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Abstract 
 
   The cost of power generation in fossil fuel plants is very high and economic dispatch helps in saving a significant amount of 
revenue. For practical generators the economic dispatch problem gets translated into a complex non-convex, multimodal 
optimization problem which can not be solved by traditional gradient based optimization methods. The complexity further 
increases due to the multiple constraints that need to be satisfied. This paper proposes an improved particle swarm optimization 
approach (IPSO) for solving nonconvex static and dynamic economic dispatch. The classical PSO (CPSO) approach suffers 
from the problem of premature convergence, particularly for complex multimodal functions. The idea behind IPSO is i) to 
enhance the search capability of the CPSO by reinitializing the velocity vector whenever saturation sets in and ii) to use a 
parameter automation strategy to strike a proper balance between local and global search. The performance of IPSO has been 
tested on five standard test cases. The results are compared with previously published literature and are found to be 
comparable/or superior. 
 
Keywords: Improved PSO, premature convergence, static/dynamic economic dispatch, prohibited operating zones, ramp rate 
limits, and valve point loading effects. 
 
1. Introduction 
 
   Economic power dispatch is one of the most important functions of modern energy management system. This problem is 
formulated as a constrained optimization problem with the objective of generation allocation to the power generators to minimize 
total fuel cost with satisfaction of all operating constraints. Conventional methods usually assume the input-output characteristics 
of power generators, known as cost curves, to be quadratic or piecewise quadratic, monotonically increasing functions. But 
modern generating units have a variety of non-linearities in their cost curves due to valve point loading and other effects, which 
make this assumption inaccurate and the resulting approximate solutions cause a lot of revenue loss over time. On the other hand, 
evolutionary methods such as genetic algorithms (GA) and particle swarm optimization (PSO), differential evolution (DE) and 
bacterial foraging (BF) are free from convexity assumptions and perform better due to their excellent parallel search capability. 
Therefore, these methods are particularly popular for solving non linear, nonconvex, discontinuous optimization problems. This 
paper focuses on solution of nonconvex ED problem using an improved PSO based method. 
   Conventional gradient based optimization methods like lamda iteration, base point participation factor, gradient methods etc. rely 
heavily on the convexity assumption of generator cost curves and hence approximate these curves using quadratic or piecewise 
quadratic monotonically increasing cost functions (Wood et al.,1984); resulting solutions are inaccurate and cause revenue losses. 
This assumption is not valid for practical generators because the cost functions of generators have discontinuities and higher order 
nonlinearities due to valve point loading (Walter et al., 1993, Sinha et al., 2003), prohibited operating zones (Orero et al., 1996) 
and ramp rate limits of generators (Wang et al., 1993). The practical ED with above nonlinearities translates into a complicated 
optimization problem having complex and nonconvex characteristics, with multiple minima, making the challenge of obtaining the 
global minima, very difficult. Dynamic programming (Shoults et al., 1986) has no restriction on the shape of cost curves, but this 
method is computationally extensive, time consuming and suffers from the problem of dimensionality. 
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Methods like dynamic programming (Shoults et al., 1986), genetic algorithm (Walter et al., 1993, Sinha et al., 2003, Damousis 
et al., 2003), evolutionary programming (Sinha et al., 2003), and particle swarm optimization (Selvakumar et al., 2007, Chaturvedi 
et al., 2008, Park et al., 2007, Victoire et al., 2005, Park et al., 2010) solve nonconvex optimization problems efficiently and often 
achieve a fast and near global optimal solution. The PSO, which was first introduced by Kennedy and Eberhart (Kennedy, et al., 
1995), is a powerful, robust, population based algorithm with inherent parallelism. This method is increasingly gaining acceptance 
for solving economic dispatch (Chaturvedi et al., 2008, Park et al., 2007, Victoire et al., 2005, Park et al., 2010) and a variety of 
power system problems, due to its simplicity, superior convergence characteristics and high solution quality. Recent research 
however has observed that PSO approach suffers from premature convergence, particularly for complex functions having multiple 
minima (Victoire et al., 2005, Park et al., 2010). 

The most important issue with evolutionary techniques is to maintain a proper balance between exploration i.e. global search 
and exploitation i.e. local search. The performance of evolutionary methods heavily depends on the settings of the tuning 
parameters; therefore finding optimal parameter setting is a very big challenge. Evolutionary methods also have a tendency to 
converge very fast to a solution that is quite close to the global minimum. This tendency causes premature convergence. 
Researchers employ various parameter automation strategies and hybridization of global and local optimization techniques. In 
reference (Park et al., 2010) performance improvement for nonconvex economic dispatch problem was reported by integrating the 
PSO with chaotic sequences and crossover operation. The concept of variable scaling factor based on the one-fifth success rule of 
evolutionary strategies is employed in reference (Chiou et al., 2009). Some researchers have proposed hybrid methods combining 
the advantages of two evolutionary methods to get improved performance (Bhattacharya et al., 2010).It has been observed by 
various researchers that the classical PSO (CPSO) very quickly finds a good local solution but gets stuck there for a number of 
iterations without further improvement. As a result, it becomes tedious to find global best solutions for complicated nonconvex 
problems having multiple local minima and an irregular search space.  

To handle the problem of premature convergence, an improved PSO (IPSO) algorithm is proposed in this paper. The improved 
PSO employs a two-tier approach to avoid saturation and premature convergence. The improved PSO (IPSO) i) introduces crazy 
particles with randomized velocities to maintain momentum in the search and to avoid saturation ii)  employs a novel parameter 
automation strategy in which the cognitive and social parameters are dynamically tuned in order to efficiently control the local and 
global search in such a manner  that global convergence is achieved. The performance of the improved PSO (IPSO) is significantly 
better than the classical PSO (CPSO). 

The performance of the proposed IPSO has been tested on a standard test system having prohibited operating zones and ramp 
rate limits. Five test cases with different complexity levels have been taken. It is observed that the IPSO approach outperforms 
CPSO. Results are compared with recently published literature (Bhattacharya et al, 2010, Panigrahi et al, 2008, Chen et al, 1995, 
Naresh et al., 2004) and superiority of IPSO has been established. 
 
2. Nonconvex Economic Dispatch Formulation 
 

The practical static and dynamic NCED problem with generator nonlinearities such as valve point loading effects, prohibited 
operating zones and ramp rate limits, are solved in this paper using IPSO based approach to find the optimal generation dispatch 
for different operating conditions. 
 
2.1 Valve point loading effects: The valve-point effects introduce ripples in the heat-rate curves and make the objective function 
discontinuous, nonconvex and with multiple minima. For accurate modeling of valve point loading effects, a rectified sinusoidal 
function (Walter et al, 1993) is added in the cost function in this Paper. The fuel input-power output cost function of ith unit is 
given as   
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2

iiiiiiiiii PPfecPbPaPF −××+++=                                                                                          (1) 

where  ii ba ,   and ic   are the fuel-cost coefficients of the thi   unit, and ie   and if   are the fuel cost-coefficients of the thi   unit 
with valve-point effects. The NCED problem is to determine the generated powers Pi of units for a total load of PD so that the total 
fuel cost, TF   for the N number of generating units is minimized subject to the power balance constraint and unit upper and lower 
operating limits. The objective is 
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NiPPP iii ,...,2,1maxmin =≤≤                                                                                                                                  (3) 
For a given total real load PD the system loss PL is a function of active power generation at each generating unit. To calculate 

system losses, methods based on penalty factors and constant loss formula coefficients or B-coefficients (Wood et al,1984) are in 
use. The latter is adopted in this paper as per which transmission losses are expressed as 
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For further details, (Wood et al., 1984) may be referred. 
 

2.2 Generator ramp rate limits: When the generator ramp rate limits are considered, the operating limits are modified as follows: 
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The previous operating point of ith generator is o
iP   and  DRi and URi are the down and up ramp rate limits respectively. 

 
2.3 Prohibited operating zones: The cost curves of practical generators are discontinuous as whole of the unit operating range is 
not always available for allocation. In other words, the generating units have prohibited operating zones due to some faults in the 
machines or their accessories such as pumps or boilers etc. (Orero et al, 1996). A unit with prohibited operating zones has 
discontinuous input-output characteristics. This feature can be included in the NCED formulation as follows: 

⎪
⎩

⎪
⎨

⎧

≤≤

≤≤

≤≤

∈ −

max
1

1
min

ii
U

izi

L
iki

U
ik

L
iii

i

PPP

PPP

PPP

P                                                                                                                       (6)  

Here zi are the number of prohibited zones in ith generator curve, k is the index of prohibited zone of ith generator,  L
ikP  is the lower 

limit of kth prohibited zone, and U
ikP 1−

  is the upper limit of kth prohibited zone of ith generator 
 

2.4  Nonconvex dynamic economic load dispatch(NCDED): Dynamic Economic Load dispatch deals with sharing the system 
load including system losses among the available generators in such a way that all equality and inequality constraints are met and 
the cost of operation is minimized for each time interval. 

In order to solve dynamic load dispatch problem, ramp-rate limit must be considered. The dynamic economic load dispatch 
(DELD) model can be described as follows: - 
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Where N is total numbers of committed units; Pi (t) is active power output of the ith unit at time t. The fuel cost function f(t)is 
given by 
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Here ii ba ,  and ic   are cost coefficients, Pi min is minimum output, DRi  is down ramp rate limit, URi is up ramp rate limit of the 
ith unit; PD(t) is load demand at time interval t; PL(t) is network loss at time interval t. 
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3. Particle Swarm Optimization 
 
   Various conventional as well as modern methods have been employed for solving the non-linear, non-convex, discontinuous 
economic dispatch problem. The particle swarm optimization method has become quite popular for solving complex problems 
during the last couple of years. Its excellent random parallel search capability and constraint handling mechanism make it very 
efficient for locating good solution in the complex search domain. 
 
3.1 Classical Particle swarm optimization (CPSO):  The PSO (Kennedy, et al., 1995) is a population based modern heuristic 
search method inspired by the movement of a flock of birds searching for food.  It is a simple and powerful optimization tool 
which scatters random particles i.e. solutions into the problem space. These particles, called swarms collect information from each 
other through an array constructed by their respective positions. The particles update their positions using the velocity of particles. 
Position and velocity are both updated in a heuristic manner using guidance from a particle’s own experience and the experience of 
its neighbors.  
   The position and velocity vectors of the ith particle of a d-dimensional search space can be represented as 

)...,.........,( 21 idiii xxxX = and ),........,( 21 idiii vvvV =  respectively. On the basis of the value of the evaluation function, the 

best previous position of a particle is recorded and represented as )........,( 21 idiii ppppbest = . The particle tries to modify its 
position using the current velocity and the distance from pbest and gbest . The modified velocity and position of each particle 
for fitness evaluation in the next iteration are calculated using the following equations (Kennedy, et al., 1995): 
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Here w is the inertia weight parameter which controls the global and local exploration capabilities of the particle. Constant C is 
constriction factor,  21 ,cc  are cognitive and social coefficients, and 21 , randrand   are random numbers between 0 and 1. A 
larger inertia weight factor is used during initial exploration and its value is gradually reduced as the search proceeds. The time-
varying inertial weight is given by (Eberhart et al., 1999). 
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where maxiter  is the maximum number of iterations. Constant c1 pulls the particles towards local best position whereas c2 pulls it 
towards the global best position. Usually these parameters are selected in the range of 0 to 4. To improve the convergence of PSO 
algorithm, the constriction factor C is also used. (Eberhart et al, 1999).For further details, (Kennedy et al., 1995; Eberhart et al., 
1999) may be referred. 
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As  ϕ  increases, the factor C decreases and convergence becomes slower because population diversity is reduced. The value of 
C is also decreased iteratively similar to w.                                                     
 
3.2 Improved PSO: The proposed IPSO employs a two-tier strategy to combat premature convergence phenomenon in PSO. By the 
combined use of i) crazy particles and ii) time varying acceleration coefficients (TVAC) it is ensured that a) population diversity is 
maintained and b) A proper balance is maintained between exploration (global search) and exploitation(local search). The idea 
behind using crazy particles is to randomize the velocities of some of the particles, (referred to as “crazy particles”), selected by 
applying a certain probability. In (Victoire et al, 2005), the probability of craziness crρ  is defined as a function of inertia weight, 
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Then velocities of particles are randomized as per the following logic:    
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     If the PSO algorithm tends to saturate in the beginning then a high value of crρ is used to create crazy particles, and a 
comparatively lower value is used at later stages of search.  

The time-varying inertia weight (TVIW) can locate good solutions at a significantly faster rate but its ability to fine tune the 
optimum solution is weak, due to the lack of diversity at the end of the search. It has been observed by most researchers that in 
PSO, problem-based tuning of parameters is a key factor to find the optimum solution accurately and efficiently. Kennedy and 
Eberhart (Kennedy et al, 1995) stated that a relatively higher value of the cognitive component, compared with the social 
component, results in roaming of individuals through a wide search space. On the other hand, a relatively high value of the social 
component leads particles to a local optimum prematurely. Normally studies keep each of the acceleration coefficients at 2, in 
order to make the mean of both stochastic factors in (7) equal to one, so that particles would over fly only half the time of search.  

In population-based optimization methods, the policy is to encourage the individuals to roam through the entire search space, 
during the initial part of the search, without clustering around local optima. During the latter stages, however convergence towards 
the global optima should be encouraged, to find the optimum solution efficiently. In TVAC, this is achieved by changing the 
acceleration coefficients c1 and c2 with time in such a manner that the cognitive component is reduced while the social component 
is increased as the search proceeds. A large cognitive component and small social component at the beginning, allows particles to 
move around the search space, instead of moving towards the population best prematurely. During the latter stage in optimization, 
a small cognitive component and a large social component allow the particles to converge to the global optima. The acceleration 
coefficients are expressed as (Ratnaweera et al., 2004): 
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The velocity is calculated by substituting eq. (14) and (15) in eq. (7) to get 
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where c1i, c1f , c2i  and c2f are initial and final values of cognitive and social acceleration factors respectively. 
 
4. Implementation  of IPSO for static/dynamic ED solution 
 
   The step by step procedure for implementation of the IPSO algorithm for solving static and dynamic economic dispatch problem 
with valve point loading effect prohibited operating zones and ramp rate limits is given below. The flowchart for this algorithm is 
given in Figure. 1. 
 
4.1 Solution of constrained static and dynamic nonconvex economic dispatch using IPSO 

 
Most of the PSO algorithms suffer from the problem of premature convergence in the early stages of the search and henceforth are 
unable to locate the global optimum (Selvakumar et al., 2007, Chaturvedi et al., 2008, Park et al., 2007, Victoire et al., 2005, Park 
et al., 2010). The proposed IPSO algorithm employs a two-tier strategy to improve the performance of classical PSO. First, the 
crazy particles, whose probability can be controlled, do not allow saturation to set in. The idea is to randomize the velocities to 
maintain momentum in the optimization process and improve the solution quality. Secondly, the cognitive and social acceleration 
coefficients are iteratively controlled to keep a balance between global and local search. The IPSO algorithm achieves significantly 
better results as compared to the classical PSO.  The implementation consists of the following steps.   
 

Step 1- Initialization of the swarm: For a population size P, the particles are randomly generated in the range 0-1 and located 
between the maximum and the minimum operating limits of the generators. If there are N generating units, the ith particle is 
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represented as ( )iNiiii PPPPP .......................,, 321= .  The jth dimension if the ith particle is allocated a value of ijP as given 

below to satisfy the constraint given by eq. (3) Here, r is a random number, r∈[0,1]. 

)( minmaxmin jjjij PPrPP −+=                                                                                                                                                          (18)                  

For generators with ramp rate limits, the initialization is based on eq. (5). For limiting the operation within the prohibited zones, 
the particles are clamped at their respective lower or upper zone limits, (whichever is nearer to the particle position) as per eq. (6).            

  Step 2- Evaluation of swarm population:  The merit of each individual particle in the swarm is found using a fitness function 
called evaluation function. The evaluation function should be such that cost is minimized while constraints are satisfied. The 
popular penalty function method employs functions composed of squared or absolute violations to reduce the fitness of the particle 
in proportion to the magnitude of the violation. Large values for penalty parameters ill condition the penalty function while very 
small values do not allow the violations to contribute effectively in penalizing a particle. Therefore, the penalty parameters are 
chosen carefully to distinguish between feasible and infeasible solution. Hence, the penalty parameters, are chosen such that an 
infeasible solution is awarded fitness worse than the weakest feasible string. Since two infeasible strings are not treated equally, 
the string further away from the feasibility boundary, is more heavily penalized. Thus, a constrained optimization problem is 
converted to unconstrained optimization problem. 

The evaluation function )( iPf is defined to minimize the non smooth cost function given by eq.(1) for a given load demand PD 
while satisfying the constraints given by eq. (2, 3) as:  
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where α  is the penalty parameter for not satisfying load demand and β  represents the penalty for a unit loading falling within a 
prohibited operating zone.  
Step-3: Initialization of pbest and gbest:   The fitness values obtained above for the initial particles of the swarm are set as the 
initial pbest values of the particles. The best value among all the pbest values is identified as gbest. 
Step- 4: Generation of crazy particles: To control excessive roaming of particles, velocity is restricted between max

jV− and 
max
jV+ .Here, R is selected such that max

jV lies between 15-20% of the range of the variable. The maximum velocity limit for the 

jth generating unit is computed as: 
R

PP
V jj

j
minmax.max −

=                                                                                          (20) 

The velocity vector is randomized using eq. (11) and (12). 
Step-5: Updating the swarm: The particle position vector is updated using eq. (16). The values of the evaluation function are 
calculated for the updated positions of the particles. If the new value is better than the previous pbest, the new value is set to pbest. 
Similarly, value of gbest is also updated if the best pbest is better than the stored value of gbest. 
Step- 6:   Stopping criteria:  A stochastic optimization algorithm is stopped either based on the tolerance limit or maximum 
number of iterations. In this Paper maximum number of iterations is adapted as the stopping criterion after which the positions of 
gbest are stored as the optimal solution. 
 
5. Test Results and Analysis 

 
A novel improved PSO (IPSO) algorithm is proposed in which a dual strategy is employed to avoid saturation and premature 

convergence of the population, particularly for complex functions. The idea here is i) to exercise proper control over the global and 
local exploration of the swarm during the optimization process by using TVAC ii) to reinitialize the velocity vector whenever it 
stagnates causing saturation.   

  The performance of the IPSO is compared here with the classical PSO.  It is observed that all the IPSO performs significantly 
better that the classical PSO for complex functions. Simulations were carried out using MATLAB 7.0.1 on a Pentium IV 
processor, 2.8 GHz. with 1 GB RAM. 

 
5.1    Description of test systems 
 

A system with three thermal generating units (Wood et al, 1984, Chen et al, 1995) is used to demonstrate the performance of the 
proposed IPSO algorithm. The system cost coefficients and other data is given in the Appendix section. The system has many 
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complexities and constraints such as i) Valve point loading (VPL)  ii) Prohibited operating zone (POZ)and iii) Transmission losses 
in addition to the generating  capacity constraints and power balance equation. The optimal solutions are computed under five 
different conditions; the first three test cases are solved for static economic dispatch while the last two test cases are solved for 
dynamic economic dispatch. 

 
Figure 1. Flowchart of Nonconvex Dynamic Economic Dispatch (NCDED) using IPSO method 
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Test Case I:  The above system with RRL and POZ but without VPL and losses  
Test Case II:  The above system with RRL, POZ and losses but without VPL  
Test Case III:  The above system with RRL, POZ and VPL but without losses 
Test Case IV:  The dynamic 24-hour scheduling with POZ and RRL 
Test Case V:  The dynamic 24-hour scheduling with POZ, VPL and RRL 
 

  For Test Case II the IPSO results are compared and validated with previously published results (Bhattacharya et al, 2010). The 
IPSO has achieved better results than those reported in literature (Bhattacharya et al, 2010).The Performance of IPSO is also 
compared with classical PSO (CPSO) method in terms of convergence behavior, solution quality, consistency and computational 
efficiency and it was observed that IPSO outperforms CPSO. The superiority of IPSO over CPSO in more pronounced for complex 
Test Cases II (with loss) and  III (with VPL). 

 
5.2 Parameter set-up 
 
The number of iterations used is 100, w is varied from 0.9 to 0.4 using (9), constriction factor is also reduced from 0.73 to 0.64 
similar to the inertial weight w (for, 2.41.4 ≤≤ϕ  in eq. 12) as search proceeds. These values The value of c1 = c2 = 2.0 is found 
to be most suitable for CPSO. Population size was set at 100 for all the five test cases. 
 
 5.3 Effect of cognitive and social coefficients 

To evaluate the role of TVAC in solving complex DED problem, the values of c1f and c2i were varied between 0.1 and 0.5 and it 
was noticed that the best results were obtained when both were fixed at 0.2. Then the value of c1i was increased from 1.8 to 2.5 and 
c2f was reduced from 2.5 to 1.8, while c1f and c2i were kept fixed at 0.2. The initial value of cognitive parameter c1i and final value 
of global parameter c2f were targeted for study because c1i controls the initial roaming of the swarm and c2f facilitates global 
convergence in the final stage of the search. The final and initial values of c1 and c2 are to be selected by the user. The upper and 
lower limits for these values are normally 2.5 and 0.1. To show the effect of this variation results were computed and tabulated in 
Table 1 for different parameter settings. The optimal values are found to be problem dependant. However, for every parameter 
setting the global minimum value is achieved, only the consistency of achieving the minima is different for different settings. 

 Table 1 shows the results of this variation on the minimum, maximum,  average costs and their standard deviation (S.D) out of 
50 different trials for Test Case I. Best results were obtained when  c1i=2.5, c1f=0.2, c2i=0.2 and c2f=2.2. 

 
5.4 Effect of population size 

The study carried out in this paper found that population size should be optimum for achieving global best results. Too large or a 
very small population may not be capable of searching a minimum, particularly in complex multimodal problems.                                     

The population size is a very important issue in stochastic search methods. Too large a population makes an algorithm slow and 
computationally inefficient, while a very small population may not be capable of searching a minimum, particularly in complex 
problems. The optimum population size is found to be related to the problem dimension. Table 2 lists the performance of Test 
Case I for a population of 10, 20, 40, 60, 80 and 100. It can be seen that with increase in population, there is a steady improvement 
in minimum value, average value and S.D.  

 
5.5 Convergence Characteristics 

The convergence behavior of the CPSO and IPSO was compared employing the same evaluation function, same initial 
population and velocity for same number of iterations. The results for one trial are shown in Figure. 2. It can be seen that the IPSO 
exhibits superior convergence characteristics, i.e. saturation does not occur in the initial iterations.  
 

5.6   Solution Quality 

The dynamic convergence behavior of the IPSO and CPSO was also studied by calculating the mean and standard deviation of 
each individual in the swarm after each iteration. The mean value μ and standard deviation σ  are defined as: 
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PS is the population size here and f(Pi) is the evaluation function defined in (18). Figure 3 and Figure 4 plot and compare the 
standard deviation and mean of IPSO and PSO for Test Case I. The IPSO method clearly establishes its superiority over the 
classical PSO (CPSO) and produces better dynamic convergence, because the mean cost and the standard deviation of the swarm 
reduce continuously. The CPSO shows premature convergence and does not achieve minima for the complex 3-unit test case with 
RRL, POZ. 

 

 
 

Figure 2. Comparison convergence characteristics 

Table 1.  Effect of acceleration coefficients on performance of IPSO (Test Case I; 50 trials) 
S.No. c1i c1f c2i c2f Minimum 

Cost($/h) 

Max cost($/h) Average 

cost($/h) 

S.D#. 

1 0.2 0.2 2.5 3.4829e+003 3.5155e+003 3.4892e+003 4.4985 

2 0.2 0.2 2.2 3.4829e+003 3.4834e+003 3.4887e+003 0.7362 

3 0.2 0.2 1.9 3.4829e+003 3.5156e+003 3.4890e+003 5.0013 

4 

 

2.5 

0.2 0.2 1.8 3.4829e+003 3.5177e+003 3.4892e+003 6.1077 

5 0.2 0.2 2.5 3.4829e+003 3.5130e+003 3.4904e+003 5.9825 

6 0.2 0.2 2.2 3.4829e+003 3.5227e+003 3.4902e+003 6.4204 

7 0.2 0.2 1.9 3.4830e+003 3.5112e+003 3.4883e+003 4.3430 

8 

 

2.2 

0.2 0.2 1.8 3.4829e+003 3.5136e+003 3.4887e+003 4.8034 

9 0.2 0.2 2.5 3.4829e+003 3.5161e+003 3.4892e+003 5.0779 

10 0.2 0.2 2.2 3.4829e+003 3.5222e+003 3.4892e+003 5.0828 

11 0.2 0.2 1.9 3.4829e+003 3.5137e+003 3.4894e+003 5.6721 

12 

 

2 

 

0.2 0.2 1.8 3.4829e+003 3.5220e+003 3.4907e+003 6.5701 

13 0.2 0.2 2.5 3.4829e+003 3.5093e+003 3.4892e+003 4.9600 

14 0.2 0.2 2.2 3.4829e+003 3.5216e+003 3.4904e+003 6.4442 

15 0.2 0.2 1.9 3.4830e+003 3.5046e+003 3.4877e+003 3.3622 

16 

 

1.8 

0.2 0.2 1.8 3.4829e+003 3.5195e+003 3.4896e+003 5.8175 
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Table 2. Effect of population size on performance of IPSO (Test Case I; 50 trials) 

Population 

Size 

Minimum 

Cost($/h) 

Mean Cost($/h) Maximum 

Cost($/h) 

S.D. cpu time 

(50 trials) 

10 3.4830e+003 3.4924e+003 3.5219e+003 6.4093 1.368170 

20 3.4830e+003 3.4915e+003 3.5160e+003 6.2054 2.040088 

40 3.4830e+003 3.4909e+003 3.5252e+003 6.0338 2.785883 

60 3.4831e+003 3.4887e+003 3.5175e+003 4.3751 3.791913 

80 3.4829e+003 3.4848e+003 3.4949e+003 2.0369 5.625992 

100 3.4829e+003 3.4834e+003 3.4887e+003 0.7362 7.472024 

 

5.7 Comparison of best results 

   It can be seen from Table 3 and Table 4 that the proposed IPSO achieves very good results as compared to the classical PSO. 
Table 3 presents the results for Test case I for different loads. The CPSO and IPSO achieve comparable results for this case with 
IPSO showing slight superiority. Both methods satisfy the constraints imposed by ramp rate limits (RRL), prohibited operating 
zones (POZ), power balance constraint and unit operating limits. 
   From Table 4 it can be seen that though the solution given by (Bhattacharya et al, 2010) is minimum, it is violating the ramp rate 
limits. On the other hand, IPSO satisfies all constraints without violations. As per the data given in Appendix section Po= [215, 72, 
98,] down ramp rate DRi= [95 78 64] and Pmin= [50, 5, 15]. Due to ramp rate limits (RRL)the unit operating limits get modified as 
per eq. (5) and now unit Pmin(modified)= [120,  5,  34]. The solution given by (Bhattacharya et al, 2010) has P3=15 which is infeasible 
as the lower limit for unit three becomes 34 due to RRL. 
   Table 5 gives the results of Test Case III (with VPL) for different loads. The cost function is plotted for generating unit 1 and 2 
and shown in Figure 5(a) and Figure 5(b). In Figure 5(a) the cost curves with VPL effects are compared with quadratic cost curves 
for both units. The cost function becomes rippled due to VPL and discontinuous due to prohibited operating zones. In Figure 5(b) 
the effect of ramp rate limits (RRL) on the cost curves can be seen. The Pmin and Pmax limits get modified due to RRL. The 
resulting cost function is nonconvex and hence very difficult to optimize. Similar characteristics can also be drawn for P3 using the 
data (Pmin, Pmax, POZ and cost coefficients) in the Appendix. Due to space shortage and to show the characteristics clearly, only 
two generator cost characteristics have been shown here. 
   For this complex non-convex system, the IPSO searches the global minimum value very effectively, where as the CPSO is not 
able to achieve the global best value due to the inclusion of valve point loading (VPL) effects. Thus, the superiority of the IPSO 
over CPSO is more prominent for complex cases.  

 

 
Figure 3. Variation of mean value of the swarm for CPSO and IPSO 

 

0 10 20 30 40 50 60 70 80 90 100
0 

0.5

1 

1.5

2 

2.5

3 x 10 8 

iteration

Mean cost($/h) 
CPSO 
IPSO



Batham et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 4, 2011, pp. 130-146  

 

140

 

 
Figure  4.  Variation of standard deviation of the swarm for CPSO and IPSO 

 
 
 

 

Table 3. Comparison of best results of Test Case I for different loads 

Load Demand 

300 MW 400 MW 470 MW 

Units 

(MW) 

CPSO IPSO CPSO IPSO CPSO IPSO 

P1 183.3945 183.9845 215.6883 221.8246 250.0000 250.0001 

P2 45.8225 45.5391 91.7337 78.1754 120.0000 119.9999 

P3 70.7830 70.4764 100.0000 100.0000 100.0000 100.0000 

Cost($/h) 3482.8701 3482.8674 4561.9250 4561.4979 5345.7735 5345.7707 

violation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

       

 

Table 4 Comparison of best results for Test Case II (with loss) 

* Solution violating ramp rate limits  

 

Output(MW) IPSO CPSO DE/BBO[14] APSO[18] GA[ 19] TPNN[20]  
P1     200.5714          219.3163        207.637 200.528 194.26 165 
P2 78.2694      60.0000      87.2833 78.2776 50 113.45 
P3 34.0000       34.0000     15.0000* 33.9918* 79.62 34 

Total power 312.8408 313.3163 309.9203 312.7974 323.88 312.45 
loss 12.8409      13.3164        9.9204 12.8364 24.011 12.45 

Violation -0.0001 -0.0001 -0.0001 -0.039 0.131 0.000 
cost ($/h) 3634.7690      3639.6686      3619.7565 3634.3127 3737.20 3652.6000 

Time (sec) 0.2057 0.2068 0.015 - -  
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Table 5. Best results of Test Case III (with VPL) for different loads 

Load Demand 

300 MW 400 MW 470 MW 

Units 

CPSO IPSO CPSO IPSO CPSO IPSO 

P1 184.5313 188.2885 244.7938 250.0000 250.0000 250.0000 

P2 48.4691 44.7115 88.2060 50.0000 120.2319 121.8858 

P3 67.0000 67.0000 67.0000 99.9999 99.7683 98.1141 

Cost 3518.0378 3499.8842 4645.2900 4634.3549 5444.1727 5430.0706 

Violation 0.0004 0.0001 0.0002 0.0001 0.0002 0.0000 

 

5.8 Robustness 

The performance of heuristic search based optimization algorithms is judged through many trials with different initial 
populations to compare the robustness/consistency of IPSO with CPSO. The lowest cost for each of the 50 different trials has been 
plotted in Figure 6 for the complex Test Case III. It can be seen that IPSO method produces lowest cost most consistently as 
compared to the CPSO.  

 

 

 

 

 
Figure 5 (a). Cost curves of generating units with and without valve point loading effects 
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Figure 5 (b). Effect of ramp rate limits on cost curves of units with/without VPL effects 

 
 

5.9 Solution of Nonconvex Dynamic Economic Dispatch (NCDED) 

So far static dispatch results were computed for different loads and varying constraints, considering the ramp rate limits and 
prohibited operating zones mentioned in data Tables in the Appendix Section for one/next hour only. In NCDED the solution for 
the first hour is the initial solution for the next hour and optimal dispatches are computed on hourly basis for 24-hour period, for a 
given load. The losses have been neglected here but POZ and VPL are considered. The optimal solutions for Test Case IV for 24-
hours are listed in Table 6. The optimal solutions for NCDED of Test Case V with VPL are listed in Table 7. Cpu time/trial has 
been shown for all test cases in Table 8. 

 

 
Figure 6. Comparison of best results of CPSO and IPSO (Case III) 
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Table 6 Results of optimal dynamic dispatch using IPSO (Test case IV)) 
Hour Load(MW) P1(MW) P2(MW) P3(MW) Cost ($/h) Violation 

1 300 183.9845 45.5391 70.4764 3482.8674 0.0001 
2 315 189.7884 49.9763 75.2352 3642.2181 0.0001 
3 330 197.3877 50.0000 82.6123 3802.6432 0.0001 
4 336 195.3137 60.0000 80.6863 3866.8395 0.0001 
5 342 198.5733 60.0000 83.4267 3931.2267 0.0001 
6 352 202.6541 61.9055 87.4403 4038.9542 0.0001 
7 361 206.4414 64.2721 90.2862 4136.2532 0.0002 
8 380 213.4426 70.7636 95.7937 4342.6653 0.0000 
9 392 218.4550 73.8838 99.6611 4473.7493 0.0001 

10 405 224.7052 80.2947 100.0000 4616.5297 0.0001 
11 445 242.9999 102.0000 100.0000 5061.9563 0.0001 
12 470 250.0000 119.9999 100.0000 5345.7707 0.0001 
13 400 223.7784 77.8661 98.3556 4561.6153 0.0001 
14 382 213.5666 71.5456 96.8878 4364.4719 0.0001 
15 370 209.5917 66.9317 93.4766] 4233.8547 0.0000 
16 364 207.0180 65.7036 91.2782 4168.7511 0.0002 
17 355 203.7440 63.1887 88.0672 4071.3522 0.0000 
18 345 200.3401 60.0000 84.6598 3963.4960 0.0001 
19 339 196.5646 60.0000 82.4353 3899.0099 0.0000 
20 325 195.1397 50.0000 79.8602 3749.0297 0.0001 
21 320 192.1366 50.0000 77.8634 3695.5536 0.0001 
22 316 189.8123 50.0000 76.1877 3652.8744 0.0001 
23 310 187.4466 48.5125 74.0409 3589.0058 0.0001 
24 300 183.8532 45.3336 70.8131 3482.8684 0.0000 

 
 

Table 7 Results of optimal dynamic dispatch using IPSO (Test case V)     
 

 
 
 
 

 
 
 

 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Hour Load(MW) P1(MW) P2(MW) P3(MW) Cost ($/h) violation 
1 300 187.5215 45.4785 67.0000 3499.9827 0.0000 
2 315 229.1125 5.0000 80.8874 3671.7802 0.0001 
3 330 202.4080 46.8879 80.7041 3804.5780 0.0000 
4 336 240.4247 46.8879 48.6874 3904.6568 0.0000 
5 342 213.7202 46.8883 81.3913 3944.2733 0.0001 
6 352 187.0157 88.7758 76.2085 4070.2219 0.0000 
7 361 228.60671 50.0000 82.3932 4171.2388 0.0001 
8 380 201.9022 88.7758 89.3219 4376.5764 0.0001 
9 392 243.4930 91.1328 57.3742 4508.9031 0.0000 

10 405 216.7885 138.7965 49.4149 4668.0087 0.0001 
11 445 225.4112 140.4746 79.1141 5131.1313 0.0000 
12 470 223.2955 150.0000 96.7044 5384.8987 0.0001 
13 400 196.5910 113.8879 89.5211 4606.5498 0.0000 
14 382 237.2292 77.7708 67.0000 4418.3082 0.0001 
15 370 210.5247 88.7758 70.6995 4276.2967 0.0000 
16 364 183.8202 102.0000 78.1798 4225.0135 0.0000 
17 355 157.1157 107.7758 90.1084 4139.2634 0.0001 
18 345 198.7067 71.6637 74.6296 4014.9798 0.0001 
19 339 240.2977 46.8879 51.8143 3937.2702 0.0001 
20 325 213.5932 88.7758 22.6309 3811.2918 0.0001 
21 320 186.8887 86.0543 47.0570 3752.6818 0.0000 
22 316 228.4797 8.0543 79.4659 3673.5408 0.0001 
23 310 201.7752 48.2247 60.0000 3645.6840 0.0001 
24 300 177.0000 46.8879 76.1121 3508.8980 0.0000 
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 Table 8 CPU time for the different test cases 

TEST CASE Test case I Test case II Test case III Test case IV Test case V 

cpu time/trial 0.1412 0.2057 0.1562 3.4129 3.7613 

 
 
6.  Conclusions  
 

An improved PSO based strategy is proposed in this paper for solving the nonconvex dynamic economic dispatch (NCDED 
problem. The proposed IPSO strategy is found to improve the performance of PSO and to handle the problem of premature 
convergence found in CPSO very effectively by i)generating crazy particles whose velocities are reinitialized with a certain 
probability ii) employing iterative variation of cognitive and social parameters. The superiority of IPSO becomes more evident for 
more complex systems having multiple minima. This method outperforms CPSO in terms of solution quality, computational 
efficiency, dynamic convergence, robustness and stability. The proposed IPSO approach is tested on five different test cases 
having different levels of complexities and constraints. The results are compared with previously published results and found to be 
superior or/and comparable. The IPSO is capable of handling all the complex constraints imposed by ramp rate limits, valve point 
loading effects and prohibited operating zones very effectively. 
 
Nomenclature 
 
Pi                    Power output of the ith generating unit 
Fi(Pi)              Fuel cost function of the ith generating unit 

min
iP , max

iP  Minimum and maximum generation limits on ith unit 
N                    Number of generating units 
PD                   Total real power demand 
PL                  Total real power loss 
DRi                       Down ramp rate limit 
URi               Up ramp rate limit 
xid                 position of dthdimension of the ith particle  
vid                velocity of dthdimension of the ith particle  
 
 
Appendix 
 
    

Table A1. Cost coefficients and unit operating limits 
 

unit 
minP  maxP  ($/M  ($/MW) ($) ie  if  

1 50 250 0.00525 8.663 328.13 125 0.046 
2 5 150 0.00609 10.04 136.91 75 0.075 
3 15 100 0.00592 9.76 59.16 50 0.098 

 
 

Table A2. Ramp rate limits and prohibited operating zones 

 
 
 
 
 
 
 

 
 
 

unit 
 

(MW/h) (MW/h) Prohibited zone (MW) 

1 215 55.0 97.0 [105,117] [165, 177] 

2 72.0 55.0 78.0 [50 ,60]     [92, 102] 

3 98.0 45.0 64.0 [25 ,32]     [60,67] 
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Table A3. B-loss coefficients of three unit systems 
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