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Abstract 
 
   The present investigation deals with study of deformation in homogeneous, isotropic thermodiffusion elastic half-space as a 
result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. The integral 
transform technique is used to solve the problem. As an application of the approach distributed and moving forces have been 
taken. The transformed components of displacement, stresses, temperature distribution and concentration are inverted using 
numerical inversion technique. The effect of relaxation times and response of two theories of thermoelasticity i.e. Green and 
Lindsay (G-L) theory and coupled theory (CT) on these quantities have been depicted graphically for a particular model. Some 
particular cases are also deduced.  
  
Keywords: Inclined load, Distributed sources and Moving force, Stresses, Temperature distribution and Concentration 

 
1. Introduction 
  
   Biot (1956) developed the coupled theory of thermoelasticity to deal with a defect of the uncoupled that mechanical causes have 
no effect on the temperature. However, this theory shares a defect of the uncoupled theory in that it predicts infinite speeds of 
propagation for heat waves.The subject of generalized thermoelasticity has drawn the attention of many researchers during last few 
decades as these theories have been attempted mainly to overcome the shortcomings of the classical coupled dynamical theory of 
thermoelasticity, which predicts two phenomenon not compatible with physical observations. First, the equation of heat conduction 
of this theory does not contain any elastic terms. Second, the heat equation is of parabolic type, predicting infinite speeds of 
propagation for heat waves. Therefore, the generalized theories are characterized with finite speed of thermal disturbance. The first 
two generalized thermoelastic models are Lord-Shulman model (L-S) (1967) and Green-Lindsay (G-L) (1972). In L-S model, one 
thermal relaxation time parameter is introduced in the Fourier's law of heat conduction,whereas in the G-L model, two thermal 
relaxation times are introduced in the constitutive relations for stress tensor and entropy equation.  
   Diffusion can be defined as the random walk, of an ensemble of particles, from regions of great concentration to regions of lower 
concentration. There is now a great deal of interest in the study of this phenomenon, due to its many applications in geophysics and 
industrial applications. In integrated circuit fabrication, diffusion is used to introduce "dopants" in controlled amounts into the 
semiconductor substrate. In particular, diffusion is used to form the base and emitter in bipolar transistors, form integrated 
resistors, form the source/drain regions in MOS transistors and dope poly-silicon gates in MOS transistors. Nowacki (1974(a), 
1974(b), 1974(c),1976) developed the theory of coupled themoelastic diffusion. This implies infinite speeds of propagation of 
theromelastic waves. Olesiak and Pyryev (1995) discussed a coupled quasi-stationary problem of thermodiffusion for an elastic 
cylinder. They studied the influence of cross effects, the thermal excitation results in an additional to mass concentration and the 
mass concentration generates the additional field of temperature. 
   Sherief et. al (2004) developed the theory of generalized thermoelastic diffusion with one relaxation time, which allows the finite 
speed of propagation of waves. Sherief and Shaleh (2005) investigated a half space problem in the theory of generalized 
thermoelastic diffusion with one relaxation time. Singh (2005) investigated the reflection of P and SV waves at the free surface of 
generalized thermoelastic diffusion. Aouadi (2006, 2007(a), 2007(b), 2008 ) investigated the different types of problems in 
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thermoelastic diffusion. Sharma et.al (2008(a), 2008(b)) and Kumar and Kansal (2009) study various types of problem in 
thermoelastic diffusion. Kumar et.al (2005(a),2005(b),2007) investigated different problems in micropolar elastic medium due to 
inclined load. Recently Sharma et.al (2009) and Sherief and El-Maghraby (2009) discussed different source problems in 
generalized thermoelastic diffusion. The deformation at any point of the medium is useful to analyze the deformation field around 
mining tremors and drilling into the crust of the earth. It can also contribute to the theoretical consideration of the seismic and 
volcanic sources since it can account for the deformation field in the entire volume surrounding the source region.  
   The purpose of the present paper is to determine the components of stress, temperature distribution and concentration in 
generalized thermodiffusive elastic medium due to inclined load as result of distributed sources and moving force by applying the 
integral transform technique. The results of the present problem may be applied to a wide class of geographical problems involving 
temperature, shape and concentration. Physical applications are found in the mechanical engineering, geophysical and indusrial 
activities. The present model is very useful for understanding the nature of interaction between mechanical, diffusive and thermal 
fields since most of the structural elements of engineering industries are often subject to mechanical, diffusive and thermal stresses 
at an elevated temperature and concentration. This study is also of geophysical interest, particularly in the investigation concerned 
with earthquake and other phenomenon in seismology and engineering. 
 
2. Basic Equations 
 
   Following Green and Lindsay (1972) and Sherief et al.(2004), the governing equations in a homogeneous, isotropic generalized 
thermodiffusive elastic solid in the absence of body forces and heat sources are:  

 
The constitutive relations:  

)],()([2= 1
211 CCTTeet kkijijij

&& τβτβλδμ +−+−+      (1) 

),()(= 1
1

2 TTaCCbeP kk
&& ττβ +−++−       (2) 

 
 The equations of motion:  

,=)()()( ,
1
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 The equation of heat conduction:  
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Equation of mass diffusion:  

0,=)()( ,
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 where  

,)2(3=,)2(3=1,2,3),=,)((
2
1= 21,, ctijjiij jiuue αμλβαμλβ +++  

λ , μ -Lame's constants, tα , cα - coefficient of linear thermal and linear diffusion expansion. 0= TTT − , T- absolute 

temperature and 0T - temperature of the medium in the natural state assumed to be such that 1</ 0TT . ijt - component of the 

stress tensor, iu - component of the displacement vector, ρ  - density, ije - components of the strain tensor, kkee = , P- chemical 

potential, C- Concentration, EC -Specific heat, K- Coefficient of thermal conductivity , 10 ,ττ  and 10,ττ -Thermal and Diffusion 

relaxation times, baD ,, -constants, ijδ - Kronecker delta.  
 
 00, 01

01 ≥≥≥≥ ττττ  For G-L theory,     0==== 01
01 ττττ For CT theory 

 
3. Formulation and Solution of the problem 
 
   We consider a homogeneous, isotropic generalized thermodiffusive elastic medium in the undeformed state at temperature 0T . 

The rectangular cartesian co-ordinate system ( 321 ,, xxx ) having origin on the surface 3x =0 with 3x  - axis pointing normally into 

the medium is introduced. Suppose that an inclined line load, per unit length, is acting on the 2x -axis and its inclination with the 
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3x -axis is δ  (Fig.1) as shown in appendix I. 
 
For two dimensional problem, we take  

),,0,(= 31 uuur           (6) 
The initial and regularity conditions are given by  

 
,0),,(=0=,0),(,0),,(=0=,0),(,0),,(=0=,0),( 3333333131 xxTxxTxxuxxuxxuxxu &&&  

,0),(=0=,0),(,0),,(=0=,0),( 3333 xxPxxPxxCxxC && , for 03 ≥x ,  ∞∞− << x ,  

,0=),,(=),,(=),,(=),,(=),,( 3333331 txxPtxxCtxxTtxxutxxu  for 0>t when ∞→3x .  
 
To facilitate the solution, following dimensionless quantities are introduced:  
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The displacement components, ),,( 311 txxu  and ),,( 313 txxu , may be written in terms of the potential functions ),,( 31 txxφ  

and ),,( 31 txxψ  in dimensionless form as  
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we define Laplace and Fourier transforms  
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Applying the Laplace and Fourier transform defined by (9) on equations (3)-(5), after using (6)-(8)(suppressing the primes for 

convenience) and eliminating φ~ , T~ , C~  and ψ~  from the resulting expressions, we obtain  
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Solving equations (10) and (11)  and making use of the radiation conditions that 0~,~,~,~
→ψφ CT  as ∞→3x ,  we obtain  
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where ii ed ,  are given in appendix-III and )31( −=iiλ   and 4λ are the roots of the following indical equation 
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where R,Q,S are given in appendix II. 
 
4. Boundary Conditions 

   
Consider a normal line load 1F  per unit length, acting in the positive 3x -axis on the plane boundary 3x =0 along the 2x -axis and 

a tangential line load 2F  per unit length, acting at the origin in the positive 1x - axis, then boundary condition are 
 
 )()(=)( 11133 tHxFti ψ−         (13) 

 
)()(=)( 12231 tHxFtii ψ−         (14) 

  0=)(
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∂

          (15) 
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Civ
∂
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          (16) 

where 1=)(tH  for 0≥t , H(t)=0 for 0<t  
 

1F  and 2F  are the magnitude of forces, )(1 xψ  and )(2 xψ  are specify the vertical and horizontal load distributions respectively 
as shown in appendix I(Fig.b). )(tH  is the Heavyside unit step function. Making use of equations (7) and (8) in the boundary 

conditions (13)-(16) and applying the Laplace and Fourier transforms defined by (9).Then substituting values of CT ~,~,~,~ ψφ  from 
the equation (12) in the resulting equations, we obtain the expressions of displacements, stresses, temperature   distribution and 
concentration as  
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where respective values of 14131211 ,,, AAAA  are given in appendix IV  
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Case (i) Uniformly distributed force:  
 
The solution due to uniformly distributed force (Figure UDF) applied on the half-space is obtained by setting  
 

)()(=)](),([ 111211 dxHdxHxx −−+ψψ  (23) 
 
Applying Laplace and Fourier transforms defined by (9) on equation (23), 
for the case of uniform strip load of non dimensional width 2 d , applied on 
the half-space is obtained by setting 

 

Figure (UDF): Uniformly distributed force   
ξ
ξξψξψ )sin(2=)](~),(~[ 21
d

 
  (24) 

 
Case (ii) Linearly distributed force:  
 
The solution due to linearly distributed force (Figure LDF) over a strip of non dimensional width 2d, applied on the half-space is 
obtained by setting 
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in equations (13) and (14). Applying Laplace and Fourier transforms defined 
by (9) on equation (25), we obtain  

0,,))(cos2(1=)](~),(~[ 221 ≠
− ξ
ξ

ξξψξψ
d

d   (26) 

 
Figure LDF: Linearly distributed force 
 
Case (iii) Moving force:  
The solution due to an impulsive force, moving along the 1x -axis with uniform speed V  at 0=3x  is obtained by setting  

)(=),(=)()](),([ 111211 VtxtxtHxx −δψψψ       (27) 
 
in equations (13)-(14). Applying Laplace and Fourier transform's defined by equation (9) on the equation (27) yield,  
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ss
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1=),(=)]/(~),(~[ 21        (28) 

   This type of situtations occurs in many branches of engineering e.g. bridges and rail/ road tracks caused by moving vehical. 
Substitute the values of )(~),(~

21 ξψξψ  from (24), (26) and (28) in equations (17)-(22), we obtain the corresponding expressions 
for Uniformly distributed force, Linearly distributed force and Moving force respectively.  
 
5. Applications 
 
For an inclined line load 0F , per unit length(Appendix-I(b)), we have  

δδ sin=,cos= 0201 FFFF         (29) 
 
Using equation (29) in (17)-(22) and with the help of equations (24),(26) and (28), we obtain corresponding expressions for 
distributed forces and moving force respectively.  
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6. Special Case 
 
1. Neglecting diffusion effect 0)===( 2 abβ : in equations (17)-(22), we obtain the corresponding expression for generalized 
thermoelastic medium and are given in Appendix V  
2.By vanishing the thermal relaxation times, i.e 0==== 1

1
0

0 ττττ  in equations (17)-(22), we obtain corresponding 
expressions in coupled thermoelastic diffusive media.  
 
7. Inversion of the transforms 
 
   The transformed components of displacement, stress, temperature distribution and chemical potential are function of 3x , the 

parameters of Laplace and Fourier transforms s and ξ  respectively and hence are of the form ),,(~
3 sxf ξ . To obtain the solution 

of the problem in physical domain, we must invert the Laplace and Fourier transform by using the method applied by Sharma et.al  
(2009) 
 
8. Numerical result and discussion 
 
   With the view of illustrating theoretical results obtained in preceding section, we now present some numerical results. The 
material parameter chosen for this purpose are given by Sherief and Saleh (2005) 

 
,108.954=,103.86=,107.76= 3321102110 −−−−− ××× cmKgsmKgsmKg ρμλ  

.0.01=,0.02=,0.03=,0.04=,100.386= 0
0

1
1113 ssssKmWK ττττ−−×  

 ,101.2=,101.98=,101.78= 122413415 −−−−−− ××× ksmakgmK ct αα  

.100.85=,100.2=,100.9= 382152156 −−−−− ××× msKgDcmjsKgmb  
,100.293=,0.3831= 3

0
11 KTKKgJCE ×−−  

    
   The values of normal stress )( 33t , tangential stress )( 31t , temperature distribution T and mass Concentration C are presented 

graphically for G-L theory with thermoelastic diffusion and without diffusion effects in the range 100 ≤≤ x . The solid line, 
dashed line and small dashed line corresponds for thermoelastic diffusion (GLWD) and solid line, dash line and small dashed line 
with centre symbols corresponds for thermoelastic theory (GLD) due to various sources for 0=δ (Initial angle), 

45=δ (Intermediate angle), 90=δ (Extreme angle)  
 
Uniformly Distributed Source 
 
   Figure 1 depicts the variations of 33t  with distance x. It is noticed that values of 33t  for GLWD and GLD at all δ  decrease in 

range 30 ≤≤ x  except for GLD at extreme angle, which shows opposite behaviour i.e. value increases. With further increase in 
x, the values of 33t  for GLWD increase and decrease monotonically at all δ , whereas values of 33t  for GLD approaches towards 
origin.  
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Fig1: Variation of normal stress 33t   with     Fig 2: Variation of Tangential stress 31t  x with distance x 
(Uniformly distributed normal force)   distance (Uniformly distributed normal force) 
 
   The variation of 31t  with distance is shown in figure 2. It is noticed that the values of 31t  for GLWD and GLD at initial angle 

shows small variations about zero value, whereas for remaining δ  values of 31t  for GLWD and GLD shows opposite behaviour 

in the range 40 ≤≤ x , which reveals the impact of diffusion, then with increase in x, values of 31t  for GLD shows oscillatory 
behaviour while for GLWD values converges towards origin.  
   Figure 3 shows the variations of T with distance x. It is noticed that trends of T for GLWD and GLD for all angles are opposite 
in behaviour in range 30 ≤≤ x , except for GLD at 90=δ , which shows steady state about origin in entire range. As x increases, 
the values of T for GLWD follows oscillatory behaviour with decreasing magnitude for all δ , while for GLD at 0,45=δ  tends 
to approach towards origin.  
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Fig 3: Variation of Temperature distribution T   Fig 4: Variation of Concentration C with distance x 
with distance x (Uniformly distributed normal force)  (Uniformly distributed normal force) 
        
The variations of C with distance x is depicted in figure 4. It is noticed that the values of C for GLWD shows similar behaviour in 
entire range i.e. their values increase and decrease alternately.  
 
 



Sharma et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 117-129 

 

124

Linearly Distributed Source  
 
   Figure 5 shows the variations of 33t  with distance x. It is noticed that trends of variations of 33t  for GLWD and GLD are similar 

in nature at 0,45=δ  and at 90=δ  both GLWD and GLD shows opposite behaviour in range 30 ≤≤ x , with increase in x, 

values of 33t  for GLWD shows oscillatory behaviour for all δ , while for GLD values shows small variations near zero value.  
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Fig 5: Variation of normal stress t33 with distance x   Fig 6: Variation of Tangential stress 31t with distance x    
(Linearly distributed force)      (Linearly distributed normal force) 
 
   Figure 6 depicts the variations of 31t  with distance x. It is noticed that values of 31t  for GLWD and GLD increase in the range 

30 ≤≤ x  for all δ  except at 0=δ  for GLWD, which shows opposite behaviour i.e. value decreases abruptly and then follows 
an oscillatory behaviour with decreasing magnitude. 
   The variations of T with distance x is shown in figure 7. It is noticed the trends of T for GLWD and GLD are opposite in 
behaviour near the loading surface at 0,45=δ , while at 90=δ  trends of T for GLWD and GLD are similar in nature i.e. values 
decrease in range 30 ≤≤ x , magnitude being greater for GLD. As x increases, values of T for GLWD and GLD increase and 
decrease alternately for all δ , while values of T for GLD converge towards origin, which shows the impact of diffusion.  
Figure 8 show the variations of C with x. It is noticed that trends of variations of C for GLWD at all δ  are similar in nature with 
significant difference in their magnitude.  
 
Moving Force  
   Figure 9 shows the variations of 33t  with distance x. It is noticed that values of 33t  for GLWD increase abruptly in initial range 

for allδ , then follows an oscillatory behaviour with decreasing magnitude. Also for GLD at 0,45=δ  are similar in nature except 

in range 30 ≤≤ x , where it shows opposite behaviour. Also, values of 33t  for GLD at initial angle increase abruptly and then 
converges towards origin.  
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Fig 7: Variation of Temperature distribution T    Fig 8: Variation of Concentration C with distance x (Linearly with distance 
x (Linearly distributed normal force)   distributed normal force)         
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Fig 9: Variation of normal stress   with distance x  Fig 10: Variation of Tangential stress 31t   distance x  
(Moving force)       (Moving force) 
 
It is noticed from figure 10, which is plot for 31t  with x, that trends of variations of 31t  for GLWD at 45,90=δ  are opposite to 

that noticed for GLD at 0=δ  in range 40 ≤≤ x . In remaining range, value of 31t  for GLD at initial angle converges toward 

origin, while values of 31t  for GLWD at 0=δ  increase and decrease alternately with x. Also values of 31t  for GLD at 
45,90=δ  decrease in range 30 ≤≤ x  and increase in remaining range.  

Figure 11 depict the variations of T with x. It is noticed that trends of variations of T for GLWD at all δ  are similar in nature with 
significant difference in their magnitude i.e. their values increase in range 42 ≤≤ x , 86 ≤≤ x  and decreases in remaining range. 
Also opposite behaviour is noticed for GLD in initial range at 0,45=δ , with further increase in x, both shows similar pattern also, 
values of T for GLD at 0=δ  decreases abruptly in range 40 ≤≤ x  and in remaining range shows small variations. 



Sharma et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 117-129 

 

126

0 2 4 6 8 10
Distance x

-4.5

-3

-1.5

0

1.5

3

4.5

6

7.5

Te
m

pe
ra

tu
re

 d
is

tri
bu

tio
n 

T

LSWD(δ=00)

LSWD(δ=450)

LSWD(δ=900)

LSD(δ=00)

LSD(δ=450)

LSD(δ=900)

  
0 2 4 6 8 10

Distance x

-16

-12

-8

-4

0

4

8

12

16

C
on

ce
nt

ra
tio

n 
C

LSWD(δ=00)

LSWD(δ=450)

LSWD(δ=900)

 
Fig 11: Variation of Temperature distribution T with  Fig 12: Variation of Concentration C with distance x distance x 
(Moving force)     (Moving force) 
 
The variations of C with x are shown in figure 12. It is noticed that values of C for GLWD at 0,45,90=δ  increase and decrease 
alternately with significant difference in their magnitude. 

 
9. Conclusion 

 
   The article presents an in-depth, analysis of inclined load problem in the context of G-L theory and CT theory of 
thermoelasticity. It is noticed that trends of variations of stresses, temperature distribution and chemical potential on the 
application of distributed sources are similar in nature with significant difference in their magnitude. The present problem can 
provide useful contribution to the theoretical considerations of the seismic and volcanic sources, since it can can account for the 
deformation fields in the entire volume surrounding the source region.  
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Nomenclature 
 
λ , μ -Lame's constants 

tα , cα - coefficient of linear thermal and linear diffusion expansion 
T- absolute temperature 

0T - temperature of the medium in the natural state 

ijt - component of the stress tensor 

iu - component of the displacement vector 
ρ  - density 

ije - components of the strain tensor 
 P- chemical potential 
C- Concentration 

EC -Specific heat 
K- Coefficient of thermal conductivity 

10 ,ττ - Thermal relaxation times 
10,ττ -Diffusion relaxation times 
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baD ,, -constants 

ijδ - Kronecker delta.  
 
Appendix I 

 
Fig. (a) Inclined load over thermoelastic half-space 

 

 
Fig. (b) Normal and tangential loadings 
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