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Abstract 
 
   The effectiveness of wavelet transform (WT) methods for analyzing different power quality (PQ) events with or without noise 
has been demonstrated in this paper. Multi-resolution signal decomposition based on discrete WT is used to localize and to 
classify different power quality disturbances. The energy distribution at different levels using MRA is unique for a disturbance 
and can be used as a feature for automatic classification of the power quality events. The PQ event duration and energy 
distribution of pure sine voltage wave, voltage sag, swell, transients, harmonics, impulse, notching, fluctuation and flicker are 
obtained using wavelet transform. The presence of noise degrades the detection capability of wavelet based method and 
therefore effect of noise on different signal is analyzed. The noise corrupted signal is de-noised using different wavelets and the 
effectiveness of the wavelets in denoising is demonstrated.  
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1. Introduction 

 
In the emerging power systems, power quality (PQ) issues have attained considerable attention in the last decades due to 

increased penetration of power electronics based loads and/or microprocessor based controlled loads. On one hand these devices 
introduce power quality problem and on other hand these devices mal-operate due to the induced power quality problems. A PQ 
problem can be defined as being “any power problem manifested in voltage, current and/or frequency deviations that result in 
failure or mal-operation of customer equipment”. The disturbance in voltage, frequency and/or current may lead to serious damage 
to the load equipments (Bollen, 2000). Large penetration of power electronics based controllers and devices along with 
restructuring of the electric power industry and small-scale distributed generation require more stringent demand on the quality of 
electric power supplied to the customers (Arrillaga, et al., 2000a; Arrillaga, et al., 2000b; Dugan et al., 2003). 

In early days, power quality (Martzloff et al., 1998,) issues were concerned with the power system transient arising due to 
switching and lightning surges, induction furnace and other cyclic loads. Increased interconnection, widespread use of power 
electronics devices and fast control schemes in electrical power networks have brought many technical and economic advantages, 
but these have also introduced new challenges to the power engineers (Burke et al., 1990; Domijan et al., 1993). The power quality 
problems are treated differently by the utilities, equipment manufacturers, and customers. Utilities treat PQ from the system 
reliability point of view. Equipment manufacturers, on the other hand, consider PQ as being that level of power supply allowing 
for proper operation of their equipment, whereas customers consider good PQ that ensures the continuous running of processes, 
operations and business. 

PQ disturbances/events cover a broad frequency range with significantly different magnitude variations and can be stationary or 
non-stationary. The on-line detection and identification of disturbances is essential to know the sources and causes of such 
disturbances for appropriate mitigation actions. A feasible approach to achieve this goal is to incorporate detection capabilities into 
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monitoring equipment so that the events of interest can be recognized, captured and classified automatically. Hence, good 
performance monitoring equipment must be capable of detecting, localizing and classifying PQ events for minimizing their impact 
by devising suitable corrective and preventive measures. 

Wavelet transform (WT) has emerged as a powerful signal processing tool used for power quality analysis (Pillay et al., 1996; 
Santoso et al., 1996; Robertson et al., 1996; Tunaboylu  et al., 1996; Angrisani et al., 1996). The WT has the capability to analyze 
different power quality problems simultaneously in both time and frequency domain, hence giving the time frequency 
representation of signal like the short time Fourier transform (STFT). Unlike the STFT which uses a fixed window function, the 
wavelet transform makes use of a varied time frequency window, whose length depends on the frequency analyzed using long 
windows at low frequencies and short windows at high frequencies (Rioul et al., 1991). Therefore, the WT at low frequency 
provides accurate frequency resolution and poor time location, and at high frequency, WT gives accurate time location and bad 
frequency resolution. This feature of WT makes it very effective for signals such as voltage sags and transient over-voltages. 
Wavelet based online disturbance detection for power quality applications are efficient as compared to conventional approaches in 
terms of speed and precision discrimination in the type of transient event (Karimi et al., 2000).  In addition to detection of PQ 
events, wavelet transform is also effective in power system protection (Charri et al., 1996), detection of high impedance faults 
(Michalik et al., 2006) and PQ data compression (Santoso et al., 1997).  

Noise present in the power quality signals has been the biggest hurdle in wavelet-based detection and time localization of PQ 
events. It has been observed the adverse effect of noise on wavelet and other residual based PQ monitoring and demonstrated that 
the performance of these techniques in detecting the disturbances would be greatly degraded, due to the difficulty in distinguishing 
the noise from the disturbances. Few papers (Mallat , 1989),( Hamid et al. , 2002;  Ribeiro et al., 2007) which use WT denoising 
for compression of PQ waveform are available in literature but these do not discuss the impact of these techniques on detection 
and feature extraction. 

Practically, electromagnetic noise is generated in every device that generates, consumes, or transmits power. Besides degrading 
the detection capability of wavelet and other higher time resolution based PQ monitoring systems it also hinders the recovery of 
important information from the captured waveform for time localization and classification of the disturbances. 

In this paper, the effectiveness of wavelet transform methods for analyzing different power quality events has been 
investigated. The starting time, end time and duration of power quality problem along with the energy function has been obtained. 
The effectiveness of wavelet transform methods for analyzing different power quality events with noise has also been presented in 
this paper. To see the usefulness of wavelet based denoising techniques, different wavelets are considered and analyzed on 
different power quality events such as voltage sag, voltage swell, high frequency transients and harmonics.   
 
2. Wavelet Transform and Multi-Resolution Analysis 
  

Fourier analysis consists of breaking up a signal into sine waves of various frequencies. Similarly, wavelet analysis is the 
breaking up of a signal into shifted and scaled versions of the original (or mother) wavelet. The resulting wavelets, called daughter 
wavelets, are localized both in time and frequency. Thus, wavelet transform provides a local representation of signal in both time 
and frequency unlike Fourier transform which gives a global representation of signal in terms of frequency. Continuous wavelet 
transform (CWT), wavelet series (WS) and discrete wavelet transform (DWT) are three ways by which wavelet transform can be 
implemented. 

Continuous wavelet transform of the signal x(t) using the analysis wavelet ψ(.) can be written as 
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where a is scale parameter, b is translation parameter and 1/√a is a normalization constant, ψ is the mother wavelet. 
All kernels are obtained by translating (shifting) and/or scaling the mother wavelet. The oscillatory frequency and the 
length of wavelet is decided by the scale parameter, a, and the shifting position of wavelet is determined by the 
translation parameter, b.  

Discrete wavelet transform is implemented using discrete values of the scaling parameter and the translation 
parameter. This is achieved by replacing a with ma0 and b with manb 00 where m is the translation step indicating 
frequency localization and n is scaling step indicating time localization. 
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Wavelet transform is called a dyadic-orthonormal wavelet transform when 20 =a   and 10 =b and this results in a very 
efficient algorithm, known as multi-resolution signal decomposition technique. The multi-resolution analysis (MRA) introduced 
by Mallat (Mallat, 1989) decomposes a signal into scale with different time and frequency resolution. In MRA, a signal f(t)  can be 
completely decomposed into its detailed version (high frequency components) and smoothed/ approximated versions. The wavelet 
function serving as high pass filter with filter coefficients g(n), generates the detailed version of the distorted signal, while the 
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scaling function associated with low pass filter with filter coefficient h(n), generates the approximated version of the distorted 
signal. Thus, by using MRA high frequency transients can be easily analyzed in presence of low frequency components such as 
non-stationary and non-periodic wide-band signals. MRA can be implemented by a set of successive filter banks as shown in 
Figure 1. 
         
 
 
 
 
 
 
 

 
Figure1. Decomposition of f(n) into two scales 

 
The h(n) and g(n) are the low pass and high pass filters. If f(n) is the discrete time signal, from MRA,  the decomposed signal at 

scale-1 are c1(n) and d1(n), where c1(n) is the smoothed version of the original signal, and d1(n) is the detailed version of the 
original signal down-sampled by a factor 2. Since both the high pass filter and low pass filters are half band, this decomposition 
halves the time resolution since now only half the number of sample characterize the entire signal. However, this operation 
doubles the frequency resolution since the frequency band of signal now spans only half the previous frequency band, effectively 
reducing the uncertainty in the frequency by half. The next higher scale decomposition is now based on the signal c1(n) , which 
decomposes it further into c2(n) and d2(n). At each scale, the filtering and sub sampling result in half the number of samples and 
thus half the time resolution and double the frequency resolution. 

The choice of mother wavelet plays a significant role in detecting and localizing various types of disturbances. Daubechies’ 
wavelets with 4, 6, 8, and 10 filter coefficients work well in most of the disturbance detection cases. At the lowest scale (scale 1), 
the mother wavelet is the most localized in time and oscillates most rapidly within a very short period of time. As the wavelet goes 
to higher scales, the analyzing wavelets become less localized in time and it oscillates less due to the dilation nature of the wavelet 
transform analysis. As a result of higher scale signal decomposition, the fast and short power quality disturbances will be detected 
at lower scales, whereas slow and long power quality disturbances will be detected at higher scales. Hence, both fast and slow 
power quality disturbances can be detected. Since Daub4 has the least number of filter coefficients and it gives the shortest 
support, Daub4 has been used in the work. 
 
3. Wavelet Based Feature Extraction 

 
DWT decomposes the input signal into a group of different frequency levels, each corresponding to a particular frequency 

band. Therefore, the wavelet technique discriminates disturbances from the original signal, and then analyses them separately. The 
discontinuities in the signal due to disturbances in the form of sharp edges, transitions and jumps are reflected in the higher 
frequency bands. Thus, any change in the smoothness of signal can be detected and localized at the finer resolution level. The 
wavelets coefficients of the finer resolution level will have high magnitude at the start and the end point of disturbance, when 
DWT is used to analyze a distorted signal through l level decomposition of MRA.  Therefore the start ts and the end time te can 
easily be obtained from the variation in wavelets coefficients and the time duration tt of the disturbance can hence be calculated as 

set ttt −=                                             (3) 
Next important task after the detection and localization of the PQ event is the extraction of features which can be used for their 

classification. The squared wavelet coefficients at different resolution levels, the standard deviation and/or mean value and the 
maximum modulus of the wavelet coefficients at different resolution level have been used. The energy of a distorted signal can be 
partitioned at different resolution levels in different ways depending on the power quality problems. The energy distribution of a 
distorted signal can be used as a discriminatory feature for classification. The energy of a distorted signal at a resolution level j is 
given by 
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4. Simulation and Analysis 
 
4.1Data Generation 
 

The simulation data is generated in MATLAB based on the model in paper (Rodney et al., 2010). One pure sine-wave signal 
(frequency = 50 Hz, amplitude 1p.u) and nine PQ disturbance signals are generated. The disturbance signal includes voltage sag, 
voltage swell, harmonics, low frequency transient, high frequency transient, impulse, voltage fluctuation, notching and flicker. 
Table 1 gives the signal generation models and their controlled parameters. A four-level decomposition of the distorted signal is 
carried out using db4.The detailed energy distribution up to 10-level decomposition, of each signal is also obtained. 

Figures 2(a)-2(c) show the first three detailed versions of a three-level decomposition and detailed energy distribution of a pure 
sine wave. Any changes in the pattern of signal can be detected and localized at the finer resolution levels. As far as detection and 
localization is concerned, the wavelet coefficients of the first finer decomposition level of f(t) are normally adequate to detect and 
localize any disturbance in the signal. As seen in Figure 2(b), for a pure signal, the set of coefficients at the finer first three-
resolution level is zero. Since the signal is smooth the duration of disturbance could not be detected. Any changes in the signal can 
be detected and localized in time due to changes in the magnitude of these coefficients. 

 
Table 1 Signal models and their parameters 

PQ 
disturbance 

Model Parameters 

Sine -wave )sin()( tAtx ω=  A=1.0 

Sag 0,1)(,)));()((1()( 2121 ≥=<−−−−= ttuttttuttuAtx α  9.01.0 ≤≤α , TttT 812 ≤−≤  

Swell 0,1)(,)));()((1()( 2121 ≥=<−−−+= ttuttttuttuAtx α  8.01.0 ≤≤α , TttT 812 ≤−≤  

Harmonics )]5sin()3sin([sin)( 53 tttAtx ωαωαω ++=  1.005.0,2.01.0 53 ≤≤≤≤ αα  

Flicker  )sin()]sin(1[)( ttAtx ωγωβ+=  2.01.0,2.01.0 ≤≤≤≤ γβ  

Transient 
(a)  

High 
Frequency 
 

(b) Low 
Frequency 

transeintfrequency  lowfor ;205
transeintfrequency high for ;8020

 where);sin()sin()(

≤≤
≤≤

=+= −

b
b

tktbaettx k

λ
ωω

 
2.01.0

otherwise0
periodtransientfor9.01.0

≤≤
=

≤≤

λ
a

a
 

Fluctuation )sin())sin(1()( ttbatx ωω+=  6.04.0,2.01.0 ≤≤≤≤ ba  

Notch )180sgn[sin(     where)()sin()( +=+= tppvnttx nd ωω   

Impulsive 
transient 

)].([)sin()( 1
1

teauttx ρω −+=   

 

     
         (a) Pure sine wave                             (b) Three-level decomposition of (a)            (c) Detailed energy distribution of (a) 
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        (d) Voltage sag condition                       (e) Four-level decomposition of (d)                    (f) Detail energy distribution of (d) 
 

Figure 2. MRA decomposition and detailed energy distribution of a pure sine wave and voltage sag 
 

Figures 2(d)-2(e) show the detailed version of four-level decomposition and the detailed energy distribution (P1D – P10D) of a 
voltage sag signal which is detected and localized at first three finer resolution levels. This is because at the lower scales, the 
analyzing wavelet is more localized, therefore wavelet transform picks up the severe disturbance. The starting time of the sag ts 
=0.01625 and the ending time te = 0.0375 and hence the duration of sag phenomenon can be detected and localized in the first 
three detail levels 

Table 2 Time information results of disturbances 
Type of Disturbance Start (sec) Duration 

(sec) 
Sag .01625 .02125 

Swell .01625 .02125 
High Frequency transient .00625 .0050 

Low Frequency 
Transient 

.0175 .0175 

 
The detailed version at the first three decomposition levels of a voltage swell shown in Figures 3(a)-(b) indicates that the swell 

can also be well detected and localized at the finer resolution levels. Figures 3(e)-3(f) show the detailed version of four-level 
decomposition and the detailed energy distribution (P1

D – P10
D) of a low frequency transient. The duration of all the four 

disturbances (high frequency transient, low frequency transient, sag and swell) is determined using first level of detail and given in 
Table 2. These disturbances always found to have a pattern in first level information. Even though high frequency transient exists 
for very short duration its starting and ending time were correctly detected. 

      
 (a) Voltage swell case                              (b) Four-level decomposition of (a)                (c) Detailed energy distribution of (a) 
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(d) Low frequency transient case              (e) Four-level decomposition of (d)       (f) Detailed energy distribution of (d) 

 
Figure 3. MRA decomposition and detailed energy distribution of a voltage swell and a low frequency transient 

 
 Figures 4(a)-4(f) show the original signal, four-level decomposition and detailed energy distribution of high frequency 
transient and an impulse case. In Figure 4(e), the WTC shows the occurrence of sharp event of wavelet disturbance ie due to 
impulse. This is because at scale 1, the analyzing wavelet is most localized and therefore the wavelet transform picks up the 
disturbance that have the most severe or most rapid transitions. 
  

     
 (a) High frequency transient case            (b) Four-level decomposition of (a)             (c) Detailed energy distribution of (a) 

      
(d) Voltage impulse case                      (e) Four-level decomposition of (d)                (f) Detailed energy distribution of (d) 
 

Figure 4. MRA decomposition and detailed energy distribution of a high transient and impulse signal 
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 (a) Voltage notch case                                 (b) Four-level decomposition of (a)       (c) Detailed energy distribution of (a) 

     
(d) Voltage harmonic case                   (e) Four-level decomposition of (d)                (f) Detailed energy distribution of (d) 
 

Figure 5. MRA decomposition and detailed energy distribution of a voltage notch and harmonics 
 

The signal, presented in Figure 5 (a), shows the occurrence of disturbance almost periodically. The detection result at scale 1 
also shows (Figure 5(b)) that the disturbance indeed occurs almost periodically. The disturbance occurs as periodic impulses at 
scale one and the number of notches per cycle can be counted by counting the peaks ie high magnitude of WTC at scale 1. Figures 
5(d)-5(f) shows the voltage signal having harmonics, MRA decomposition and detailed energy distribution, respectively. 

Figure 6 shows MRA decomposition and detailed energy distribution voltage fluctuation. Voltage fluctuation, harmonics and 
notches are stationary disturbances, therefore no localization property can be detected at any of the finer levels. The harmonics are 
steady and fluctuation is considered to be intermittent so there duration is not calculated. Each disturbance has a unique detailed 
energy distribution. Figure 7 shows a voltage flicker and MRA decomposition along with energy distribution.  
 

     
   (a) Voltage fluctuation case           (b) Four-level decomposition of (a)                                            (c) Detailed energy distribution 

 
Figure 6. MRA decomposition and detailed energy distribution of voltage fluctuation 
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Figure 7. Flicker and its detailed energy distribution 

 
Table 3  Energy features of distorted signals 

 
 
Signal Type 

 Energy features of distorted signal 

P1
D P2

D P3
D P4

D P5
D P6

D P7
D P8

D P9
D P10

D 
Pure Sine Wave 0.0003

5 0.00144 .00483 0.00765 0.0195 0.0992 0.444 0.667 0.0833 0.0245 

Harmonics 0.0009 0.00379 .0127 .0359 .0452 0.122 0.444 0.688 0.105 .0364 
High Frequency 
Transients .0336 .0576 .00543 .008 .0194 .0995 0.444 0.667 .0879 .0244 

Low Frequency 
Transient .00269 .00456 .0125 .0411 .073 .0996 0.443 0.667 .0878 .0247 

Sag .00445 .00703. .0152 .0107 .0374 0.1 0.37 0.553 0.119 .0202 
Swell .00396 .00626 .0137 .0103 .0397 0.115 0.5 0.719 .0764 .0387 
Impulsive  Transient 0.215 0.174 0.0582 0.12 .06 0.102 0.433 0.685 .0834 .025 
Notching 0.0593 0.0896 0.105 0.0835 0.0724 0.116 0.426 0.608 0.0817 0.02190 
Flicker 0.0000

1 
0.0004 0.0013 0.0023 0.017 0.106 0.488 0.601 0.119 0.0289 

Voltage Fluctuation 0.0004 0.0015 0.00491 0.00831 0.0213 0.103 0.451 0.669 0.127 0.0248 
 

From Figures 2-7, and Table 3 the important features of energy distribution can be categorized as follows: 
• P7

D, P8
D show a great variation when sag or swell occurs. 

• P5
D, P6

D will show obvious variation when the voltage suffers from harmonic distortion. 
• Impulse and notching energy can be seen to be distributed at several high frequency bands and  
• High frequency transient can be detected in by the high value of P2

D. 
The decomposition levels 9 and 10 represent the signal strength in 25-12.5Hz and 12.5-6.25Hz frequency bands respectively, at the 
chosen sampling rate of 12.8 kHz. The signal strength in these scales can be used to detect voltage flicker as the frequency 
associated with flicker are less than 25 Hz (IEEE Std-1159). In Figure 7, P9

D shows obvious variation when the voltage suffers a 
transient disturbance of the low frequency elements such as flicker. 

Thus, when a distorted signal contains high frequency elements, the low level energy distribution will show obvious variation 
and when the distorted signal contains low frequency elements the high level energy distribution will show obvious variation. 
 
4.2 Effect of Noise and Denoising 
 

In practice, signals captured by monitoring devices are often accompanied with noise thereby affecting the extraction of 
important features from the signal. Noise has an adverse effect on the performances of wavelet based event detection, time 
localization and classification schemes due to the difficulty of separating noise and the disturbances. The disturbance component 
of the waveform carries the most important information for detection and classification of the disturbances. When a PQ data is 
decomposed using wavelet transform, most of the disturbance components are reflected at higher frequency bands which are also 
occupied by noise. Therefore, even if the magnitude of noise present is not very high compared to fundamental component, for 
many PQ disturbances, it is comparable to disturbance energy at these bands. Hence, presence of noise degrades the detection 
capability of wavelet based PQ monitoring system. Figure 8 shows the structure of PQ monitoring system integrated with proposed 
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denoising scheme. For denoising the noise corrupted signal, wavelet decomposition is performed at level 10 using various mother 
wavelets and a de-noised version of input signal (one- or two-dimensional) is obtained by wavelet coefficient using global positive 
threshold. 
 

                                                   
 

Figure 8. PQ denoising scheme 
 

Figure 9 shows a pure sine wave contaminated with 30 db Gaussian noise and its detailed energy distribution. As compared to 
pure sine wave, it can be seen that the noise has affected the energy distribution of sine wave with high values of energy in higher 
frequency bands. Five signals sine wave, sag, swell, high frequency transients and harmonic, mixed with 30 db noise are simulated 
individually. Five different wavelets namely db4, db6, db10, sym4 and coif4 have been used to denoise the corrupted signal. The 
energy distribution of the denoised signal obtained is compared with the original noisy signal using wavelet db4. It is found from 
the Figure 9 that addition of noise increases the values at lower level of energy distribution in the case of sine wave. But after the 
denoising with wavelets, this lower level energy distribution is removed but the other level values are also changed and in most of 
the cases, it is reduced. 

Figure 10 shows the detailed energy distributions (10-level) of noisy sine wave after denoising by different wavelets. From 
Figure 10, it can be seen that the changes in energy levels in the 7th an 8th levels are not significant but at 6th, 9th and 10th the 
percentage changes are significant.  The energy distribution for all 10 levels for five signals with and without noise and denoised 
signals are given in Table 4. Figure 11 shows a voltage sag case with 30 db Gaussian noise and its detailed energy distribution 
calculated using (4). It can be seen that the effect of noise introduces the energy distribution at lower levels. Energy distributions 
after denoising using the different five wavelets are shows in Figure 12. It can be observed that after denoising the lower level 
energy distributions are eliminated. However, the energy at other levels is also reduced. Comparing the different denoising 
wavelets, it can be seen that db6 gives better results compared to the other wavelets. 

   
Figure 9. Sine wave with noise and its detailed energy distribution 

 

Sampled PQ Waveform Data Signal 

J Level DWT

   (d1, d2 ,…., dJ , cJ) 
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Figure 10.  Detailed energy distribution Denoised sine wave with denoising wavelet db4, db6, db10, sym4, coif4 

 

  
Figure 11. Sag wave with noise and its detailed energy distribution 

 

 
Figure 12:  Detailed energy distribution Denoised sag wave with denoising wavelet db4, db6, db10, sym4, coif4 

 
Voltage swell with noise and its detailed energy distribution is shown in Figure 13. In this case also, the effect of noise 

introduces the energy distribution at lower levels. Energy distributions after denoising using the different five wavelets are shows 
in Figure 14. It can be observed that after denoising the lower level energy distributions are eliminated. However, the energy at 
other levels is also reduced. Comparing the different denoising wavelets, it can be seen that db6 gives better results compared to 
the other wavelets. 

Figure 15 shows a voltage harmonics case with 30 db Gaussian noise and its detailed energy distribution calculated using (4). It 
can be seen that the effect of noise introduces the energy distribution at lower levels. Energy distributions after denoising using the 
different five wavelets are shows in Figure 16. It can be observed that after denoising, the lower level energy distributions are 
eliminated. However, the energy at other levels is also reduced. 

Figure 17 shows a high frequency transient case with 30 db Gaussian nose and its detailed energy distribution. It can be seen 
that the effect of noise increases the energy distribution at lower levels. It should be noted that the effect of high frequency 
transient can be seen at low level energy distribution even without noise. Energy distributions after denoising using the different 
five wavelets are shows in Figure18. 
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Figure 13. Swell with noise and its detailed energy distribution 

 

 
Figure14. Detailed energy distribution Denoised swell with denoising wavelet db4, db6, db10, sym4, coif4 

 

   
Figure15. Harmonics with noise and its detailed energy distribution 

 
Figure16. Detailed energy distribution Denoised harmonics with denoising wavelet db4, db6, db10, sym4, coif4 
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Figure17. High Frquency Transient  with noise and its detailed energy distribution 

 

 
Figure18. Detailed energy distribution denoised harmonics with denoising wavelet  db4, db6, db10, sym4, coif4 

 
From Figures 9-18, it is evident that the energy of high frequency bands increases with the introduction of noise in the signal. 

Therefore, a signal corrupted with noise can be classified as a high frequency transient. In denoising technique the high frequency 
characteristics of harmonics and high frequency transient are suppressed to some extent. The denoised signal obtained using db6 is 
more close to the original signal in energy distribution in most of the cases as compared to other wavelets used for denoising. It 
can also be observed that after denoising the lower level energy distributions are eliminated. However, the energy at other levels is 
also reduced. 

 
Table 4. Energy distribution of pure signal with noise and without noise 

Signals Energy at different scales 
P1

D P2
D P3

D P4
D P5

D P6
D P7

D P8
D P9

D P10
D 

Sine without noise 0.00035 0.00144 0.00483 0.00765 0.0195 0.0992 0.444 0.667 0.0833 0.0245 
Sine with noise 30 0.02200 0.01630 0.01240 0.01160 0.0196 0.1010 0.444 0.666 0.0899 0.0240 
Denoised using Db4 0.00019 0.00051 0.00151 0.00318 0.0129 0.0898 0.425 0.647 0.0928 0.0415 
Denoised using Db6 0.00020 0.00070 0.00265 0.00450 0.0188 0.1030 0.430 0.646 0.0912 0.0035 
Denoised using Db10 0.00020 0.00080 0.00343 0.00492 0.0150 0.1010 0.429 0.646 0.0997 0.3730 
Denoised using Sym4 0.00030 0.00070 0.00246 0.00782 0.0182 0.0993 0.434 0.644 0.0864 0.0264 
Denoised using Coif4 0.00001 0.00048 0.00310 0.00526 0.0157 0.0948 0.435 0.643 0.0891 0.0320 
Sag without noise 0.00445 0.00703 0.01520 0.01070 0.03740 0.1000 0.370 0.553 0.1190 0.0202 
Sag noise 30db 0.02330 0.01800 0.01960 0.01400 0.0369 0.0983 0.355 0.555 0.1140 0.0204 
Denoised using Db4 0.00020 0.00107 0.00819 0.00533 0.0304 0.0925 0.355 0.535 0.1160 0.0321 
Denoised using Db6 0.00117 0.00322 0.00758 0.00959 0.0293 0.1040 0.359 0.534 0.1180 0.0258 
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Denoised using Db10 0.00088 0.00196 0.00485 0.00696 0.0255 0.0975 0.356 0.529 0.1290 0.0398 
Denoised using Sym4 0.00093 0.00177 0.00981 0.00980 0.0292 0.0986 0.359 0.527 0.1180 0.0346 
Pure Swell 0.00396 0.00626 0.01370 0.01030 0.0397 0.1150 0.500 0.719 0.0764 0.0387 
Swell noise 30db 0.02210 0.01650 0.01850 0.01360 0.0313 0.1130 0.498 0.719 0.0779 0.0375 
Denoised using Db4 0.00020 0.00105 0.00562 0.00385 0.021 0.1030 0.484 0.703 0.0830 0.0434 
Denoised using Db6 0.00216 0.00218 0.00499 0.00797 0.0234 0.1170 0.488 0.701 0.0778 0.0426 
Denoised using Db10 0.00028

5 
0.00114 0.00471 0.00591 0.0197 0.1110 0.483 0.698 0.0950 0.0453 

Denoised using Sym4 0.00182 0.00172 0.00826 0.00934 0.0257 0.1130 0.489 0.697 0.0820 0.0308 
Denoised using Coif4 0.00026 0.00072 0.00573 0.00828 0.0208 0.1080 0.489 0.696 0.0861 0.0371 
Harmonics 0.00090 0.00379 0.01270 0.03590 0.0452 0.1220 0.444 0.688 0.1050 0.0364 
Harmonics with noise 0.02300 0.01600 0.01690 0.03620 0.0464 0.1210 0.444 0.688 0.1040 0.0405 
Denoised using Db4 0.00026 0.00190 0.00736 0.02060 0.0300 0.1080 0.427 0.673 0.1070 0.0668 
Denoised using Db6 0.00060 0.00220 0.00720 0.02840 0.0314 0.1040 0.431 0.665 0.1100 0.0585 
Denoised using Db10 0.00030 0.00140 0.00780 0.02330 0.0352 0.1040 0.426 0.667 0.1120 0.0725 
Denoised using Sym4 0.00070 0.00127 0.01070 0.03440 0.0359 0.0990 0.431 0.662 0.1120

0 
0.0518 

Denoised using Coif4 0.00041 0.00165 0.00906 0.02600 0.0354 0.1090 0.429 0.666 0.1120 0.0577 
High Frequency 
Transients 0.03360 0.05760 0.00543 0.00800 0.0194 0.0995 0.444 0.667 0.0879 0.0244 

HFTR noise 30db .054600 0.06540 0.02040 0.01620 0.0223 0.1030 0.443 0.666 0.0928 0.0236 
Denoised using Db4 0.00974 0.02970 0.00140 0.00491 0.0101 0.0761 0.418 0.64 0.0811 0.0481 
Denoised using Db6 0.01780 0.01840 0.00461 0.00464 0.0185 0.1100 0.422 0.63 0.0882 0.0395 
Denoised using Db10 0.01330 0.02500 0.00252 0.00301 0.0137 0.0978 0.418 0.633 0.0977 0.0571 
Denoised using Sym4 0.01100 0.01750 0.00273 0.00847 0.0209 0.1030 0.425 0.627 0.0691 0.0235 
Denoised using Coif4 0.01510 0.01960 0.00171 0.00478 0.0145 0.0875 0.426 0.629 0.0798 0.0375 

 
 
5. Conclusion 
 

The paper demonstrates the wavelet transform based MRA as an effective tool for the assessment and analysis of PQ events. 
The advantage of using wavelet and multiresolution analysis to extract features is to get very precise time information about the 
event. The starting and duration of sag, swell, transients can be determined using first level detail. The procedure in effect offers a 
good time resolution at high frequencies, and good frequency resolution at low frequencies. The energy distribution of level 10 
using multi-resolution technique has been used to access the performance of the wavelets The approach is very suitable especially 
when the signal has high frequency component for short duration and low frequency components for long duration. Since most of 
the signals encountered in PQ assessment are of this type Wavelet transform method to analyze PQ disturbances proves to be much 
better than the other advanced digital processing techniques. The features extracted using wavelet transform can be applied as an 
input to a classifier for automatic classification of different PQ events. The effect of noise degrades the identification and detection 
capability of wavelet based power quality (PQ) method. In this paper, the five different wavelets are used to denoise the PQ 
signals. The presence of noise increases the energy distribution at lower levels. It is found that db6 provides better denoising 
results compared to the other wavelets such db4, db10, sym4 and coif4.  However, these wavelets also give considerable accurate 
results. 
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