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Abstract 
 
   Usually an exact solution to the surface displacement in an elastic half space is available for sources parallel to the surface. 
Here we consider a buried elliptic source distributed over an inclined plane. Circular and Point sources have been considered as 
particular cases of an elliptic source. Cagniard method has been used. We present some graphical plots of the surface 
displacement for various inclination of the fault plane. 
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1.  Introduction  
 
   An earthquake is usually assumed to be generated by a buried source model in an elastic half-space. The most widely discussed 
finite source models are the circular disc or ring load models. Gakenheimer and Miklowitz (1969) used Cagniard-de-Hoop 
method to obtain the exact transient motion of the surface for both stationary or moving line and point sources. The complete 
solution to the circular source problem was proposed by Mitra (1964). Tupholme (1970) & Roy (1975) also have studied the 
pulse shape near wave arrivals particularly at the outer and inner head waves using the Cagniard-de-Hoop method. Gridin (1999) 
studied the pulses in the region where different rays coming from the edge interact with direct waves. Zeng and Liang (2002) 
used Laplace–Hankel mixed transform and transfer matrix techniques along with the Fast Hankel transform algorithm for an 
impulsive ring source within a layered elastic media. Savage (1966) recommended an elliptic fault as an earthquake model. 
Roy(1981) studied the transient response of an elastic half-space due to a normal pressure on an elliptic area. The most of the 
earlier studies are limited to finite sources on the surface or parallel to the surface. However mostly earthquake sites are along 
some inclined geological faults. To model realistic earthquake source we have considered here a buried elliptic source along an 
inclined plane which experiences a normal pressure. The Circular source can be considered as a particular case of the elliptic 
source. The exact transient response due to the source is obtained by using Cagniard De-Hoop method with some graphical 
representations.  

 
2. Formulation of the Problem 
 
   Let (x,y,z) be an orthogonal Cartesian coordinate system  with origin at the centre of the elliptic source and xy- plane parallel to 
the free surface  z=-h in an uniform elastic half-space. The z-axis is perpendicular to the free surface and directed inside the half 
space. Another coordinate system (ζ 1 , ζ 2 ,ζ 3 ) , called the source coordinate system, is introduced at the centre of the elliptic area 

such that the plane ζ 3 = 0 is the inclined plane (Fig.1). The two coordinate systems (x,y,z) and (ζ 1 , ζ 2 ,ζ 3 ) are related by    
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   where λ and δ are respectively slip and dip angles of the inclined fault plane (Fig.1).      
                     

 

Figure 1. Elliptic source with two coordinate systems. 

Let a constant normal impulsive pressure acts on an elliptic area along an inclined plane ζ 3 = 0 at a depth ‘h’ below the surface of 

an elastic half-space. Thus the stress components on the fault plane ζ 3 = 0 can be specified as  

   33ζζτ =-P )()()1( 32

2
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13ζζτ = 0 = 23ζζτ                                       
where P is a constant, H(x) and δ(t) are respectively Heaviside’s and Dirac’s delta functions & a and b are the semi-axes of the 
elliptic area. In a particular case, for a Circular source (i.e., a=b) the equation (2.2) can be expressed as  
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  13ζζτ = 0 = 23ζζτ                                       
The condition at the free surface is given by,    0=== zzzyzx τττ    on z = -h                                                                         (2.3)      

Roy (1979) has shown the method of evaluation of the displacement field due to a stress distribution on an inclined fault plane in 
an integral form. Following Roy(1979), the transformed vertical surface displacement for the stress distribution (2.2) can be 
written as,     
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2/1]/)2[( σμλα += and 2/1)/( σμβ = are the P and S wave velocities of the elastic medium with μλ, and σ  being the 
Lame’s constants and density. In a particular case for a=b, the similar expressions for a Circular source can be easily written 
from (2.4) & (2.5). In (2.4) the branch cuts are chosen such that 0)Re( >αζ and 0)Re( >βζ . It is to be noted that the vertical 
component of displacement for SH-wave is absent and it exists only for horizontal component of the displacement field 
with o0≠δ . The terms A & B depend on the particular source geometry. 

 
3. Evaluation of the Integral 
 
First P-wave is considered. To evaluate the integral using Cagniard-de-Hoop technique, the transformed vertical surface 
displacement associated with the P wave is written as 
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Where 
 

2/122 )1(,sincos ++=−= ηξζδζδηη ppip                                                                                                             (3.3) 

In (3.2) we make the change over from (x,y,z) to (ζ 1 , ζ 2 ,ζ 3 ) by means of the transformation (2.1), i.e, the station (x, y,-h) on 

the free surface is now viewed in the coordinate system (ζ 1 , ζ 2 ,ζ 3 ). Now using (3.3) and the integral representation of Bessel 
function of order one, (3.2) can be written as 
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    and the De-Hoop transformation  
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 The similar expressions for the circular source can be obtained by using a=b in the above equations. 
  Now transferring the path of integration from the real q-axis to the Cagniard path, given by  
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For the circular source (i.e., for a=b), the equations similar to (3.11) & (3.12) can be expressed as  
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The vertical component of the surface displacement associated with SV -wave can be evaluated similarly except that here one 
has to consider the branch cuts giving rise to head waves. 

 
Figure 2. Cagniard paths corresponding to P-wave (I) and SV-wave (II) respectively. The dotted portion in the curve II 

                 represents the head wave contribution.  

 
4. Complete Expression for the Surface Displacement 

   The complete expression for the vertical surface displacement (u) for the stress distribution (2.2), can now be evaluated in a 
compact form by using the substitution ψω 22
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5. Analysis 
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Figure 3(a)                                                                             Figure 3(b) 

Comparison of dimensionless vertical surface displacements at (30,40,-1) (Figure 3(a)) and (3, 4,-1) (Figure 3(b)) on the surface  
of  an elastic half-space due to a buried point pulse and a horizontal elliptic source (δ=0˚) of same magnitude. 
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Comparison of dimensionless vertical surface displacements at (30,40,-1) (Figure 4(a)) and  (3, 4,-1) (Figure  4(b)) on the 
surface of  an elastic half-space due to  a buried elliptic source at different dip angles ( δ ). 
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Figure 5(a)                                                                           Figure 5(b) 

Comparison of dimensionless vertical surface displacements at (30,40,-1) (Figure 5(a)) and (3, 4,-1) (Figure 5(b)) on the surface 
of  an elastic half-space due to a buried Pulse and a horizontal circular source (δ=0˚)of same magnitude 

6. Conclusion   

   The transformed vertical surface displacement field in (2.4) for the normal impulsive pressure on an elliptic area along an 
inclined plane agrees with that of Pekeris and Lifson (1957) in an uniform elastic half-space (Lame’s constants λ = μ) for a 
buried pulse and can be derived after dividing the equation (2.4) by πab for a=b and making limit a tends to zero for δ=0˚.The 
Bessel function appearing here to be substituted by its proper integral representation. The dimensionless vertical surface 
displacement field as presented in section 4 has an additional integral over -π to π which arises due to the finite nature of the 
elliptic source. Results of Roy (1975) for a pulse in an elastic half-space also agree with our present results in section 4. 

),( jjj qI ω+ in the final expression includes both the effects of the source distribution and the elastic medium.  The center of the 
elliptic source is situated at a depth “h” below the surface of the uniform elastic half-space. We  have computed various surface 
responses at two arbitrarily chosen representation points, called near [i.e., (3,4,-1)] & away [i.e., (30,40,-1)] points, on the 
surface due the normal impulsive pressure along an inclined fault plane for various dip angles of the fault plane. The figures 
3(a) & 3(b) show the comparison of the dimensionless vertical surface displacements due to a buried horizontal ( o0=δ ) 
elliptic source along with a pulse of same magnitude at two representation points for a/b=10. The results obtained for the pulse 
are in accordance with that of Pekeris and Lifson (1957). The initial direction of the vertical displacement at the P-wave arrival 
for the away point is same as that of point pulse ( o0=δ ). But for the near point they are opposite for the ratio of semi-axes 
a/b=10 & o0=δ . The Rayleigh wave arrivals for both the sources are marked prominently in opposite directions at the away 
point for a/b=10 (Figure 3(a)) and at the near point it is marked in positive direction for the elliptic source only (Figure 3(b)). 
The dimensionless vertical surface displacement at the Rayleigh wave arrival for the elliptic source is blunt in compared to that 
of point pulse (Figure 3(a,b)).  The S-wave arrival is only marked prominently for the point pulse at the near point for o0=δ  
and a/b=10 (Figure 3(b)). Similar type of analysis can be made for a circular source (Figure 5(a,b)). The Rayleigh wave arrival 
for a pulse is marked by an infinite discontinuity while that of circular source is blunt (Figure 5(a)) for the away point only. The 
S-wave arrivals at the near point are marked prominently in the opposite directions for both the sources (Figure 5(b)). 
   Figures 4(a) & 4(b) give us a comparison of the dimensionless vertical surface displacements at the away and near points 
(viz,(30,40,-1) & (3,4,-1)) for the buried elliptic source at different dip angles. The amplitude at the P-wave arrival gradually 
decreases with the gradual increase in inclination of the fault plane for the away point (Figure 4(a)). But for the near point it is 
in opposite direction at o89=δ  in compared to that for other values ofδ . The S-wave arrivals at o45=δ  are prominently 
marked for both away and near points but in opposite directions. The direction of the dimensionless vertical surface 
displacement at the Rayleigh wave arrival for the near point at o0=δ  & o89  are opposite with increasing amplitude. Similar 
type of analysis can be made for other points. The dimensionless surface displacements for the other realistic fault geometry 
can be obtained by the method presented here.   
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Appendix  
 
   The expressions of different terms used in section 4 are as follows 
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