ σ σ= = = = = →        

                                            and,     0 .x y zD D D= = →  
 
2.3 The Coupled Dual Integral Equations 
 
Using pseudo-potential function representation for mechanical displacement components and electric potential, Wang and Huang 
(1995) obtained four quasi-harmonic equations as follows: 
 

        (8) 
 
Here λ4 is given by 
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          (9) 
 
Also, λj (j = 1, 2, 3) are the three roots of the cubic equation 
 

           (10) 
 
where, 
 

  
 

  
 

          (11) 
 
Here, cik, eik, ζik (i,k = 1, 2, 3) are Voigt two-index notation for elastic stiffness constants, piezoelectric constants and dielectric 
constants. 
 
 Renaming λi by si (i = 1, 2, 3, 4), a suitable solution of equation (8) is given as (Rahaman, 2002) : 
 

     (12) 
 
where, 
 

         (13) 
 
Substituting (12) in the expression for stress-components of piezoelectric media we see that the boundary condition (2) or (5) is 
satisfied if  
 
              T (ξ, η) = 0,     (14) 
 
and, 
 

    (15) 
 
where, for j = 1, 2, 3, 
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    (16) 
 
Using (12), (15) and the remaining boundary conditions for crack/punch, one obtains a coupled integral equation each for the crack 
and punch that may be expressed in a combined form as follows : 
 

  
 

    (17) 
 
and, 
 

  
 

    (18) 
 
where, 
 

     (19) 
 

    (20) 
 

    (21) 
 

    (22) 
 

                    (23) 
 
and, 
 

     (24) 
 
Also, in the above, for the case of a crack, uz(x, y) is the unknown crack opening displacement normal to the crack face and φ(x,y) 
is the electric potential across the crack face, so that 
 
 uz(x, y) = 0 = φ (x, y), ∀ (x, y) ∉ S, 
 
and, 
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    (25) 
 
where, 
 

    (26) 
 

    (27) 
 

      (28) 
 
and, for j = 1, 2, 3, 
 

  
 

  
 

     (29) 
 
whereas, for the case of a punch, gz (x, y) is the unknown normal stress component developed on the punch region due to normal 
indentation and dz (x, y) is the unknown normal component of electric displacement of the punch area, so that 
 
 gz (x, y) = 0 = dz (x, y), ∀ (x, y) ∉ S, 
 
and, 
 

    (30) 
 
and, 
 

      (31) 
 
2.4 Infinite systems of Fredholm integral equation of second kind 
 
 After carrying out the necessary steps following Roy and his coworkers (Mukhopadhyay, 1990; Roy and Chatterjee, 1992; 
Roy and Saha, 2000), one obtain the following infinite systems of Fredholm integral equation of second kind : 
 
 ∀s = 0, 1, 2, …, ∞, (n + s) even; and ξ, r ∈ [0, 1], 
 

    (32) 
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and, 
 
 ∀s = 1, 2, …, ∞, (n + s) even; and ξ, r ∈ [0, 1], 
 

    (33) 
 
where, 
 

    (34) 
 

    (35) 
 
and, ⎯Ks(ξ) and⎯Ts (ξ) are similar expressions with ψs

C(P)(ξ), θs
C(P)(ξ) replaced by⎯ψs

C(P)(ξ), ⎯θs
C(P)(ξ). 

 
Also, 
 

    (36) 
 

    (37) 
 
where, 
 

     (38) 
 
and, 
 

     (39) 
 
⎯Fs(ξ) and⎯Gs(ξ) are similar expressions with Ps (r), Qs (r) replaced by⎯Ps(r), ⎯Qs(r). 
 
3. Exact Solution for particular cases 
 
   In the following we present exact solution to the transformed Fourier coefficients of mechanical displacement and electric 
potential in case of crack and, normal stress and normal electric displacement coefficients in case of punch for prescribed constant 
mechanical and electrical loading in case of crack and prescribed constant normal indentation and electric potential in case of 
punch.  
 
Let constant mechanical and electric loading be prescribed normally on the crack face, whereas constant normal indentation and 
electric potential be prescribed on the punch area. Then, 
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    (40) 
 
where, 
 

    (41) 
 
Therefore, 
 

    (42) 
 
Hence, 
 

    (43) 
 
and, 
 

  
 
Therefore, the infinite systems of integral equation (32), now reduce to a single pair of coupled equations in each case obtained for  
s = 0. For s = 0, only first term of equation (32) contributes to the solution which is : 
 

    … (44) 
 
i.e., for a crack, 
 

    … (45) 
 
and, for a punch, 
 

    … (46) 
 
Solving (45) for crack, we get  
 

    … (47) 
 
as solution to crack face mechanical displacement and electric potential function.  
 
Similarly solving (46) for punch, we get 
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    … (48) 
 
as solution to mechanical stress and electric displacement function of the punch area.  
 
 Following the definition of stress-intensity factor in Roy and Chatterjee (1992) and utilizing its expression obtained there, 
the non-dimensional stress intensity factor FI

M(φ) (= KI
M(φ)/p√b) and electric displacement intensity factor FI

E (φ) (= KI
E(φ)/q√b) 

at the representative crack-edge point with eccentric angle φ are obtained as  
 
 FI

M (φ) = FI
E (φ) = [1-k0

2cos2(φ)]1/4/E(k0),                                                                                 … (49) 
 
where,  k0

2 = 1 - b2/a2 and E(k0) is the complete elliptic integral of the second kind. Also, KI
M(φ) and KI

E(φ) are the mechanical 
stress and electric displacement intensity factors respectively. From expressions (47) and (49) it is obvious that although the 
mechanical displacement and electric potential components are dependent on the material parameters, the intensity factors are 
independent of these parameters.  Another interesting feature is that, although the mechanical displacement and electric potential 
components depend on the coupling effect of the two loadings, both the non-dimensional intensity factors are not only independent 
of such coupling effect but are also equal. Figure 1 below shows the variation of the dimensionless intensity factors along the crack 
front for different ratios of b/a. 
 
 

    
Figure 1: Dimensionless field intensity factors FI

M (φ) and FI
E (φ) along elliptical crack front of different aspect ratios. 

 
From the figure it may be observed that the mechanical stress intensity and electric displacement intensity factors are both 
minimum near the edge of the major axis ( 0φ = o ) but gradually reaches to a maximum near the edge of the minor axis 

( 90φ = o ) for an elliptic crack, although they are uniform for a penny-shaped crack (b/a=1). Another interesting observation is 
that, with the decrease in aspect ratio (b/a) of the crack, the minimum value decreases whereas the maximum value increases. 
Thus, we reach to two conclusions from the above figure: 

(1) If fracture initiates, it will initiate from the crack-edge at the end of the minor axis; 
(2) Narrower the elliptic crack i.e. smaller the aspect ratio (b/a) of the crack, higher is its tendency to fracture. 

 
 
4. Conclusion  
 
   The problem of an elliptical crack embedded in an infinite transversely isotropic piezoelectric medium with its plane of isotropy 
parallel to the plane of the crack and the anti-crack problem of an elliptic punch indenting a transversely isotropic piezoelectric 
half-space surface with the plane of isotropy again parallel to the surface have been solved simultaneously. The potential function 
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representation of the field quantities of a transversely isotropic piezoelectric medium given by Wang and Huang (1995) has been 
used to reduce each of the two problems considered, to pair of coupled integral equations. The coupled integral equations for the 
two problems could be expressed in a unified form given by equations (32) and (33). Cartesian coordinates are used in the 
reduction process, which has the advantage of dealing with more complicated problems that can take into consideration additional 
boundaries in the form of free-surface or neighboring crack/punch. Equations (32) and (33) are then solved by the integral equation 
method of Roy and his coworkers (Mukhopadhyay 1990, Roy and Chatterjee 1992, Roy and Saha 2000). Thus, the method 
developed for solving problems of pure elasticity could be extended to solve problems of piezoelectricity. In the case of crack 
problem, for particular case of prescribed constant normal mechanical and electric loading, exact solution for the transformed 
components of crack face mechanical displacement and electric potential has been given by (47). Utilizing these results, 
expression for dimensionless mechanical stress and electric displacement intensity factor has been given by (49). Variation of both 
the non-dimensional intensity factors with variation in eccentric angle and aspect ratio has been represented graphically in figure 1 
and interesting observations have been made. In the case of punch problem, for particular case of prescribed constant normal 
indentation and constant electric potential, exact solution for the transformed components of mechanical stress and electric 
displacement of the punch region has been given by (48). The main point to be noted is that, a single method can deal with the 
crack and punch problems considered here. The solutions are obtained directly in Cartesian coordinates and not as limit of other 
results like inclusion/cavity, as followed by other researchers. The method may be applied to other complicated fracture 
mechanical problems of piezoelectric solids with elliptical crack/punch interacting with (a) incident time-harmonic waves, (b) 
neighboring cracks/punches or (c) with additional boundaries. Applications of the method to different fracture mechanical 
problems of piezoelectric media are under consideration. 
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