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Abstract 
 
   This paper stands to investigate the possibility of propagation of SH waves due to a point source in a magnetoelastic 
monoclinic layer lying over a heterogeneous monoclinic half-space. The heterogeneity is caused by consideration of quadratic 
variation in rigidity. The methodology employed combines an efficient derivation for Green’s functions based on algebraic 
transformations with the perturbation approach. Dispersion equation has been obtained in the closed form. The dispersion curves 
are compared for different values of magnetoelastic coupling parameters and inhomogeneity parameters. It is found that as 
heterogeneity parameters and magnetoelastic coupling parameters increases, the phase velocity increases for both isotropic and 
monoclinic cases but the increase is more prominent in the monoclinic case. In the isotropic case, when heterogeneity and 
magnetic field are absent, the dispersion equation is matched with the classical SH wave equation  
 
Keywords: Shear wave, monoclinic, magnetoelastic, dispersion equation, seismic wave. 
 
1. Introduction 
 
   Seismic waves may be of devastating force near their sources, like all waves, they lose energy as they travel through the Earth. 
The mantle appears hard and solid to seismic waves, but is believed to exhibit a softer, plastic behaviour over long geological time 
intervals. So, in the perspective of real earth, the study of seismic wave behaviour due to point source is of considerable interest. 
The basic characteristic and Geophysical studies about earth structure motivate to study the propagation of horizontally polarised 
shear waves (SH waves) in the medium of monoclinic. In the context of its application such study is of equal importance in various 
branches, like: Earth Science, Seismology, Geophysics etc. 
   Keeping in the mind the importance of monoclinic medium, many attempt have been made to better understand the propagation 
pattern of the seismic waves in the medium of monoclinic type. Chattopadhyay and Bandyopadhyay (1986) discussed the 
propagation of shear waves in an infinite monoclinic crystal plate as well as in infinite anisotropic non-homogeneous monoclinic 
plate. Kalyani et al. (2008) studied the propagation of SH waves in the plane of mirror symmetry of a monoclinic multilayered 
medium with displacement normal to the plane. Chattopadhyay et al. (1994) studied the propagation of a crack due to shear waves 
in a non-homogeneous medium of monoclinic. Subsequently, Singh and Tomar (2007) studied the propagation of quasi-P wave at 
the interface between two monoclinic half-spaces.  
   Geologists have long been aware of the Earth’s dynamic condition. Several hypotheses have attempted to explain the underlying 
mechanisms. In the late nineteenth and early twentieth centuries geological orthodoxy favoured the hypothesis of a contracting 
Earth. The external disturbance gives rise to wave motions propagating away from the disturbed region. In seismology the problem 
of the source mechanism consists in relating observed seismic waves to the parameters that describes the source. In the Earth, 
neglecting the force of gravity, body forces in the equation of motion may be used to represent the processes that generate 
earthquakes. In general, these forces are functions of the spatial coordinates and time, may be different for each earthquake and are 
defined only inside a certain volume. A type of body forces of great importance in the solution of many problems of 
elastodynamics is that formed by a unit impulsive force in space and time with an arbitrary direction; this point action or impulse is 
usually described by the Dirac delta function. Thus the solutions of equations of motion represent the elastic displacement due to a 
unit impulse force in space and time. For this reason, the Green’s function called the response of the medium to an impulsive 
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excitation. The form of this function depends on the characteristics of the medium, its elastic coefficients, and its density. In a 
finite medium, it depends also on the shape of the volume and the boundary conditions on its surface. For each medium there is a 
different Green’s function that defines how this medium reacts mechanically to an impulsive excitation force and is, therefore, a 
proper characteristic of each medium. Green’s function plays an important role in the solution of numerous problems in the 
mechanics and physics of solids. There are many articles in various journals on the application of Green’s function to 
seismological problems which are very much useful for both, researchers and practitioners with backgrounds in different branches 
of science. However, no extensive, detailed treatment of this subject has been available up to the present. The complete problem of 
Green’s function corresponds to an impulsive force in an arbitrary direction (Aki and Richards, 1980). The propagation of Love 
type waves from a point source in either homogeneous or inhomogeneous elastic media has been considered by many authors (viz. 
De Hoop 1995; Brekhovskikh and Godin 1992; Vrettos 1991, 1998; Singh 1969; Deresiewiez 1962; Ewing et al., 1957 etc.). The 
propagation of Love waves due to point source in a homogeneous layer overlying a semi-homogeneous substratum has been 
discussed by Sezawa (1935). Chattopadhyay and Maugin (1993) studied the Magneto-elastic surface shear waves due to a 
momentary point source. Sato (1952) studied the propagation of SH waves in a double superficial layer over heterogeneous 
medium by taking variation in rigidity. Bhattacharya (1969) described the possibility of the propagation of love type waves in an 
intermediate heterogeneous layer lying between two semi-infinite isotropic homogeneous elastic layers. Chattopadhyay and Kar 
(1981) discussed the Love waves due to a point source in an isotropic elastic medium under initial stress. Covert (1958) indicated a 
method for finding the Green’s function for composite bodies. Chattopadhyay et al (1986) studied the dispersion equation of Love 
waves in a porous layer. They used the Green’s function technique to obtain the dispersion equation. Watanabe and Payton (2002) 
discussed the Green’s function for SH waves in a cylindrically monoclinic material. He derived the closed form expression for 
Green’s function for a few limited values of anisotropic parameters and shown the contours of the displacement amplitude for the 
time harmonic wave. Manolis and Bagtzoglou (1992) described a numerical comparative study of wave propagation in 
inhomogeneous and random media. He employed the Green’s function approach for waves propagating from a point source, while 
techniques to account for the presence of boundaries are also discussed. Kausel and Park (2004) used a sub-structuring technique 
to obtain the impulse response in the wave number-time domain for a layered half-space. Manolis and Shaw (1995) developed the 
fundamental Green’s function for the case of scalar wave propagation in a stochastic heterogeneous medium. 
   This paper stands to investigate the possibility of propagation of SH waves due to a point source in a magnetoelastic monoclinic 
layer lying over a heterogeneous monoclinic half-space. The heterogeneity is caused by consideration of quadratic variation in 
rigidity. The methodology employed combines an efficient derivation for Green’s functions based on algebraic transformations 
with the perturbation approach. Dispersion equation has been obtained in the closed form. It is found that as heterogeneity 
parameters and magnetoelastic coupling parameters increases, the phase velocity increases for both isotropic and monoclinic cases 
but the increase is more prominent in the monoclinic case. In the isotropic case, when heterogeneity and magnetic field are absent, 
the dispersion equation is matched with the classical SH wave equation  
 
2. Formulation and solution of the problem 
 
   We have considered a magnetoelastic monoclinic layer of thickness H  lying over a heterogeneous monoclinic half-space. The 
z-axis has been taken along the propagation of waves and y-axis is positive vertically downwards as shown in Fig 1. The source of 
disturbance S is taken at the point of intersection of the interface of separation and y-axis. At first, we need to find the equation 
governing the propagation of SH wave in magnetoelastic monoclinic crustal layer. The strain-displacement relations for 
monoclinic medium are 

1 2 3 4 5 6, , , , ,u v w w v u w v uS S S S S S
x y z y z z x x y
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = = + = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

          (1) 

where , ,u v w  are displacement components in the direction x, y, z respectively, and ( 1, 2,...,6)iS i =  are the strain components 
 Also, the stress-strain relation for a rotated y-cut quartz plate, which exhibits monoclinic symmetry with x being the diagonal axis 
are 

1 11 1 12 2 13 3 14 4

2 12 1 22 2 23 3 24 4

3 13 1 23 2 33 3 34 4

4 14 1 24 2 34 3 44 4

5 55 5 56 6

6 56 5 66 6

,
,
,
,

,

T C S C S C S C S
T C S C S C S C S
T C S C S C S C S
T C S C S C S C S
T C S C S
T C S C S

= + + +
= + + +
= + + +

= + + +
= +
= +

                    (2)                   
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Figure 1: Geometry of the problem 

 
where ( )1, 2,...,6iT i =  are the stress components and ( )1, 2,...,6ij jiC C i= =  are the elastic constants. Equations governing 

 the propagation of small elastic disturbances in a perfectly conducting monoclinic medium having electromagnetic force ×J B  
 (the Lorentz force, J being the electric current density and B being the magnetic induction vector) as the only body forces are 

( )

( )

( )

2
6 51

2

2
6 2 4

2

2
5 34

2

,

,

x

y

z

T TT uJ B
x y z t
T T T vJ B
x y z t
T TT wJ B
x y z t

ρ

ρ

ρ

∂ ∂∂ ∂
+ + + × =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + × =

∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ + + × =

∂ ∂ ∂ ∂

                 (3) 

where ρ  is the density of the layer. 
For SH wave propagating in the z- direction and causing displacement in the x- direction only, we shall assume that 

( ), , , 0u u y z t v w= = = and 0.
x
∂
≡

∂
                (4) 

Using Eqs. (1) and (4), the stress-strain relation (2) becomes 

1 2 3 4

5 55 56

6 56 66

0,

,

.

T T T T
u uT C C
z y
u uT C C
z y

= = = =
∂ ∂

= +
∂ ∂
∂ ∂

= +
∂ ∂

                 (5) 

Using Eq. (5) in Eq. (3), the only non-vanishing equation we have 

( )
2 2 2 2

66 56 552 2 22 .
x

u u u uC C C J B
y y z z t

ρ∂ ∂ ∂ ∂
+ + + × =

∂ ∂ ∂ ∂ ∂
              (6) 

The well known Maxwell’s equations governing the electromagnetic field are 

 . 0, ,
t

∂
= × = − × =

∂
BB E H J∇ ∇ ∇  with ,e t

μ σ ∂⎛ ⎞= = + ×⎜ ⎟∂⎝ ⎠
uB H J E B                         (7) 

where E  is the induced electric field, J  is the current density vector and magnetic field H  includes both primary and induced 
magnetic fields. eμ and σ are the induced permeability and conduction coefficient respectively. 

The linearized Maxwell’s stress tensor ( )0 xM

ijτ due to the magnetic field is given by ( ) ( )0 xM

ij e i j j i k k ijH h H h H hτ μ δ= + − . 
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Let ( ) ( )1 2 3, , , , ,H H H u v w= =H u  and ( )1 2 3, ,ih h h h=  where ih  is the change in the magnetic field. In writing the above 
equations, we have neglected the displacement current. 
From Eq. (7), we get 

2 .e t t
μ σ ⎧∂ ∂ ⎫⎛ ⎞∇ = + × ×⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎩ ⎭

H uH H∇                              (8) 

In component form, Eq. (8) can be written as 

2 3
21

1

22
2

23
3

1 ,

1 ,

1 .

e

e

e

u uH H
H t tH
t y z

H H
t

H H
t

μ σ

μ σ

μ σ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠= ∇ + +
∂ ∂ ∂
∂

= ∇
∂
∂

= ∇
∂

                            (9) 

For perfectly conducting medium (i.e.σ →∞ ), the Eqs. (9) become 

32 0,HH
t t

∂∂
= =

∂ ∂
                           (10) 

and  

2 3
1 .

u uH H
H t t
t y z

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠= +
∂ ∂ ∂

                         (11) 

It is clear from Eq. (10) that there is no perturbation in 2H  and 3H , however from Eq. (11) there may be perturbation in 1H . 

Therefore, taking small perturbation, say 1h in 1H , we have 

1 01 1 2 02,H H h H H= + = and 3 03H H= , where ( )01 02 03, ,H H H are components of the initial magnetic field 0H . 

We can write ( )0 0 00, sin , cosH Hφ φ=H , where 0 0H = H  and φ  is the angle at which the wave crosses the magnetic 
field. Thus we have 

( )1 0 0, sin , cosh H Hφ φ=H .                          (12) 

We shall take initial value of 1h as 1 0h = . Using Eq. (12) in Eq. (11), we get 

0 0
1

sin cos
.

u uH H
h t t
t y z

φ φ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠= +
∂ ∂ ∂

                         (13) 

Integrating with respect to t , we get 

1 0 0sin cos .u uh H H
y z

φ φ∂ ∂
= +

∂ ∂
                         (14) 

Considering ( ) ( )
2

.
2

H⎛ ⎞
= − × × +⎜ ⎟

⎝ ⎠
H H H H∇ ∇ ∇  and Eqs (7), we get 

( )
2

. .
2e

Hμ
⎧ ⎫⎛ ⎞⎪ ⎪× = − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

J B H H∇ ∇                          (15) 

In the component form Eq. (15) can be written as 
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( ) ( )

( )
2 2 2

2 2 2
0 2 2

0

and

sin sin 2 cos .

y z

ex

u u uH
y y z z

μ φ φ φ

× = × =

⎛ ⎞∂ ∂ ∂
× = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

J B J B

J B

                           (16) 

Using Eqs. (6) and (16), we find the equation of motion for the magnetoelastic monoclinic medium in the form 
2 2 2 2

66 56 552 2 22 .u u u uM M M
y y z z t

ρ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
                        (17) 

where 

( )2
66 66

255
55 66

66

56
56 66

66

1 sin ,

cos ,

cos sin

H

H

H

M C m

CM C m
C

CM C m
C

φ

φ

φ φ

= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

                          (18) 

where 
2

0

66

e
H

Hm
C
μ

=  is monoclinic-magnetoelastic coupling parameter.  

If ( )1 ,r tσ  be the force density distribution in the upper layer due to the point source, the equation of motion for SH wave 
propagation along z-axis becomes as 

( )2 2 2 2
155 561 1 1 1

2 2 2
66 66 66 66

4 ,2 ,
r tM Mu u u u

y M z M y z M t M
πσρ∂ ∂ ∂ ∂

+ + − =
∂ ∂ ∂ ∂ ∂

                      (19) 

where r  is the distance from the origin, where the force is applied to a point of coordinates and t  is the time. 
Considering ( ) ( )1 1, , , i tu y z t U y z e ω=  and ( ) ( )1 1, i tr t r e ωσ σ=  in eq.(17), we obtain 

( )2 2 2 2
155 561 1 1

12 2
66 66 66 66

42 ,
rM MU U U U

y M z M y z M M
πσρω∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

         (20) 

where kcω =  is the angular frequency, k  the wave number and c is the phase velocity. Here the disturbances caused by the 
impulsive force ( )1 rσ may be represented in terms of Dirac-delta function at the source point as 

( ) ( ) ( )1 r z y Hσ δ δ= − . 
Therefore the equation of motion for the upper magnetoelastic monoclinic layer with an impulsive point source is 

( ) ( )2 2 2 2
55 561 1 1

12 2
66 66 66 66

42 ,
z y HM MU U U U

y M z M y z M M
πδ δρω −∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                     (21) 

Defining the Fourier transform ( ),rU yξ of ( ),rU z y  as 

( ) ( )1, ,
2

i z
r rU y U z y e dzξξ

π

∞

−∞

= ∫                          (22) 

Then the inverse transform can be given as 

( ) ( )1, ,
2

i z
rrU z y U y e dξξ ξ

π

∞
−

−∞

= ∫ .                           (23) 

Now taking the Fourier transform of eq. (21), we obtain 
( ) ( )

2
1 1 2

11 1 12
66

2
4 ,

y Hd U dUf r U y
dy dy C

δ
πσ

−
+ + = =                        (24) 
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where 
2

2 256 55
1 1

66 66 66

2 ,M Mf i r
M M M

ρωξ ξ= = −  

The heterogeneity of the lower inhomogeneous monoclinic half-space has been considered in the form 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22 0
66 66

22 2
56 56

22 2
55 55

C C y H

C C y H

C C y H

ε

ε

ε

= + −

= + −

= + −

                          (25) 

Now, the equation of motion for the lower heterogeneous monoclinic half-space is 

( ) ( ) ( ) ( )
2 2 2 2

2 2 22 2 2 2 2
66 55 56 02 2 22 2 ,u u u u uC C C y H

y z y z y t
ε ρ∂ ∂ ∂ ∂ ∂

+ + + − =
∂ ∂ ∂ ∂ ∂ ∂

                     (26) 

where 0ρ  is the density of the lower half-space. 
In view of substitution ( ) ( )2 2, , , i tu y z t U y z e ω=  and eq. (22), eq. (26) becomes 

( )
2

2 2 2
22 2 22 4 ,d U dUf r U y

dy dy
πσ+ + =                          (27) 

where 
( )

( ) ( )

( )

( )

0 02
2 256 0 55

2 20 0 0
66 66 66

2 , ,C Cf i r
C C C

ρ ωξ ξ= = −  

( ) ( ) ( ) ( ) ( )
2

2 22 2 2
22 20

66

4 2 ,d U dUy y H y H y H U
dy dyC

επσ ξ
⎧ ⎫

= − − + − − −⎨ ⎬
⎩ ⎭

                    (28) 

Now it is clear from eq. (27) that the displacement in the lower medium may be determined by assuming the lower medium to be 
homogeneous, isotropic having source density distribution ( )2 yσ . 

Substituting ( ) ( ) 2r
yf

r rU y U y e
−′= in eq. (24) and eq. (27) for 1, 2r =  respectively, we obtain 

( )
12

1 2 21 12 4 ,
f yd U U y e

dy
α πσ

′
′− =                          (29) 

and ( )
22

2 2 22 22 4 ,
f yd U U y e

dy
β πσ

′
′− =                          (30) 

where  
2 2

2 2 2 21 2
1 2,

4 4
f fr rα β= − = −  

The boundary conditions are as follows: 

(i) Upper surface is stress free i.e.  
1 1

166 0 at 0
2
fdUM U y

dy
⎧ ⎫

+ = =⎨ ⎬
⎩ ⎭

                     (31) 

(ii) Displacements are continuous at the common interface i.e. 1 2 atU U y H= =                       (32) 
(iii) Stresses are continuous at the common interface i.e. 

( )1 221 2
1 266 66 at

2 2
f fdU dUM U C U y H

dy dy
⎧ ⎫ ⎧ ⎫

+ = + =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

                         (33) 
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Thus equations (29) and (30) together with prescribed boundary conditions (31) to (33) give the complete mathematical model for 
the problem. Now we apply Green’s function technique to solve it. If ( )1 0/G y y is the Green’s function for the upper layer 

satisfying the condition 1 0dG
dy

= at 0y =  and at y H= , then the equation satisfied by ( )1 0/G y y is 

 
( ) ( ) ( )

2
1 0 21

1 0 02

/
/

d G y y
G y y y y

dy
α δ− = −                         (34) 

where 0y is a point in the upper medium and y is the field point. Multiplying the eq. (29) by ( )1 0/G y y and eq. (34) by ( )1U y′ , 

then subtracting and integrating with respect to y from 0y =  to y H= , we have 

( ) ( ) ( )
1

1 2 11 0 1 0 0
66

2/ /
f H

y H

dUG H y e G H y U y
dy M

=

⎡ ⎤′
′⎢ ⎥ = −

⎢ ⎥
⎣ ⎦

                      (35) 

Since 
( )1 0/

0
dG y y

dy
=  at 0y =  and y H= . 

Replacing 0y  by y and remembering that ( ) ( )1 1/ /G H y G y H= , the eq. (35) gives the value of 1U ′  at any point y in the 
upper medium as 

 ( ) ( ) ( )
1

121 1 1
66

2 / /
f H

y H

dUU y e G y H G y H
M dy

=

⎡ ⎤′
′ ⎢ ⎥= −

⎢ ⎥
⎣ ⎦

  

Therefore, 

( ) ( ) ( ) ( ) ( ) ( )
1 1 121 11 1

66

2 / /
2

f y H

y H

dU y fU y e G y H G y H U y
M dy

− −

=

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= − +⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

                    (36) 

Now, let ( )2 0/G y y  be the Green’s function for the lower medium, as per previous discussion may be assumed to be 

homogeneous. We assume that ( )2 0/G y y  is the solution of the equation 

 
( ) ( ) ( )

2
2 0 21

2 0 02

/
/

d G y y
G y y y y

dy
β δ− = −                         (37) 

where 0y is the point in the lower medium, satisfying the condition 2 0dG
dy

=  at y H= and approaches to zero as y →∞ . 

Multiplying eq. (30) by ( )2 0/G y y  and eq. (37) by ( )2U y′ , then subtracting and integrating with respect to y from y H=  to 
y = ∞ , we have 

( ) ( ) ( ) ( )
2

2 2 22 0 2 2 0 0/ 4 /
f y

H
y H

dUG H y e y G y y dy U y
dy

π σ
∞

=

⎡ ⎤′
′⎢ ⎥− = −

⎢ ⎥
⎣ ⎦

∫                      (38) 

Interchanging y by 0y in the eq. (38), the value of ( )2U y′ at any point y in the lower medium is 

( ) ( ) ( ) ( )
2 0

2 22 2 2 0 2 0 0/ 4 /
f y

H
y H

dUU y G y H e y G y y dy
dy

π σ
∞

=

⎡ ⎤′
′ ⎢ ⎥= +

⎢ ⎥
⎣ ⎦

∫  

Therefore, 
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( ) ( ) ( ) ( )
2 02 2 2 22 2 22 22 2 0 2 0

0

4
2

f yf y f H

Hy H

dU y fy yU y e e G U y e y G dy
H dy y

π σ
∞

−

=

⎡ ⎤⎧ ⎫ ⎛ ⎞⎪ ⎪⎛ ⎞⎢ ⎥= + +⎨ ⎬ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎪ ⎪ ⎝ ⎠⎩ ⎭⎣ ⎦
∫           (39) 

With the help of boundary condition (32), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
2 02

1 21 2
1 21 1 2

66

2 2
2 0 2 0 0

2 / / /
2 2

4 /

y H y H

f yf H

H

dU y dU yf fG H H G H H U y G H H U y
M dy dy

e e y G y y dyπ σ

= =

∞
−

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− + = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

+ ∫
   (40) 

Using boundary condition (33), eq. (40) can be written as 

( ) ( ) ( ) ( ) ( )
2 021 1 2 21 2 2 0 2 0 0

1 66

1 2 / 4 /
2

f yf H

Hy H

dU y f U y G H H e e y G H y dy
dy D M

π σ
∞

−

=

⎧ ⎫ ⎧ ⎫⎪ ⎪+ = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎩ ⎭⎩ ⎭

∫       (41) 

where 1D  is given in appendix I. 

Substituting the value of 
( ) ( )1 1

1
2

y H

dU y f U y
dy

=

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭

from eq. (41) and ( )2 04 yπσ  from eq. (28) into eq. (36), we obtain 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

0 0

2 0

2
1 2 121

66 1 66 2 66 1 66 2

2
2 22 2 2 220 0 0 0 2 0 02

0 0

2 / / /

/ / / /

2 /

f H
f y H

f y

H

G y H G H H e G y H
U y e

C G H H M G H H C G H H M G H H

d U dUy H y H y H U y e G H y dy
dy dy

ε

ξ

−
− −

∞

⎡
⎢= − ×⎢ + +⎢⎣

⎤⎧ ⎫
− + − − − ⎥⎨ ⎬

⎥⎩ ⎭ ⎦
∫

     (42) 

In view of boundary condition (33), relation (39) gives 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

0 0 0

2 0

2

0

2
1 2 2 6622

66 1 66 2 66 66 1 66 2

2
2 22 2 2 220 0 0 0 2 0 02

0 0

22 2 22 2 2
20 0 0 02

0 066

2 / / /

/ / / /

2 /

2

f y
f y H

f y

H

f y
f

G H H G y H e G y H M
U y e

C G H H M G H H C C G H H M G H H

d U dUy H y H y H U y e G H y dy
dy dy

e d U dUy H y H y H U y e
dy dyC

ε

ξ

ε ξ

−
− −

∞

−

= + ×
+ +

⎧ ⎫
× − + − − − −⎨ ⎬

⎩ ⎭

⎧ ⎫
− − + − − −⎨ ⎬

⎩ ⎭

∫

( )
2 0
2

2 0 0/
y

H

G y y dy
∞

∫

    (43) 

( )2U y can be obtained from the relation (43) by the method of successive approximations. The value of ( )2U y obtained from 

eq. (43) when substituted in eq. (42) gives the value of ( )1U y . We are interested in the value of ( )1U y , which will give the 
displacement in the upper layer, and since the higher order of ε  can be neglected; we take as the first order approximation 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

0

2
1 2

2

66 1 66 2

2 / /

/ /

f y H
G H H G y H e

U y
C G H H M G H H

− −

=
+

                        (44) 

which gives the displacement at any point in the lower medium if it is taken as homogeneous. Putting this value of ( )2U y in eq. 
(42), we get 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

0
0

2 2
1 2 1 1

1 2
66 1 66 2 66 1 66 2

2
2 22 0 2 0 2

0 0 0 2 0 2 0 02
0 0

2 / / 2 / /

/ / / /

/ /
2 / /

f fy H y H

H

G y H G H H e e G y H G H H
U y

C G H H M G H H C G H H M G H H

d G y H dG y H
y H y H y H G y H G H y dy

dy dy

ε

ξ

− − − −

∞

= − ×
+ +

⎧ ⎫⎪ ⎪− + − − −⎨ ⎬
⎪ ⎪⎩ ⎭
∫

     (45) 

The solution of eq. (45) represents the elastic displacements due to a unit impulse force in space and time. Thus the Green’s 
function is the response of the medium to an impulsive excitation. If we know the values of ( )1 /G y H and ( )2 /G y H , then the 

value of ( )1U y can be determined from the eq. (45). We have assumed ( )1 0/G y y  as the solution of eq. (34). A solution of eq. 
(34) may also be obtained in the following manner. 
We have the equation 

  
2

2
2 0.d

dy
αΨ

− Ψ =                            (46) 

Two independent solutions of eq. (46), vanishing at y = −∞  and y = ∞ are 

( )1
yy eαΨ =  and ( )2

yy e α−Ψ = . 
Therefore the solution of the eq. (46) for an infinite medium is 

( ) ( )1 2 0y y
W

Ψ Ψ
 for 0 ,y y<  

( ) ( )1 0 2y y
W

Ψ Ψ
 for 0 ,y y>  

where 

( ) ( ) ( ) ( )1 2 1 2 2 0.W y y y y α′ ′= Ψ Ψ −Ψ Ψ = − ≠  
So, the solution of eq. (34) is 

0

.
2

y ye α

α

− −

−  

Since ( )1 0/G y y is to satisfy the condition 

 1 0dG
dy

=  at 0y =  and y H= ,                                       (47) 

Therefore, we can assume that 

( )
0

1 0 1 2/ .
2

y y
y y eG y y C e C e

α
α α

α

− −
−= + −  

where 1 2andC C are the arbitrary constants which can be evaluated using condition (47). We finally get 

( )
( ) ( )( ) ( ) ( )( )0 0 0 0

0
1 0

1/ .
2

H y H y H y H yy z
y y

H H H H

e e e e e e
G y y e

e e e e

α α α αα α
α

α α α αα

− + − − − − −−

− −
− −

⎡ ⎤+ +
⎢ ⎥= + +
⎢ ⎥− −
⎣ ⎦

                   (48) 

Therefore, 

( )1
1/ ,

y y

H H

e eG y H
e e

α α

α αα

−

−

⎡ ⎤+
= − ⎢ ⎥−⎣ ⎦

                         (49) 

( )1
1/ ,

H H

H H

e eG H H
e e

α α

α αα

−

−

⎡ ⎤+
= − ⎢ ⎥−⎣ ⎦

                         (50) 

Similarly, the value of ( )2 0/G y y  can be written as 
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( ) ( )00 2
2 0

1/ ,
2

y y Hy yG y y e e ββ

β
− + −− −⎡ ⎤= − +⎣ ⎦                            (51) 

and so 

( )
( )0

2 0/ ,
y HeG H y

β

β

− −

= −                           (52) 

( )2
1/ .G H H
β

= −                            (53) 

Substituting all these values in eq. (45), we get 

( )
( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ){ }

1

0 0

2

2 2

1

66 66 66 66

12
1

4

f H Hy H y y

H H H H H H H H

e ee e e
U y

C e e M e e C e e M e e

α α
α α

α α α α α α α α

ξε
β

β α β β α

−− − −

− − − −

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟− + ⎝ ⎠⎢ ⎥= −

⎢ ⎥+ + − + + −⎢ ⎥
⎣ ⎦

   (54) 

Neglecting the higher powers of ε  the eq. (54) may be approximated as 

( )
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ){ }

1

0

0

2

1
2

2

66 66

66 66

2

1
1

4

f y H y y

H H

H H H H

H H H H

e e e
U y

e e
C e e M e e

C e e M e e

α α

α α

α α α α

α α α α

ξε
β

β α
β β α

− − −

−

− −

− −

− +
=

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥+ + − +
⎢ ⎥+ + −
⎢ ⎥
⎣ ⎦

   (55) 

Taking the inverse Fourier transform of eq. (55), the displacement in the upper medium may be obtained as 
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ){ }

1

0

0

2

1 2

2

66 66

66 66

2
1

1
4

f y H y y i z

H H

H H H H

H H H H

e e e e d
U

e e
C e e M e e

C e e M e e

α α ξ

α α

α α α α

α α α α

ξ

ξε
β

β α
β β α

− − − −∞

−∞ −

− −

− −

+
= −

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥+ + − +
⎢ ⎥+ + −
⎢ ⎥
⎣ ⎦

∫    (56) 

The dispersion equation of SH waves will be obtained by equating to zero the denominator of the above integral, 

( ) ( ) ( )
( )

( ) ( ) ( ){ }
0

0

2

2

66 66

66 66

1
1 0.

4

H H

H H H H

H H H H

e e
C e e M e e

C e e M e e

α α

α α α α

α α α α

ξε
β

β α
β β α

−

− −

− −

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥+ + − + =
⎢ ⎥+ + −⎢ ⎥
⎣ ⎦

            (57) 

In view of the substitutions 1 2andik kα θ β θ= = the above eq. (57) gives the dispersion relation of shear waves in monoclinic 
magnetoelastic layer lying over heterogeneous monoclinic half-space 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

0

0 0 0 0

0 0 0 0

2

266 2
1 2 2 2

66 1 1 2 66
255 56 55 56

2

66 66 66 66

1tan 1 .
4

c
CkH
M k M C C C C

C C C C

βθ εθ
θ θ θ

θ

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= + + +
⎢ ⎥⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦

                    (58) 

where 1 2 1 2, andθ θ β β are given in the appendix I. 
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3. Particular cases 
 
Case I: When 0ε = the dispersion relation (58) reduces to 

( )
( )0

66 2
1

66 1

tan CkH
M

θθ
θ

=  

which is the dispersion equation of shear waves for the case of monoclinic magnetoelastic layer lying over a homogeneous 
monoclinic half-space due to a point source. 
Case II: When ( ) ( ) ( )0 0 0

56 66 55 1 66 55 2 560, 0, , and 0C C C C C Cε μ μ= = = = = = = the dispersion relation (58) reduces to 

{ }
{ }
{ }

( ) { }
{ }
{ }

1/ 22
1/ 22 2 22

4
1/ 22 2 2 223

2
1 2 2 2

3

11 cos
tan

1 sin 1 sin 1 cos
1 sin

1 sin 1 sin

H

H H H
H

H H

c
ckH

c

μτ φ β
β τ φ τ φ τ φ

μ τ φ
β τ φ τ φ

⎧ ⎫
−⎨ ⎬⎧ ⎫+⎪ ⎪ ⎩ ⎭− =⎨ ⎬

+ + ⎧ ⎫+⎪ ⎪⎩ ⎭ ⎪ ⎪+ −⎨ ⎬
+ +⎪ ⎪⎩ ⎭

 

where 3 4, andHτ β β  are given in the appendix I. 
which is the dispersion equation of shear waves for the case of isotropic magnetoelastic layer lying over a homogeneous isotropic 
half-space due to a point source. 
Case III: When ( ) ( ) ( )0 0 0

56 66 55 1 66 55 2 560, 0, 0, , and 0Hm C C C C C Cε μ μ= = = = = = = =  the dispersion relation (58) 
reduces to 

1/ 22

1/ 2 2 22
4

1/ 22 2
3

1 2
3

1
tan 1

1

c
ckH

c

μ
β

β
μ

β

⎧ ⎫
−⎨ ⎬⎧ ⎫ ⎩ ⎭− =⎨ ⎬

⎧ ⎫⎩ ⎭
−⎨ ⎬

⎩ ⎭

 

which is the classical SH wave equation. 
 
4. Numerical examples 
 
For the case of a magnetoelastic monoclinic layer lying over a non-homogeneous monoclinic half space, we take the following 
data: 
 
(i) For monoclinic magnetoelastic layer (Tiersten, 1969) 

9 2 9 2
55 56

9 2 3
66

94 10 N/m , 11 10 N/m ,

93 10 N/m , 7, 450 Kg/m .

C C

C ρ

= × = − ×

= × =
 

(ii) For lower heterogeneous monoclinic half space (Tiersten, 1969) 
( ) ( )

( )

0 09 2 9 2
55 56

0 9 2 3
66 0

57.94 10 N/m , 17.91 10 N/m ,

39.88 10 N/m , 2,649Kg/m .

C C

C ρ

= × = − ×

= × =
 

 
Moreover the following data are used  

0, 0.0,0.05,0.10Hm ε =  
For the case of magnetoelastic isotropic layer lying over a non-homogeneous isotropic half- space, we select the following data: 
 
(iii) For isotropic magnetoelastic layer (Gubbins, 1990) 

9 2 3
1 163.4 10 N/m , 3364Kg/m .μ ρ= × =  

(iv) For non-homogeneous isotropic half-space (Gubbins, 1990) 
9 2 3

0 078.4 10 N/m , 3535Kg/m .μ ρ= × =  
 
Moreover the following data are used  
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1, 0.0,0.05,0.10Hτ ε = . 
   The effect of magnetoelastic coupling parameter and heterogeneity on the propagation of plane SH waves in a magnetoelastic 
monoclinic layer lying over an heterogeneous monoclinic half spaces has been depicted by means of graphs. Fig. 2 and 4 give the 
variation of non-dimensional phase velocity ( )1/c β  with respect to non-dimensional wave number kH  for different values of 

magnetoelastic coupling parameters andH Hm τ  for monoclinic magnetoelastic and isotropic magnetoelastic case respectively. 

Fig. 3 and 5 gives the variation of non-dimensional phase velocity ( )1/c β  with respect to non-dimensional wave number kH  

for different values of heterogeneity parameters 0 1andε ε  for the case of heterogeneous monoclinic half space and heterogeneous 
isotropic half space respectively. The small change in the non-dimensional wave number produces substantial change in non-
dimensional phase velocity in all the cases. In each of these figures dotted line curves viz. 4, 5 & 6 refers to the isotopic case and 
solid line curves viz. 1, 2 & 3 refers to the monoclinic case. The comparative study of the graphs reveals that with the increase in 
heterogeneity parameters and magnetoelastic coupling parameters, the phase velocity increases for both isotropic and monoclinic 
cases. 
   The comparative study of both the cases viz. magnetoelastic monoclinic layer lying over a heterogeneous monoclinic half space 
and magnetoelastic isotropic layer lying over a heterogeneous isotropic half space shows that as magnetoelasticity prevails through 
magnetoelastic coupling parameter, the phase velocity of the SH waves due to a point source increases but the increase is found 
more significant in the case of monoclinic medium as compared to isotropic medium. Also, it is remarkable to notice that as 
heterogeneity prevails through inhomogeneity parameter the phase velocity gets increased for both the cases but the increase is 
more prominent in the monoclinic case. 
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1.09

1.1

1.11

kH

c/
β 1

1

2

3
4

5

6

 

 
1: ε0=0.0, mH=0.0

2: ε0=0.05, mH=0.0

3: ε0=0.10, mH=0.0

4: ε1=0.0, τH=0.0

5: ε1=0.05, τH=0.0

6: ε1=0.10, τH=0.0

 
Figure 2: Dimensionless phase velocity against dimensionless wave number for 0.0Hm = and 0.0Hτ = . 
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1: ε0=0.0, mH=0.0

2: ε0=0.0, mH=0.05

3: ε0=0.0, mH=0.10

4: ε1=0.0, τH=0.0

5: ε1=0.0, τH=0.05

6: ε1=0.0, τH=0.10

 
Figure 3: Dimensionless phase velocity against dimensionless wave number for 0 1, 0.0ε ε = . 
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1: ε0=0.0, mH=0.10

2: ε0=0.05, mH=0.10

3: ε0=0.10, mH=0.10

4: ε1=0.0, τH=0.10

5: ε1=0.05, τH=0.10

6: ε1=0.10, τH=0.10

 
Figure 4: Dimensionless phase velocity against dimensionless wave number for 0.10Hm = and 0.10Hτ = . 
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 1: ε0=0.10, mH=0.0

2: ε0=0.10, mH=0.05

3: ε0=0.10, mH=0.10

4: ε1=0.10, τH=0.0

5: ε1=0.10, τH=0.05

6: ε1=0.10, τH=0.10

 
Figure 5: Dimensionless phase velocity against dimensionless wave number for 0 1, 0.10ε ε = . 

 
5. Conclusion 
 
   In this paper the dispersion relation has been obtained in the closed form. The effect of heterogeneity and magnetoelastic 
monoclinic parameter on the phase velocity of SH waves has been depicted and shown by means of graphs.  The above study 
shows that as  heterogeneity parameters and magnetoelastic coupling parameters increases, the phase velocity increases for both 
isotropic and monoclinic cases but the increase is more prominent in the monoclinic case. In the isotropic case, when heterogeneity 
and magnetic field are absent, the dispersion equation is matched with the classical SH wave equation. The present study has its 
special application to the problem of waves and vibrations where the wave signals have to travel through different layers of 
different material properties and containing irregularities due to continental margin, mountain roots etc.  These results can also be 
utilized in the interpretation and analysis of data of geophysical studies. The findings will be useful in forecasting formation details 
at greater depth through signal processing and seismic data analysis. The present study may be effectively utilized to generate 
initial data prior to exploitation of the formation. This study may be useful to geophysicist and metallurgist for analysis of rock and 
material structures through Non-Destructive Testing (NDT). 
 
Appendix I 

( ) ( ) ( )

( )

( ) ( )

( )

( )

( )

0 0

0 0 0

66

66
1 1 22

66

1/ 21/ 2 22 22
56 55 55 0 56

1 2
66 66 66 66 66 66

0 2 2 2
66 01 2

1 2 3 4 H 0 1
0 0 1 66 1

and

/ /

,

, , , , , .

y H

e

MD G H H G H H
C

M M C c Cc
M M M C C C

CC H H H
C

ρρθ θ

μμ μ ε εβ β β β τ ε ε
ρ ρ ρ ρ μ μ

=

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠

⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞⎪ ⎪ ⎪ ⎪= + − = − − ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎝ ⎠⎩ ⎭ ⎩ ⎭

= = = = = = =
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