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Abstract 
 
   The article reports on a methodology to synthesize the response of Green’s function and influence function in fluid saturated 
incompressible porous half space. As an application, the disturbance due to concentrated and distributed loads in normal and 
tangential direction is investigated by employing the Laplace and Fourier transforms. The integral transforms have been inverted 
by using a numerical technique to obtain the components of displacement, stress and pore pressure in physical domain. The 
results concerning these quantities are given and illustrated graphically to depict the effect of pore pressure. A particular case of 
interest has been deduced from the present investigation. 
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1. Introduction   
 
   Most of the modern engineering structures are generally made up of multiphase porous continuum, the classical theory, which 
represents a fluid saturated porous medium as a single phase material, is inadequate to represent the mechanical behavior of such 
materials especially when the pores are filled with liquid. In this context the solid and liquid phases have different motions. Due to 
these different motions, the different material properties and the complicated geometry of pore structures, the mechanical behavior 
of a fluid saturated porous medium is very complex and difficult. So from time to time, researchers have tried to overcome this 
difficulty. For more details and for the historical review on the subject of the multiphase continuum mechanics, the reader is 
referred to the work of de Boer and Ehlers (1988) or to the recently published monograph Boer (2000).    
   Based on the work of von Terzaghi (1923, 1925), Biot (1941) proposed a general theory of three-dimensional deformations of 
fluid saturated porous solid. Then the wave propagation and dynamic extensions were done by Biot (1956a,1956b,1962). Biot 
theory is based on the assumption of compressible constituents and till recently, some of his results have been taken as standard 
references and basis for subsequent analysis in acoustic, geophysics and other such fields. 
   Based on the work of Fillunger  model (1913) ( which is further based on the concept of volume fractions combined with surface 
porosity coefficients) , Bowen (1980) and de Boer Ehlers (1990a,1990b) developed and used another interesting theory in which 
all the constituents of a porous medium are assumed to be incompressible . There are reasonable grounds for the assumption that 
the constituents of many fluid saturated porous media are incompressible. For example, taking the composition of soil, the solid 
constituents are incompressible and liquid constituents, which are generally water or oils are also incompressible. Moreover in an 
empty porous solid as a case of classical theory, the change in the volume is due to the changes in porosity during the propagation 
of a longitudinal wave. The assumption of incompressible constituents does not only meet the properties appearing in many 
branches of engineering practice, but it also avoids the introduction of many complicated material parameters as considered in the 
Biot theory. So this model meets the requirements of further scientific developments. Based on this theory de Boer and Ehlers 
(1993) and   Recently, Kumar and Hundal (2002,2003a,2003b,2004,2005) studied some problems of wave propagation in fluid 
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saturated incompressible porous media.  However, no attempt has been made to study source problem in fluid saturated 
incompressible porous media. 
   In the present investigation, the disturbance due to point force in normal and tangential direction have been discussed by the use 
of integral transforms .Integral transforms have been inverted numerically. Pore pressure on the displacement and stress 
components are depicted graphically.                         
 
2. Problem formulation 
 
   We consider a homogenous fluid saturated incompressible porous half space z≥ 0 of a rectangular Cartesian coordinate system 
(x, y, z) having origin on the surface z =0 and z axis pointing vertically into the medium. A normal and tangential force is assumed 
to be acting at the origin of the rectangular Cartesian coordinates.   
Following de Boer and Ehlers (1990,1993), the equations governing the deformation of an incompressible porous medium 
saturated with non-viscous fluid in the absence of body forces are 
               
               ∇ . (η S  Su& +η F

Fu& ) =0,                                                                                                                                                (1)  

         ( λ S  +μ S ) ∇ (∇ . Su ) + Sμ ∇ 2
Su  - η S ∇ p - ρ S

Su&&  + S V ( Fu& - Su& ) =0,                                                          (2) 

           η F  ∇ p + ρ F  Fu&& + S V ( Fu& - Su& ) =0,                                                                                                                               (3)           

          S
ET  = 2μ S  SE   + λ S  (E S  .I)I,                                                                                                                                      (4)   

  SE  = 
2
1

 (grad Su + grad T
Su ) ,                                                                                                                                                  (5) 

where  
 iu,u,u ii &&& ,  i =S, F, denote the displacement, velocities and acceleration of solid and fluid phases respectively and p is the 

effective pore pressure of the incompressible pore fluid. sρ  And  Fρ  are the densities of the solid and fluid respectively. S
ET  

is the stress in the solid phase and SE  is the linearized  langrangian strain tensor. sλ And sμ  are the macroscopic Lame’s 

parameters of the porous solid and  sη  and  Fη  are the volume fraction s satisfying    sη + Fη = 1. 

The case of isotropic permeability, the tensor S V  describing the coupled interaction between the solid and fluid is given by de 
Boer and Ehlers (1990) as  

 

S V =  F

FRF

K
γη 2)(

I = SV I,   

where  FRγ  is the   effective specific weight of the fluid and Fk  is the Darcy’s permeabilitbility coefficient of the porous 
medium.  
For two dimensional problem, we assume the displacement vector iu  (i=F, S) as 

           iu  = ( ,0,iu iw )       where   i=F,S.                                                                                                                                        (6)                  
 
For further consideration it is convenient to introduce the dimensionless quantities defined as: 
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33t =
E
t33 .                                                        (7)                  

In these relations E is the Young’s modulus of the solid phase, ∗ω  is a constant having the dimensions of frequency, 1C  is the 
velocity of a longitudinal wave propagating in a fluid saturated incompressible porous medium and is given by de Boer and Ehlers 
(1993) as 
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  1C = FSSF

SSF

ρηρη
μλη

22

2

)()(
)2()(

+
+

,                                                                                                                                                      (8) 

If pore is absent or gas is filled in the pores then Fρ  is very small as compare to Sρ  and can be neglected so the relation reduce 
to  
 

0C = S

SS

ρ
μλ 2+

.                                                                                                                                                                            (9)     

   This gives the velocity of the longitudinal wave propagating in an incompressible empty porous solid where the change in 
volume is due to the change in porosity and well known result of the classical theory of elasticity. In an incompressible non porous 
solid →Fη   0, then (8) becomes 1C  = 0 and physically acceptable as longitudinal wave cannot propagate in an incompressible 
medium. 
The displacement components iu  and iw  are related to the non dimensional potential iφ and iψ  as  

iu =
x

i

∂
∂φ

 +
z

i

∂
∂ψ

, iw =
xz

ii

∂
∂

−
∂
∂ ψφ

,        i=F,S                                                                                                                         (10) 

We define the Laplace and Fourier transforms as follows:  

( )( )szxii ,,,ψφ = { }( ) dtetzx st

o

ii −
∞

∫ ,,,ψϕ ,                                                                                                                              (11) 

{ }( )szii ,,~,
~

ξψφ = { }( ) dxeszx ixii ξψϕ ,,,∫
∞

∞−

,                                                                                                                           (12) 

With the aids of (1) – (7) and (10) - (12) the values of Sφ
~

,   Fφ
~

, p~ , Sψ~ , Fψ~  satisfying radiation conditions that Sφ
~

,   Fφ
~

, 

p~ , Sψ~ , Fψ~ 0→  , z ∞→ are given by  
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p~   = n1
azeA −

1 ,                                                                                                                                                                                (15) 
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3. Boundary conditions 
 
We consider the normal force or tangential force on the surface of the half space z = 0, i.e.  
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St33    -  p = - ),(1 txFP  ,    at z = 0,                                                                                                                                                (18) 
St31    =    - 2P ),( txF   ,     at z = 0,                                                                                                                                                (19)                  

where 21 , PP  are the magnitude of the forces. 
and  
1)  2P  = 0 for the force in normal direction. 

2)  1P  =  0 for the force in tangential direction . 

Considering 1P′ =
E
P1 , 2P′ = 

E
P2 , and with the aid of (4)-(7) and (10)- (19) we obtain the  

 the components of displacement and stress and pore pressure as : 
 

Su~ =   
Δ
1 ( ξi 1Δ

aze− - b 2Δ
bze−  ),                                                                                                                                                (20)                   

sw~   = 
Δ
1 (a 1Δ

aze− + ξi 2Δ
bze−  ),                                                                                                                                               (21)                 

Fu~  = 
Δ
1 ( ξi 1m 1Δ

aze− - b 2m 2Δ
bze−  ),                                                                                                                                    (22)                   

Fw~  = 
Δ
1

 (a 1m 1Δ  
aze− + ξi 2m 2Δ

bze− ),                                                                                                                                  (23)                  

St33
~

=
Δ
1 ( -hd1 1Δ

aze− - 2 bdi 2ξ 2Δ
bze− ) ,                                                                                                                                 (24)                   

 

  St31
~

  =  
Δ
1 (- 12iad 1Δ

aze− + 1
22 )( db+ξ 2Δ

bze− ),                                                                                                              (25)                   

p~ =
Δ
1 (-n1 1Δ

aze− ),                                                                                                                                                                        (26)                 

where  
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SSS aa
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μλξλ 222 2
.    

4. Applications 
 
Case 1.Green’s function 
The general solutions for displacement and stress presented in equations (20)-(26) will be used to yield response of a half space 
subjected to a concentrated force as  
   ),( txF = )()( tx δδ                                                                                                                                                                       (27) 
where, (δ   ) is the dirac – delta function .  
Applying the Laplace and Fourier transforms defined by (11) and (12) on (27), yield  

),(
~

sF ξ  = 1                                                             (28) 
Case 2: Influence functions 
  Here ),( txF = )()( tx δψ                                                                                                                                                                (29) 
Where )(xψ  is a known function and takes two types of values  
1.    Uniformly distributed force  
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             )(xψ =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>

≤

ax

ax

,0

,1
                                                                                                                                                           (30) 

where 2a is non –dimensional width of a strip.           
Applying Laplace and Fourier transforms defined by (11) and (12)  on (29) and (30), we obtain                                                                      

),(
~

sF ξ = [ ]ξξ /)sin2( a                                                                                                                                                                (31) 
2. Linearly distributed force  

)(xψ =
⎪
⎩

⎪
⎨

⎧

>

≤−

ax

ax
a
x

,`0

,1
                                                                                                                                                                   (32)  

where 2a is non –dimensional width of a strip.  
Applying Laplace and Fourier transforms defined by (11) and (12) on (29) and (32), we obtain                                                                      

),(
~

sF ξ =
a

a
2

)]cos(1[2
ξ

ξ−
                                                                                                                                                              (33) 

The expressions for displacements, and stresses, pore pressure can be obtained for concentrated, uniformly and linearly distributed 

force by replacing ),(
~

sF ξ from (28) ,(31) and (33) in (20) - (26).       

Taking 2P = 0 in resulting expressions, we obtain the corresponding results for a force in normal direction and 1P  = 0 in the 
resulting equations yield the results for a force in the tangential direction. 
 
5. Particular case 
 
   If the pore liquid is absent, we obtain the corresponding expressions for the components of displacement and stress in empty 
porous elastic half space as:    
 

Su~    =  
∗Δ

1 ( ξi
∗Δ1

zae 1− - b1
∗Δ2

zbe 1− ) ,                                                                                                                                   (34)                  
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6. Inversion of the transform 
 
   The transformed displacements, stresses and pore pressures are functions of the parameters of Laplace and Fourier transforms s 

and ξ  respectively and hence are of the form ),,(
~

szf ξ . To obtain the solution of the problem in the physical domain, we must 
invert the Laplace and Fourier transform by using the method applied by Kumar et. al (2005) 
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7. Numerical results and discussion 
 
   With the view of illustrating the theoretical results and for numerical discussion we take a model for which the values of the 
various physical parameters are taken from de Boer and Ehlers (1993)  

    Sη  = .67,                    Fη  = .33,              Sρ =1.34Mg / 3m ,   =Fρ  .33Mg / 3m ,             

Sλ = 5.5833MN / 2m  ,  Fk  = .01m /s,   FRγ  = 10.00KN / 3m ,   Sμ  = 8.3750 MN/ 2m . 

The values of vertical solid displacement Sw , vertical fluid displacement Fw ,vertical solid stress 33
st  , horizontal solid stress 

31
St and  pore pressure p  for fluid saturated incompressible  porous half space (FS) and empty porous elastic half space (ES) are 

shown due to concentrated force (CF), uniformly distributed force (UDF), linearly distributed force (LDF) at t= 0.5.The variations 
of these components with  distance x are shown by 
(1)   The solid lines with and without central symbols to represent the case when CF is applied for ES and FS respectively. 
(2)   The long dashed lines with and without central symbols to represent the case when UF is applied for ES and FS respectively. 
(3) The small dashed lines with and without central symbols to represent the case when LDF is applied for ES and FS respectively. 
 
These variations are shown in figs. 1-10. The computations are carried out for z =1 in the range 100 ≤≤ x , a=1. 

 
 7.1 Force in normal direction 
 
Figure 1. Shows the variations of vertical solid displacement component Sw  with distance x for FS, ES. For FS, the values  of 

Sw   first increase in the range 0 6.5≤≤ x  then  decrease in the remaining range of x whereas for ES, the values of  Sw  initially  
decrease in  the  range 5.20 ≤≤ x  then  approach to a constant values as x increases further .It is noticed that values  of Sw  for 
ES as compared to the values of Sw  for  FS are more in the range 30 ≤≤ x , less in the range 4.83 ≤≤ x  then more for 
x≥ 8.4 .  Figure 2.Shows the variations of the vertical fluid displacement component Fw  with distance x for FS. The trend of 
variations of  Fw  is same due to all the forces (CF, UDF, LDF) but corresponding values are different in magnitude. Figure 3. 
Depicts the variations of vertical solid stress component 33

st    with distance x for both FS, ES. The values of  33
st   for FS 

decrease in the range 5.50 ≤≤ x  then increase in the remaining range   of x whereas the values of  33
st   for ES decrease 

gradually in the range 1.20 ≤≤ x , then   oscillates about origin  for   the  remaining values of x  due to all three forces 
(CF,UDF, LDF). It is evident that values of 33

st  for FS as compared to the values of 33
st  for ES are more in the range 

30 ≤≤ x , less in the range 1.83 ≤≤ x  then more in the range 101.8 ≤≤ x . Behaviour of horizontal solid stress component 

31
St for both FS and ES is shown in the figure 4.For ES, the values horizontal solid stress 31

St decrease sharply in the range 

3.20 ≤≤ x then its behaviour is oscillatory for the whole range of x whereas for FS values of 31
St are distributed in large 

range but with small magnitude. Figure 5. Depicts the variations of the pore pressure p with distance x for FS. The values of p 
increase in the range 5.50 ≤≤ x  then decrease as x 5.5≥ due to all the forces (CF, UDF and LDF)   
 
7.2 Force in tangential direction 
 
Figure 6. Shows the variations of vertical solid displacement component Sw  with distance x for FS, ES. Values of Sw  initially 
decrease for FS and increase for ES, then their  Behaviour is opposite oscillatory due to all three forces (CF,UDF, LDF). Figure 
7.Shows the variations of the vertical fluid displacement component Fw with distance x for FS. Values of Fw decrease sharply in 

the range 0 2≤≤ x then oscillates for the whole range of x due to all three forces (CF,UDF, LDF ). Figure 8. Shows the 
variations of vertical solid stress component 33

st  with distance x for FS and ES. The trend of variations of 33
st  for both FS and 

ES due to all the forces is same but corresponding values are different in magnitude. Its values initially decrease in the range 

0 2≤≤ x   then increase in the range 2 4≤≤ x , then oscillates as x increase further. 

Figure 9.show the variations of horizontal solid stress component 31
St with distance x for both FS, ES. The values of 31

St  for 
FS first decrease monotonically in the range 0 8.5≤≤ x then increase monotonically   in the range 108.5 ≤≤ x  whereas for ES 
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values of 31
St start with initial increase then oscillates for the whole range of x . Figure10. Depicts the variations of the pore 

pressure p with distance x for FS. The values of pore pressure p decrease sharply in the range 0 2≤≤ x , then oscillates for the 
remaining values of x due to all the forces (CF, UDF, LDF) 
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 Figure 5. Variation of  pore pressure p with horizontal
                 distance x(normal direction)
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Figure7.Variation of vertical fluid displacement component W F
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Figure 8: variation of the vertical solid stress component ts
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 Figure 9: Variation of the horizontal solid stress component ts
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 Figure10. Variation of  pore pressure p with horizontal
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 8. Conclusion      
 
 1. The Laplace and Fourier transforms are used to derive the components of vertical solid displacement vertical fluid  
     displacement, vertical stress, horizontal stress and pore pressure. 
2. Values of vertical solid displacement vertical fluid displacement, vertical stress, horizontal stress and pore pressure are close to  
    each other due to CF and LDF as compared to the values due to UDF in both the media.  
3. Behaviour of variation of fluid displacement component Fw  and pore pressure p is observed similar for all types of forces.  

4. Near the point of application of source, the porosity effect increase the values of  33
st   and decrease the values of 31

St in  
    normal direction whereas its effect is opposite in tangential direction. 
 
References  
 
Biot M. A., 1941.  General Theory of  Three dimensional consolidation . J.    Appl. Phys., 12 (2), 155 – 161. 
Biot M.A., 1956a.  Theory of Propagation of Elastic Waves in a Fluid-saturated     Porous Solid - 1. Low Frequency Range . J. 

Acoust. Soc. Am. 28 , 168 -178. 
Biot M.A., 1956b.  Theory of Propagation of Elastic Waves in a Fluid-saturated     Porous Solid - II. Higher Frequency Range . J. 

Acoust. Soc. Am. 28, 179 - 191. 
Biot M. A., 1962.  Mechanics Of Deformation And Acoustic Propagation In Porous    Media .J.Appl.Phys. ,33(4), 1482 – 1498 .  
Bowen R. M., 1980. Incompressible Porous Media Models By Use Of The Theory      Of     Mixtures . Int. J. Engg. Sci. 18, 1129 – 

1148. 
de  Boer  R., 2000. Theory   Of  Porous Media .    Springer –Verleg New York . 
de  Boer  R. and   Ehlers  W., 1988.   A Historical Review  Of  The  Formulation  Of  Porous   Media Theories . Acta Mechanics 

74, 1-8. 
de Boer  R. and Ehlers  W., 1990a. The Development of the Concept of Effective   Stress. Acta Mechanica 83 , 77 - 92. 
de Boer R. and Ehlers W., 1990b. Uplift, Friction and Capillarity – Three  Fundamental Effects for Liquid-saturated Porous Solids. 

Int. J. Solid   Structures. 26, 43 - 57. 
de Boer R., Ehlers W. and Liu Z.,1993. One Dimensional Transient Wav  Propagation In Fluid Saturated Incompressible Porous 

Media [J]. Arch. App.   Mech .63, 59 – 72. 
Fillunger P., 1913. Der Auftrieb in Talsperren. Osterr. Wochenschrift fur den   offentl. Baudienst. I. Teil532 - 552, II. Teil 552 - 

556, III. Teil  567 – 570. 
Kumar R. and  Ailawalia  P., 2005. Elastrodynamics of inclined loads  in  micro polar  cubic crystal, Mechanics and Mechanical 

Engineering, Vol. 9, No. 2, pp. 57-75.  



Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 61-70 

 

70

 

Kumar R. and Hundal B.S., 2002. A study of spherical and cylindrical wave propagation in a non–homogenous fluid saturated 
incompressible porous medium by the method of characteristics. Currents Trends in Industrial and Applied Mathematics, 
Edited By P.Manchanda Et.Al. Anamya Publisher , New Delhi , 181 -194 . 

 Kumar R., and  Hundal B.S., 2003a. Wave propagation in a fluid saturated incompressible porous medium. Indian J. Pure and 
Applied Math. Vol. 4, pp. 651-65. 

Kumar R.and Hundal B.S., 2003b. One dimensional wave propagation in a non homogenous fluid saturated incompressible porous 
medium. Bull. Allahabad Math Soc . Vol. 18, pp. 1-13. 

 Kumar R. and Hundal B.S., 2004. Effect of non homogeneity on one–dimensional wave propagation in a fluid saturated 
incompressible porous medium. Bull .Cal. Math Soc., Vol. 96, No. 3, pp. 179-188.  

Kumar R.and  Hundal B.S., 2005. Symmetric wave propagation in a fluid saturated incompressible porous medium. J. Sound and 
Vibration, 288, pp. 361-373. 

Von Terzaghi K., 1923. Die Berechnug der Durchlassigkeit des Tones aus dem Verlauf der hydromechanischen 
Spannungserscheinungen. Sitzungsber Akad. Wiss. (Wien), Math. – Naturwiss. K., Abt. IIa 132 , pp. 125-138. 

Von Terzaghi K., 1925.  Erdbaumechanik auf Bodenphysikalischer Grundlage, p.    399. Leipzig – wien : Franz Deuticke . 
 
 
Biographical notes  
 
Dr. Rajneesh Kumar - born on 08-06-1958, did M.Sc.(1980) from Guru Nanak Dev University, Amritsar(Punjab, India), M. Phil.(1982) from Kurukshetra 
University Kurukshetra(Haryana, India) and Ph. D.(1986) in Applied Mathematics from Guru Nanak Dev University, Amritsar(Punjab, India). Guided 52 M. Phil. 
students, 9 students awarded Ph.D. degree and 8 students are doing Ph.D. under his supervision. He  have 200 publications in Journals of international repute. His 
area of research work is Continuum Mechanics (micropolar elasticity, thermoelasticity, poroelasticity, magnetoelasticity, micropolar porous couple stress theory, 
viscoelasticity, mechanics of fluid).  
 
Sanjay Kumar - born on 05-03-1973, did M.Sc.(1995) from Kurukshetra University, Kurukshetra (Haryana, India). Presently he is doing research in the 
Department of Mathematics, Chaudhary Devi Lal University Sirsa (Haryana, India) since August 20, 2008.   
 
Dr. Aseem Miglani is a Professor in the Department of Mathematics, Chaudhary Devi Lal University Sirsa (Haryana, India). He has more than 15 years of 
experience in teaching and research. He has published more than twenty papers in referred international journals.  
 
Received December 2010 
Accepted August 2011 
Final acceptance in revised form August 2011 
 
 


