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Abstract 
 
   In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum 
structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is 
considered as a finite element. The stress analysis is performed by the Constant Strain Triangles (CST) finite elements method. 
The thicknesses of the individual cells are taken as the design variables, while the weight of the structure and the ratio of the 
Von Mises equivalent stress to the yield stress in each cell are considered as the two objective functions to minimize. Using the 
weighted sum method, the multi-objective optimization problem (MOOP) is converted to the single-objective optimization 
problem (SOOP) and then the optimization problem is solved by the developed method. The paper reports the results of several 
design experiments, comparing with the existing reported results. 
 
Keywords: Continuum Structures, Cellular Automaton, Topology Optimization, Finite Element. 
 
1. Introduction 
 
   In this competitive world, lack of the resources and the need for efficient structures create challenges for engineers to find cost-
effective and efficient solutions and designs. Skill, intuition, and experience of the designers can directly affect the designs. The 
design of complex and huge structures requires data processing and a large number of calculations. Computer-aided design 
optimization (CADO), however, has been developed during the last decades. The engineering design and optimization processes 
benefit vastly from the revolution of calculation using computers. The optimization methods, in the literature, are classified into 
two different categories; optimality criteria (indirect) methods and search (direct) methods. 

 Optimality criteria are conditions that must be satisfied by a function at its minimum point. Many mathematical (or 
deterministic) methods and stochastic (or probabilistic) methods are introduced, developed and applied for the optimization of 
structures, in the literature. 

Cellular automaton (CA) was introduced by von Neumann (1966) and Ulam (1952), and it has been considered as a discrete 
simulation scheme in the last five decades. In general, in this method, cells are considered as similar squares or other shapes, and 
values of each cell in a special time-step are updated using local rules, regarding the status of the cell and its neighbor cells in the 
previous time-step. Kita and Toyoda (2000) presented a scheme for optimization of structures by using the concept of a CA, 
dividing the design domain into small square cells. Kita and Toyoda applied the proposed scheme to a two-dimensional elastic 
problem to confirm its validity. Since these rules are to introduce existing relationships between adjacent and neighboring cells, it 
is not necessary to know the general rules governing the issue. Thus, CA is an appropriate method for problems where the accurate 
information of the general relations is not available. 

CA has been used for simulating a variety of problems such as fluid flow and transportation traffic; however, the main idea of 
applying this method in structural shape optimization for the first time was proposed by Inou et al (1994). The basic idea as 
described by Inou et al. (1994, 1998) is to divide the design domain into small cells and then to obtain von Mises equivalent stress 
distribution in the cells using the finite element method. Then the amount of stress in each cell is updated using the values of stress 
in neighboring cells and applying local rules. In this method, Young’s modulus is considered as a design variable and it is 
modified in every stage such that the stress of each cell becomes equal to the amount of stress of the cell obtained in the stage. 
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Thus by eliminating cells with relatively small Young's modulus, the goal of shape and geometry optimization of structures are 
simultaneously implemented. 

The local rule applied in these studies is nonlinear relationship between the cell stresses, and the Young modulus has to be 
considered. The numerical experience shows that there is no reliable connection between this method and mathematical 
optimization problem. Since the stresses in each cell are updated individually during the optimization process, it is not possible to 
apply suitable stress constraints. 

On the other hand Xie et al. (1993, 1994, and 1997) introduced an evolutionary structural optimization (ESO). In this scheme, 
the first base value is determined. After analysis using the finite element method, cells with smaller stress than the base amount are 
removed. In their recent studies, the ESO method of evolutionary structural optimization has been generalized. In this scheme two 
base values are introduced. Thus, while some cells using the first criterion are removed, another group of cells with regard to other 
criteria are added. However, the physical concepts of these base quantities are not specified and therefore they should be 
determined by previous numerical results or previous research experiments. To overcome the above problems, the following 
algorithm is presented and used. First, the design domain area is divided into small triangle cells and thickness of each cell is 
considered as a design variable, as illustrated in figure 1. 

In the next step, the whole problem of structural optimization is converted to the optimization of each cell using CA constraint 
condition. Formulation of this method does not involve entering new parameters whose physical nature is not clear, which is 
considered an advantage of using this method. 

In this paper, a new algorithm is presented and generalized to continuum structures. Two type of design experiments are tested 
using the proposed algorithm, including deep and simple beams. The remaining sections of this paper are organized as follows. 
Section 2 includes the review of CA. The developed finite element routine is described in Section 3. Section 4 describes the 
problem formulation for optimum design. In Section 5, the execution process and the proposed algorithm are given. Section 6 
contains several design examples which are classified into two types of beams, deep and simple, and Section 7 concludes the 
article. 

 
 
 
 
 
 
 
 
 

Figure 1. Design domain 
 
2.  Cellular Automata 
 

CA is a mathematical model for systems in which many simple components for complex patterns can work together. CA is 
made up of a regular network, where each cell can take different amounts. The cells of CA at each step of implementation are 
updated simultaneously using a local rule in which the value of each cell is determined based on the values of neighboring cells. 
CA could be divided into various categories. For example, based on the dimension of network criteria, CA will be divided into 
one-dimensional, two-dimensional, or multi-dimensional. CA based on the amount of each cell is divided into two-value CA and 
multi-value. 

CA based on the network neighbors can be divided into two categories, as CA with periodic boundary and non-periodic 
boundary. The most famous neighbors in the two-dimensional CA model are known as the Moore neighborhood and Von 
Neumann, as shown in figure 2(a, b). In this paper, a new neighborhood is developed based on triangular shape. The design 
domain is divided into triangles with three-node cells. A variety of neighborhoods can be considered for cells. However, here, only 
the cells that are in common ridge are selected as neighbors, as illustrated in figure 2(c). 
 
 
 
 
 

 
     (a)                             (b)                             (c) 

 
Figure 2. The popular neighbors in CA. (a) Moore, (b) von Neumann, (c) Triangular 
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All of these cells are considered as independent components through the finite element analysis and stress distribution in each 
cell is determined. Usually, in the simulation process using CA, value of cells is considered as limited and a finite amount. 
However, in this paper, these values are considered as continuous quantities. The values of each cell in each step are determined 
based on the status of the cell and its neighbor cells in the previous step, using the appropriate local rule. Figure 2(c) shows the 
neighbor cells of the triangular elements. For the boundary cells or the cells located in the sides, only the adjacent cells are 
considered as neighboring cells. 

CA is definitely a new comer to the field of structural analysis and design. Nevertheless, a number of methods that appear in 
the structural optimization literature have a basic structure reminiscent of CA algorithms. These methods, especially in the area of 
topology design, are reviewed in the introduction to the paper by Kita and Toyoda (2000). The work of Kita and Toyoda is the 
starting point of this review. 

The objective of the topology design considered in is to find the optimal thickness distribution of a two-dimensional 
continuum (plate) under in-plane loads. The basic methodology presented by Kita and Toyoda consists of; 1: finite number of 
elements are identified as CA cells, 2: the cell neighborhood is identified as the elements sharing a common edge with the cell, for 
the rectangular FEM mesh used, this is a Moore-neighborhood, and 3: an update rule is devised, based on stresses in the 
neighborhood, to update the cell thickness. 

This work contained some far-reaching features. They formulated the CA design rule, for the first time, as a local optimization 
problem at the cell (element) level. They based the local update rule on the value of stress resultants in the neighborhood. 
Moreover, they provided an approximate sensitivity analysis as the basis for selecting the cell (element) level objective function. 
The main drawback of their method is that they depend on the Evolutionary Structural Optimization (ESO) method developed by 
Xie and Steven (1997). In the ESO, the Von Mises stress is used as a measure to eliminate elements in the domain that are not 
contributing to the load carrying capacity of the structure. This method is essentially heuristic and was criticized for its lack of 
mathematical foundations and premature convergence to suboptimal designs in a number of publications. Another disadvantage of 
this CA algorithm is the large number of iterations (in excess of a thousand) required to reach a converged topology. 

 
3. Finite Element Method 
 

Two-dimensional stress and deformation analysis problems form an important class in engineering design. These problems are 
of plain stress or plain strain type. We develop the finite element formulation for these problems using three-node triangular 
elements. A three-node triangle in which the displacement is represented as a linear function of the coordinates is called a Constant 
Strain Triangle (CST). An element of this type is referred to as a CST element. The strain and therefore the stress in these elements 
are constant. Once the element stiffness is developed, the procedure for global stiffness, boundary condition consideration, and the 
solution process follow the steps introduced by Chandrupatla (2004). The simplicity of the CST element helps us in the 
development of steps involved in the two-dimensional finite element formulation. 

The problem studied for the purpose of this paper is a special case of plain strain. Plain stress problems, including problems 
that can be three dimensional mode and simpler two-dimensional forms are considered (Bathe 1982). Moreover, domain 
discretization using three-node triangular elements has been conducted and this is done to investigate studies on the effect of 
domain discretization on the response of the problems. A new program (subroutine) is developed for the state of the mentioned 
three-node to perform finite element analysis. Plain eight-node routine which is written in FORTRAN and published by 
Zienkiewicz et al. (2005) is reformed to prepare that subroutine for three-node constant strain triangles. 
 
4. Optimization Problem Formulation 
 
4.1 Single-Objective Optimization Problem 

Results reported by Arora (2004), show that the selection of design variables greatly influences the problem formulation. Once 
the problem is properly formulated, methods, schemes or algorithms could be applied to solve it. Arora proposed a five step 
procedure to formulate design optimization problems which is applicable for most optimization problems; project/problem 
statement, data and information collection, identification or definition of design variables, identification of objective function(s) 
and identification of constraints. 

All optimization problems have at least one optimization criterion that could be used to compare different designs and 
determine an optimum solution. Most engineering design problems must also satisfy certain equality or inequality (or both) 
constraints. A standard form of the design optimization model for a Single-Objective Optimization Problem (SOOP) which 
complies with the literature is as follows: 

 
Find an n-vector )...,,,( 21 nxxxx =  of design variables to minimize (maximize) a cost (profit) function 
 

)...,,,()( 21 nxxxfxf =       (1) 
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subject to p equality constraints 
 

ptojxxxhxh njj 1;0)...,,,()( 21 ===     (2) 
 
and l inequality constraints 
 

ltoixxxgxg nii 1;0)...,,,()( 21 =≤=      (3) 
 
and also q upper and lower limits on the design variables 
 

qtokxxx U
kk

L
k 1;)()( =≤≤        (4) 

 
 

4.2 Multi-Objective Optimization Problem 
A Multi-Objective Optimization Problem (MOOP) has a number of objective functions which are to be minimized or 

maximized. As in the SOOP, here too the problem usually has a number of constraints which any feasible solution (including the 
optimum solution) must satisfy. MOOP in its standard form as mentioned in the literature by Arora (2004) or Deb (2002) is stated 
as follows: 

 
Find an (or set of) n-vector )...,,,( 21 nxxxx =  of design variables to minimize (maximize) cost (profit) functions 
 

Mtomxxxf
xxxfxxxfxF

nm

nn

1));...,,,(...,
),...,,,(),...,,,(()(

21

212211

=
=

     (5) 

 
subject to the p equality constraints 
 

ptojxxxhxh njj 1;0)...,,,()( 21 ===      (6) 
 
and the l inequality constraints 
 

ltoixxxgxg nii 1;0)...,,,()( 21 =≤=                      (7) 
 
and also q upper and lower limits on the design variables 
 

qtokxxx U
kk

L
k 1;)()( =≤≤                                    (8) 

 
A solution x that does not satisfy all of the constraints and bounds is called an infeasible solution. Vice-versa, if any solution 

satisfies all constraints and variable bounds, it is known as a feasible solution. 
 
4.3 Design Variables, Constraints and Objective Functions 

The thicknesses of cells are considered as the design (decision) variables. So, design variables could be wrote as a vector as 
follows: 

 
)...,,,()( 21 nxxxfxf =                                         (9) 

 
where ix  = thickness of the updated cell i and n  = the number of cells. 

Additionally, to formulate the optimization problem for each element individually, as Kita and Toyoda introduced, a special 
constraint condition, called CA-constraint condition, is considered. This CA-constraint condition is defined so as to minimize the 
variation of the equivalent stress of the neighboring cells with respect to the variation of the thickness of the updated cell. 
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The first objective function of this optimization problem is to minimize the weight of the updated cells. Considering the 
material and the area of the cells as invariant parameters, the first objective function, which is an explicit function of the design 
variables, can be defined as follows: 

 
2

01 )/( txf i=                                          (10) 
 
In this equation 0t  is the initial thickness of the cell and ix  = thickness of the updated cell i and n  = the number of cells. 
 
 

As implied in the previous part, the second objective function is to minimize the deviation between the yield stress of the 
material and the Von Mises equivalent stress at the cells. This aim is also expressed as follows: 

 
2

02 )1( −= σf                                                       (11) 
 
where 0σ  is the ratio of the Von Mises equivalent stress to the yield stress of the material. 
 

This objective function is an implicit function of the design variables, so it is not possible to formulate the objective function 
explicitly in terms of the design variables alone. Instead, the intermediate variable, which is a type of stress ratio, is used to 
formulate the function. 

In this paper, CA-constraint conditions are applied as defined by Kita and Toyoda. These conditions are explained as follows: 
 

)3,...,1(,011~
~

0 ==−≡−= ig i
i

i
i σ

σ
σ

                  (12) 

where iσ  denotes the ratio of equivalent stresses at the neighboring cell i at the present step to the preceding step. Therefore, this 
equation ensures that the variation of the equivalent stress at the neighboring cell is small. 
 
4.4 Converting MOOP to SOOP 

A range of methods is available to convert the MOOP into a substitute problem with a scalar objective that can be solved with 
the tools of SOOP (Marler R. T. & Arora J. S. 2004; Athan T. W. & Papalambros P. Y., 1996). One of the most common general 
scalarization methods for MOOP is the global criterion method in which all objective functions are combined to form a single 
function. Linearly weighted sum method (WSM) is the most common approach to MOOP, which is a form of GCM. Applying 
WSM, after the objectives are normalized, a composite objective function F(x) can be formed by summing up the weighted 
normalized objectives and the MOOP given in equation (5) is then converted to a SOOP as follows: 

 

∑
=

=
M

i
nii xxxfwxF

1
21 )...,,,()(                            (13) 

 

where, w is a non-zero positive vector of weights typically set by the decision maker such that∑
=

=
M

i
iw

1
1. 

If all of the weights are positive, the minimum of (13) is Pareto optimal (Zadeh 1963). In the other words, minimizing (13) is 
sufficient for Pareto optimality. Steuer (1989) mathematically relates the weights to the decision-makers preference function. Das 
and Dennis (1997) provide a graphical interpretation of the weighted sum method for two-objective problems to explain some of 
its deficiencies. Eschenauer et al. (1990) give a brief depiction of the method in criterion space. Koski and Silvennoinen (1987) 
discuss and illustrate the weighted sum method as a special case of methods that involve a p-norm. 

Misinterpretation of the theoretical and practical meaning of the weights can make the process of intuitively selecting non-
arbitrary weights an inefficient chore (Marler R. T. & Arora J. S. 2004). Consequently, many authors have developed systematic 
approaches to selecting weights, surveys of which are provided by Eckenrode (1965), Hobbs (1980), Hwang and Yoon (1981), and 
Voogd (1983). Rao and Roy (1989) provide a method for determining weights based on fuzzy set theory. For cases in which the 
relative importance of the objective functions is unclear, Wierzbicki (1986) provides an algorithm that calculates weights based on 
the aspiration point and the utopia point. 

Many authors touch on difficulties with the weighted sum method (Koski 1985; Stadler 1995; Athan and Papalambros 1996; 
Das and Dennis 1997; Messac et al. 2000a, b). Despite the many methods for determining weights, a satisfactory, a priori selection 
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of weights does not necessarily guarantee that the final solution will be acceptable; one may have to resolve the problem with new 
weights. In fact, weights must be functions of the original objectives, not constants, in order for a weighted sum to mimic a 
preference function accurately (Messac 1996).  

In this paper, using the weighted sum method, the new objective function as a linear combination of the two objective 
functions, mentioned in the previous section, is defined as follows: 

 

22113 fwfwf +=                              (14) 
 
here, 1w  and 2w  are defined as stated by Kita and Toyoda so that the following conditions are satisfied: 
 

121 =+ ww                                                           (15) 
 

⎭
⎬
⎫

⎩
⎨
⎧

≥
<

=
11
1

0

00
2 σ

σσ
if
if

w                                           (16) 

 
The weight parameters refer to the relative importance of the objectives with regard to the amount of 0σ . To clear the weight 

vector some special cases are discussed below. 
If 10 ≥σ  then 12 =w  and 01 =w , so the composite objective function will be the minimization of the following function: 

 
2

023 )1( −== σff                                  (17) 
 

In other words, in this case, the topology optimization is performed to minimize the variation of stresses during the 
optimization process. 

On the other hand, for relatively small amounts of 0σ , the weight parameters would be 02 ≈w  and 11 ≈w . Hence, the 
objective function is formed as follows: 
 

2
013 )/( txff i=≈                                   (18) 

 
In this case the objective function of the optimization problem is weight minimization of cells. 

Multiplying the penalty parameter p into the CA-constraint condition and adding it to the objective function )(3 xf , the penalty 
function can be obtained as follows: 
 

=++= ∑
=

3

1

2
2211

i
igpfwfwf    

∑
=

−+−+
3

1

22
02

2
01 )1()1()/(

i
ii pwtxw σσ         (19) 

Using the Taylor’s expansion, and other mathematical calculations, )/( 01 txδ  can be obtained through the following formula: 
 

∑

∑

=

=

++

−+−+
= 3

1

22
02

2
011

3

1
01002

2
011

01

)()()/(

)/]()1()1()/([
)/(

i
i

i
ii

pwtxw

txpwtxw
tx

σσ

σσσσ
δ

                                           (20) 

During the updating of the thickness of cells, the following formula is used to decrease or increase the thickness: 
 

)/()/()/( 0101
1

01 txtxtx kk δ+=+                       (21) 
 
where the superscripts k and k+1 represent the number of the iteration. 
 
The termination criteria could be as follows: 
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ε<−+ kk ff 1                                                (22) 

where, ε  is the termination parameter which should be set in the initialization process. In this article to illustrate the results in 
long iterations, it is set to a very small amount. 
 
5. Execution Process 
 

Figure 3 display the flowchart which is used to implement the optimization procedure. The algorithm which is proposed by 
Sanaei ans Babaei (2010) is generalized and new features are considered in the procedure to create the design domain, divide the 
structure into small triangle elements, choosing the shape of elements to achieve better results. The stages of execution process are 
cited as follows: 

 
Stage 1: Create the model (design domain), using the input data such as type of the structure (Deep or Simple Beam), structural 
dimensions, type of analysis, number of cells, material properties, design constraints, boundary conditions and loading 
information. 
Stage 2: Structural analysis, to obtain stresses in elements using the prepared finite element method, square or triangular elements. 
The equivalent Von Mises stress at the cell i, is calculated as follows: 
 

∑
=

=
3

1
.

j

j
vonj

i
evon σασ                                  (23) 

 
where i

evonσ  denotes the equivalent Von Mises stress at the cell i; j
vonσ  is the Von Mises stresses at the neighboring cell i; and 

jα is an adjustable weight parameter to consider stress at each neighbor in calculation of equivalent stresses. 
Von Mises stresses at the cell i, is obtained as: 
 

2
221

2
1 . σσσσσ +−=i

von                                 (24) 
 
where i

vonσ  denotes the Von Mises stress at the cell i; 21,σσ  denote the stresses at principle axes. 

In this research a same value of 1/3 is employed for weight parameters jα to calculate the equivalent Von Mises stresses at each 
cell. 
Stage 3: Check the termination criteria using Eq. 22. If the difference of objective functions between two consecutive stages of Eq. 
22 is less than the ε, the termination criteria is met, so stop. Otherwise, go to the next stage. 
Stage 4: Design variables update, with respect to stress distribution and updating rule using Eq. 21. 
Stage 5: Modify the topology of the structure by deleting the cell elements which have small thickness. Go to stage 2. 
 
6. Numerical Case Studies and Results 

 
Laterally stable steel beams can fail only by flexure, shear or bearing, assuming the local buckling of slender components does 

not occur. These three conditions are the criteria for limit state design of steel beams. It is generally accepted in the literature that 
when the length to depth ratio of a beam is smaller than 5 then the behavior of the beam is shear and shear stresses will control the 
safety of the beam. On the other hand, if a beam is long in length and slim in the cross sectional area then flexural behavior of the 
beam will govern the safety. In this section, the developed algorithm is applied to two different types of beams with flexural and 
shear behavior to demonstrate the efficiency and accuracy of the presented scheme. For the proposed algorithm the penalty 
parameter is set to 10. The optimized topology of these case studies is obtained after repeating the optimization process. The 
algorithm is coded in FORTRAN and structures are analyzed using the developed Constant Strain Triangle finite element method. 
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Yes 

No 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. The flowchart of execution process 
 
 
6.1 Deep Beam 

The cantilever deep beam shown in Figure 4 shows the design domain, boundary conditions, and joint numbering for point 
loading. The material density is 490 lb/ft3 (7850 kgf/m3) and the modulus of elasticity is 29 ksi (200 MPa). The Poisson's ratio is 
0.2. The design domain is divided into 768 triangle cells (48 in horizontal, 16 in vertical). The elements are subject to the stress 
limit of 08.0 σσ ×=c , which 0σ  is the maximum stress at the initial profile. The thickness of each element is considered as a 
design variable, so in total there are 768 design variables. The initial thickness value for the elements is set to equal 40 in (1.016 
m). In this example three cases are considered. Table 1 illustrates the loading conditions for each case. 
 

Table 1. Loading conditions for the deep beam 
  Case 1 Case 2 Case 3 

Load Value (N) Value (N) Value (N) 

P1 20 0 20 

P2 0 20 20 

Output

Update the design variables using Eq. 21 

ε<−+ kk ff 1  

Initialize the model; define beam type, structural 
dimensions, number of cells, loading information, 

material properties, boundary conditions, and initial 
thickness of cells 

Determine the stresses in each cell using the 
developed finite element method program 

Determine the Von Mises and equivalent Von Mises 
stresses at each cell using the obtained stresses in the 

previous step, using Eq. 23, 24 

Determine the objective function using Eq. 19

Determine the weight parameters using Eq. 15, 16

Topology modifying by deleting cells 
with small thickness 



Sanaei and Babaei / International Journal of Engineering, Science and Technology, Vol. 3, No. 4, 2011, pp. 27-41 

 

35

 

 
The behavior of the deep beam is more in shear than flexural. Figure 5 (a, b, and c) displays the optimized topology for the three 
mentioned cases, obtained using the developed algorithm. The illustrated thickness distributions are obtained after 400 iterations. 
Figure 6 demonstrate the final topology for this beam after 1500 iterations, reported by Kita et al. These results show that the 
mentioned scheme in this paper achieves the optimum topology in less iteration, which illustrates the accuracy and efficiency of 
the scheme developed in this research. 
 

Case 1: The convergence histories of the mean and the maximum stresses and the total weight of the structures with respect to 
the number of iterations are demonstrated in figure 7(a). Figure 7(b) shows the convergence histories of the same case, reported by 
Kita and Toyoda. The maximum stress, maxσ , decreases rapidly when 300 iterations and then converges asymptotically to the 

reference stress 08.0 σσ ×=c , while in figure 7(b) maxσ  decreases rapidly when 600 iterations and then converges 

asymptotically to the reference stress. The mean stress, mσ , increases rapidly when 150 iterations and then increases gradually to 

the reference stress, while in 7(b) mσ  increases gradually to the reference stress. Both figures, (7(a, b)), indicate that the stress 
distribution on the whole structure tends to become uniform. Finally, the total weight of the structure decreases rapidly when 150 
iterations and then decreases gradually to about 35% of its initial weight, while in 7(b) decreases to 40%. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Design domain and boundary conditions for the deep beam 
 
 
 
 
 
 
 
 
 
 
 
 

(a): Optimized topology for deep beam after 400 iterations (case 1) 
 
 
 
 
 
 

 
 
 
 

 (b): Optimized topology for deep beam after 400 iterations (case 2) 
 

Figure 5. Thickness distribution for topology optimization of deep beam 
 
 
 

P2 P1 
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(c): Optimized topology for deep beam after 400 iterations (case 3) 
 

Figure 5. Thickness distribution for topology optimization of deep beam (continued) 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Thickness distribution at the final profile (case 3) (1500th iteration) reported by Kita and Toyoda 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a): Triangle cells                       (b): Quadrangle cells (Kita and Toyoda 2000) 
 

Figure 7. Convergence histories of maximum and mean stresses and weight for case 1 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
(a): Triangle cells                       (b): Quadrangle cells (Kita and Toyoda 2000) 

 
Figure 8. Convergence histories of maximum and mean stresses and weight for case 2 

 

0/WW

0/σσ m

0max /σσ

IterationsofNumber

IterationsofNumber

0/WW

0/σσ m

0max /σσ
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(a): Triangle cells                       (b): Quadrangle cells (Kita and Toyoda 2000) 
 

Figure 9. Convergence histories of maximum and mean stresses and weight for case 3 
 

Case 2: The convergence histories of the mean and the maximum stresses and the total weight of the structures are 
demonstrated in figure 8(a), this research result, and in figure 8(b), reported by Kita and Toyoda. The maximum stress, maxσ , 

decreases rapidly when 200 iterations and then converges asymptotically to the reference stress 08.0 σσ ×=c , while in figure 

8(b) maxσ  decreases rapidly when 600 iterations and then converges asymptotically to the reference stress. The mean stress, mσ , 

increases rapidly when 150 iterations and then converges to more than half  of the reference stress (0.42), while in 8(b) mσ  
increases gradually and then converges to half of the reference stress (0.40). The mean stress in figure 7(a) is greater than that in 
figure 7(b) (i.e. the stresses in triangle cells are higher than quadrangular cell’s). On the other hand, the total weight in figure 7(a) 
is less than that in figure 7 (b). Both figures, 7(a, b), indicate that the stress distribution on the whole structure varies more than in 
case 1. The total weight decreases gradually and the final structure is much lighter than that found in case 1, about 23% of the 
initial weight, while in figure 8(b) decreases gradually to 30%. This is because the load point is specified in the center of the 
structure and therefore the area of the structure which can be deleted is wider than that of case 1. 
 
Case 3: The convergence histories of the mean and the maximum stresses and the total weight of the structures are demonstrated 
in figure 9(a). The maximum stress, maxσ , decreases rapidly when 150 iterations and then converges asymptotically to the 

reference stress 08.0 σσ ×=c , while in figure 9(b) maxσ  decreases rapidly when 600 iterations and then converges to the 

reference stress. The mean stress, mσ , increases rapidly when 150 iterations and then converges to the reference stress, but in 

figure 9(b) mσ  increases gradually and then converges to the reference stress. The stress distribution become almost uniform in 
both figures 9(a, b), and it is similar to case 1 and different from case 2. The total weight of the structure decreases rapidly when 
150 iterations and then converges to 33% of the initial weight, while in figure 9(b) decreases gradually to 35% of the initial weight 
of the structure. The final profile, as illustrated in figure 5(c), is very similar to that found by superposing the final profiles of case 
1 and case 2, as shown in figures 5(a) and 5(b), respectively. 
 
6.2 Flexural Beam 

Figure 10 shows the design domain and the boundary conditions for a one-bay simply connected beam. The structural 
behavior of this beam is more flexural than shear. Joint numbering for point and distributed loading is demonstrated in Figure 10. 
The material density is 490 lb/ft3 (7850 kgf/m3) and the modulus of elasticity is 29 ksi (200 MPa). The Poisson's ratio is 0.2. The 
design domain is divided into 192 triangle cells (48 in horizontal, 4 in vertical). The elements are subject to a stress limit 
of 08.0 σσ ×=c , which 0σ  is the maximum stress at the initial profile. The thickness of each element is considered as a design 
variable, so in total there are 192 design variable. The initial thickness value for the elements is set to equal 40 in (1.016 m). In this 
example three cases are investigated. Table 2 illustrates the loading conditions for each case, including point and distributed 
loading. 

 
 
 
 
 

 

IterationsofNumber

0/WW

0/σσ m

0max /σσ



Sanaei and Babaei / International Journal of Engineering, Science and Technology, Vol. 3, No. 4, 2011, pp. 27-41 

 

38

 

Table 2. Loading conditions for the simple beam 
  Case 1 Case 2 Case 3 

Load Value (N) Value (N) Value (N) 

P1 20 0 0 

P2 0 20 0 

P3 0 0 100 
 

 
 
 
 
 
 
 
 

Figure 10. Design domain and boundary conditions for the simply connected beam 
 

 
 
 
 
 
 

(a): Optimized topology for one-bay beam (case 1) 
 
 
 
 
 
 

(b): Optimized topology for one-bay beam (case 2) 
 
 
 
 
 

(c): Optimized topology for one-bay beam (case 3) 
 

Figure 11. Thickness distribution for topology optimization of simply connected one-bay beam 
 

Figure 11 (a, b, and c) displays the final topology for the three cases. Black cells are those deleted during the optimization 
process and white cells have thickness, relating to their brightness. The illustrated thickness distributions are obtained after 400 
iterations. The convergence histories of the stresses (max and mean) and the total weight of the structures are shown in figures 12, 
13, and 14. In all cases, the maximum stress, maxσ , decreases rapidly when 200 iterations and then converges asymptotically to the 

reference stress 08.0 σσ ×=c . The mean stress, mσ , increases rapidly when 300 iterations and then converges to near the 
reference stress. The total weight of the beams decreases rapidly when 300 iterations and then converges to about 38% of the 
initial weight. 
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Figure 12. Convergence histories of maximum and mean stresses and weight for case 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Convergence histories of maximum and mean stresses and weight for case 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Convergence histories of maximum and mean stresses and weight for case 3 
 
 
7. Conclusions and Remark 

 
In this paper a topology optimization method is presented for optimization of structures on which the concept of CA has been 

applied. The method is applied for topology optimization of two-dimensional elastic structures and the design domain is divided 
into triangles in order to perform finite elements analysis, which is developed using FORTRAN. One of the important features of 
CA is defining the neighboring for cells, so that it will affect the convergence and final result of the problem. In this article, a new 
neighborhood for triangular elements is proposed and the structures are analyzed by CST finite element method. The algorithm is 
also developed to continuum structures, with shear and flexural behavior. The final profiles of the structures, which are obtained 
using the proposed scheme in this paper, are similar to the results reported in existing studies based on CA concept (Kita and 
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Toyoda 2000; Kundu et al. 1997a, b; Inou et al. 1994, 1998) and using the gradient search scheme concept (Suzuki and Kikuchi 
1991; Bendsoe and Kikuchi 1988). 

The convergence histories of maximum and mean stresses and weight indicate the efficiency and accuracy of solutions 
obtained for optimized topology of the structures. In the other words, by the developed scheme in this paper the final topologies 
for the case studies are obtained in less iteration. Optimum topology for the deep beam in Cases 3, obtained after 400 iterations, is 
compared with layout obtained by Kita and Toyoda, which was obtained after 1500 iterations. The following modifications are the 
main reasons for rapid convergence: a) since the triangle elements are employed, the quadrangle cells are divided into two triangle 
elements. So, the number of elements (cells) is increased. Obviously, it will affect the results such as the weight of the structure at 
the final step, when applying cells updating in CA. In the other word, in the updating process, cells are affected by smaller 
neighbors; b) the new neighborhood for cells, which is for triangle elements, is proposed and considered in the case studies; c) the 
cells are deleted from the boundary of the structure to the centre. This rule is applied from the first iteration for all cells with small 
Von Mises stress; d) the nature and characteristic of triangle elements in FEM analysis, comparing quadrangular elements, affects 
the analysis process. Based on the results of the three case studies for deep beam and in comparison to those reported in the 
literature, it can be proposed that the method developed in this paper is valid and can be applied to other structures. As a future 
research study, one can develop this algorithm to truss and frame structures. 
 
Nomenclature 
 
CA  Cellular Automata 
CST  Constant Strain Triangle 
ESO  Evolutionary Structural Optimization 
MOOP   Multi-Objective Optimization Problem 
SOOP    Single-Objective Optimization Problem 
WSM    Weighted Sum Method 
GCM     Global Criterion Method 
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