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Abstract

Several modeling techniques have been used to classify the low-back disorders (LBDs) risk associated with the industrial jobs.
Many researchers have demonstrated the use of artificial neural networks (ANNs) to predict musculoskeletal disorders risk
associated with occupational exposures. In order to improve the accuracy of LBDs risk classification, this paper proposes to use
the support vector machines (SVMs), a machine learning algorithm used extensively in the last decade. The results of SVMs
based ensemble classification approach to classify the low-back disorders (LBDs) risk associated with the industrial jobs are
presented. Four different kernels (i.e. the stump kernel, perceptron kernel, Laplacian kernel and exponential kernel) were used to
create infinite ensemble of SVMs and their performance have been compared with the SVMs, AdaBoost SVMs, and a
backpropagation neural network. The results suggest an increased performance by stump and Laplacian kernel in comparison to
the radial basis function and polynomial kernel based SVMs, AdaBoost SVMs, and the back propagation neural network.
Highest classification accuracy of 77.01% was achieved by Laplacian kernel based SVMs in comparison to 71.3% and 74.7% by
radial basis function kernel based SVMs and back propagation neural network respectively.
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1. Introduction

The term musculoskeletal disorders (MSDs) refer to the conditions that involve the nerves, tendons, muscles, and supporting
structures of the body. Work related Musculoskeletal disorders (WMSDs) refer to musculoskeletal disorders to which the work
environment and the performance of work contribute significantly or are being made worse or long lasting by the working
conditions. WMSDs are amongst the most prevalent lost-time injuries and illnesses in almost every industry (BLS, 1995; BLS,
1996; Itasca, 1995; Tanaka et al., 1995) and those involving the back, are amongst the most costly occupational problems
(Frymoyer & Cats, 1991; Webster & Snook, 1994; Guo et al., 1995). WMSDs may cause a great deal of pain and suffering among
afflicted workers and may decrease productivity and the quality of products and services. Workers experiencing aches and pains
on the job may not be able to do quality work.

Ortiz-Hernandez et al. (2003) analyzed the relationship between musculoskeletal disorders and use of the personal computer
(PC) in Mexico City and showed that continuous use the PC increased risk of developing musculoskeletal disorders. Such an
increase is mediated by ergonomic factors e.g. mouse use, remaining seated for prolonged periods, adoption of inadequate or
uncomfortable postures, performing certain PC tasks, and psychosocial factors etc. Bernard (1997) examined the epidemiologic
evidence of the relationship between selected MSDs of the upper extremity & the low back and exposure to physical factors at
work. Specific attention is being given to analyzing the weight of the evidence for the strength of the association between these
disorders and the work factors. Because the relationship between exposure to physical work factors and the development and
prognosis of particular disorders may be modified by psychosocial factors, the literature about psychosocial factors and the
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presence of musculoskeletal symptoms or disorders is also reviewed. Understanding these associations and relating them to the
cause of disease is critical for identifying exposures amenable to preventive and therapeutic interventions. Also a substantial body
of credible epidemiologic research provides strong evidence of an association between MSDs and certain work-related physical
factors when there are high levels of exposure and especially in combination with exposure to more than one physical factor e.g.
repetitive lifting of heavy objects in extreme or awkward postures.

On the basis of the survey conducted over the past 25 years and with a random sample of about 2,50,000 private sector
establishments, Bureau of Labour Statistics (1994) of the U.S. Department of Labour reported that approximately 705,800 cases
(32%) were the result of overexertion or repetitive motion, 367,424 injuries due to overexertion in lifting (65% affected the back);
93,325 injuries due to overexertion in pushing or pulling objects (52% affected the back); 68,992 injuries due to overexertion in
holding, carrying, or turning objects (58% affected the back); total across these three categories, 47,861 disorders affected the
shoulder. 83,483 injuries or illnesses were caused by unspecified overexertion events, 92,576 injuries or illnesses due to repetitive
motion, including typing or key entry, repetitive use of tools, and repetitive placing, grasping, or moving of objects other than
tools. Of these injuries or illnesses, 55% affected the wrist, 7% affected the shoulder, and 6% affected the back. It has been
reported by National Research Council (USA) that the estimated costs associated with the lost days and compensation claims
related to musculoskeletal disorders-including back pains and repetitive motion injuries-range from $13 billion to $20 billion
annually. This is a serious problem that has spurred considerable debate about the causal links between such disorders and risk
factors at the workplace. Musculoskeletal disorders (MSDs) are a major occupational health problem in Europe also, affecting over
40 million workers. Even current EU legislation has included some ergonomic provisions relating to MSDs prevention.

The modeling techniques may be used for the development of models that explicitly describe the risk associated with various
work designs so that specific, quantitative workplace assessments can be made (Dempsey, 1997). For example, although there are
established risk factors for LBDs, the manner in which these factors interact to promote the risk of LBDs in industry, and
ultimately disability, is not well understood (Zurada et al., 1997). Many researchers have demonstrated the use of, for example,
advanced statistical methods including logistic regression and generalized additive models (Dempsey, 1995) and (Marras et al.,
1993) and artificial neural networks (ANNs) (Zurada et al., 1997; Karwowski, 1994; Killough, 1995 and Chen et al. 2000) and
semi-supervised learning approach (Chandna et al., 2010) to predict musculoskeletal disorders risk associated with occupational
exposures. It is found that neural networks provide superior predictive capability in comparison to multiple linear regression
models (Zurada et al., 1997 and Killough, 1995). Some of the problems with a back-propagation neural network based modeling
algorithm includes setting up of different learning parameters (like learning rate, momentum), the optimal number of nodes in the
hidden layer and the number of hidden layers so as to have a less complex network with a relatively better generalization
capability. A large number of training iterations may force ANN to over train, which may affect the predicting capabilities of the
model. Keeping these issues in view, the main objective of this study is to develop a support vector machines based classification
system that could classify industrial jobs according to the potential risk for low-back disorders (LBDs). Support vector machines
based classification algorithms are found to work well in comparison to back-propagation neural network (Pal and Mather, 2006),
thus suggesting that such an algorithm could be very useful in modeling potential risk for low-back disorders in an industrial
environment.

In recent years, a lot of work proposing the combination of multiple classifiers, referred to as an ensemble classifier, have been
reported in literature and found to be more accurate than any of the individual classifiers making up the ensemble. An ensemble is
defined as a set of individually trained classifiers whose predictions are combined when classifying a new data. In the last decade a
number of ways to create ensemble of classifiers are suggested in the literature (Bauer and Kohavi, 1999 and Dietterich, 2000).

Recently, some studies suggest that it is beneficial to use infinite ensemble learning (Demiriz et al., 2002) in comparison to other
ensemble approaches. The learning algorithms such as SVMs are found to be working well by combining infinite hypotheses
(Vapnik, 1998). An infinite ensemble approach with SVMs can be obtained by embedding the base learners (hypothesis) into a
SVMs kernel, as SVMs is capable of handling infinite number of features through the use of kernels. This approach can embed an
infinite number of base learning models altogether, which is not possible by traditional ensemble learning algorithms. This allows
constructing new kernels; Lin (2005) derived four new kernels, the stump kernel, the perceptron kernel, Laplacian kernel and
exponential kernel to create an infinite ensemble of SVMs.

Keeping in view the potential of ensemble approaches for classification (Pal, 2007; 2008), this paper discusses the results of an
infinite ensemble approach as proposed by Lin (2005) with SVMs as base classifier to classify industrial jobs according to the
potential risk for low-back disorders (LBDs). Results obtained with this ensemble approach are compared with AdaBoost SVMs,
SVMs and back-propagation neural network in terms of overall classification accuracy.

2. Support Vector Machines

The support vector machine classifier is based on statistical learning theory (Vapnik, 1995) and tries to find an optimal
hyperplane as a decision function in high dimensional space (Boser et al., 1992) and (Cristianini & Shawe-Taylor, 2000). The
SVMs use structural risk minimisation, rather than using empirical risk minimisation. Empirical risk minimises the
misclassification error on the training set, whereas structural risk minimises the probability of misclassifying a previously unseen
data point drawn randomly from a fixed but unknown probability distribution (Lin, 2005). Linearly separable classes are the
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simplest case on which to train a support vector machine. Let the training data with k number of samples be represented

by {Xi . Y }, i=1...k where X € RN is an N-dimensional space and y € {-1, +1} is the class label. These training patterns are

said to be linearly separable if there exists a vector w (determining the orientation of a discriminating plane) and a scalar b
(determine the offset of the discriminating plane from the origin) such that

yi(W'Xi-l-b)—lZO )
The hypothesis space can be defined by the set of functions given by
fw.b =sign(w - x +b) )

If the set of examples is linearly separable, the goal of the SVMs is to minimise the value"w"z, which is equivalent to find the
separating hyperplanes for which the distance between the classes of training data, measured along a line perpendicular to the
hyperplane, is maximised. This distance is called the margin (Vapnik, 1995) .The problem of minimising "W"2 can be solved by

using standard Quadratic Programming (QP) optimisation techniques and Lagrangian multipliers by forming a Lagrangian. For a
two-class problem the decision rule that separates the two classes can be written as:

£ (x) = sign (ilz yi(xox,)+ bj ®

Where A, i=1,....,k are positive Lagrange multipliers. In the case of linearly non-separable data Cortes and [24] suggested that
the restriction that every training vector of a given class lie on the same side of the optimal hyperplane be relaxed by introducing
a positive "slack variable" &;, that takes the value &; > 0. In this case, SVMs algorithm searches for the hyperplane that

maximises the margin and that, at the same time, minimizes a quantity proportional to the number of misclassification errors. This
trade-off between margin and misclassification error is controlled by introducing a positive constant C such that co > C> 0.

For non-linear decision surfaces (Boser et al., 1992) proposed that a feature vector is mapped into a higher dimensional
Euclidean space (feature space), via a non-linear vector function. The optimal margin problem in the Euclidean space can be

written by replacing X; - X j with D(x;)- (I)(X i ) and the equation (3) will have the form:

f(x):sign[;ziy@<x>-a><xi>+bj "

As suggested by (7) the only quantities that one needs to compute are the scalar products, of the form ®(x). ®(y) which is
computationally quite expensive. To cope up with problem, Vapnik (1995) introduced the concept of the kernel function K in the
design of non-linear SVMs. A kernel function is defined as:

K(xi,xj)=®(x;)- @(x;) ()
Thus, based on equation (5), equation (4) will have the form:
f(x)= sign(Z/Ii i K (x;, xj)+ bj 6)
i

In this optimization problem the kernel function is computed rather than (I)(X). This approach consists in moving the training

dataset into a higher-dimensional feature space where the training data may be spread further apart and a larger margin may be
found for the optimal hyperplane. A number of kernel functions can be used with SVMs. Vapnik (1995) discussed kernels and the
parameters of the kernel function in detail. SVMs were initially designed for binary (two-class) problems. When dealing with
multiple classes, a "one against one" approach (Knerr et al, 1990) is used in this study.

3. Ensemble of SVMs

Following section discusses the effect of infinite ensemble approach proposed by Cortes and Vapnik (1995) with support vector
machines as a base classifier to classify low-back musculoskeletal disorders. it also discusses the infinite approach to create
ensemble of SVMs in details.

3.1 Infinite Ensemble of SVMs

In place of using a powerful learning model, ensemble learning algorithms such as AdaBoost (Freund and Schapire,1997) deals
with a simple base learning model H whereas the classifier h€ H is called a base hypothesis. Ensemble learning algorithms
construct a classifier that averages over some base hypotheses in a set of hypotheses H. AdaBoost iteratively selects K hypotheses

h. > H to construct an ensemble classifier
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M
f(X): Sign(ZWi h, (X)j for Wy >0 and i=1,2,... , M. 7
i1

A classifier f, expressed by equation (7) is called an ensemble classifier, and W, is called the hypothesis weights. Another
property of using finite ensemble learning algorithms is that they select each hypothesis hi by calling a base learning algorithm.

Ratsch et al.,, (2001) suggested that underM — 00 AdaBoost asymptotically approximates an infinite ensemble classifier

sign[z w, h, (X)J such that (w, h) is an optimal solution to
i=1

min |,

wj €R, hj eH

M

i=

subjectto ( 1Wi h, (X)) 21, for w; >0 (®)

Lin (2005) suggested that SVMs and AdaBoost can easily be related as same role is played by the elements of (D(X) and
hypotheses hi (X)in SVMs and AdaBoost respectively and both works on linear combination of these elements. SVMs minimizes
the |2 —norm of weights as well as having an additional term b, where as AdaBoost minimizes the |1 —norm of weights and

requires W; >0 for ensemble learning.

This connection between SVMs and ensemble learning is utilized by Lin (2005) to formulate kernels those embodies infinite
number of hypotheses in H and equation (6) with these kernels is a linear combination of infinite number of hypotheses (with an
intercept term). Lin (2005) defined a kernel based on feature mapping as:

Assume that H = ha aeC , where C'is a measure space. The kernel that embodies H is defined as:
Ku.r (% X )= o) (a)da ©)
i X
Whereq)x(a ) = I’(a )ha (X), and r:C' —R" is chosen such that the integral exists for all X, X e ¥ and & is the parameter
of the hypothesis ha .
The algorithm proposed by Lin (2005) for infinite ensemble of SVMs has the following steps:

1. Start with a hypothesis space H and training data represented by {(Xi > Yi )}:(:1 . The hypothesis set is negation complete
(i.e.h e H iff (— h) € H ) (Freund and Schapire, 1997) and contains a constant hypothesis (Vapnik, 1998).

2. Ackernel (K}, ) is constructed using equation (9) and a proper value of I.
3. Choose parameters such as regularization parameter C of SVMs classifier.
4. Obtain the value of Lagrange multipliers (ﬂi ) and the value of intercept b by solving the optimization problem with K, .

k

5. Output a classifier Sign (Z Vi 4 Ky (Xi, X; ) + bj , which is equivalent to some ensemble classifier over H.
i=1

Four different kernels used to create the infinite ensemble of SVMs are:

e The stump kernel ((”X - X'H 1)+ coefficient , which contains an infinite number of decision stumps.
e  Stump kernel can be extended to the perceptron kernel (HX - X'H 2) + coefficient, which consists of infinite number

of perceptrons.

e Laplacian kernel ( exp(— 7/HX - XH ID is derived from the infinite tree kernel. SVMs with the Laplacian kernel create

an infinite ensemble classifier over decision trees of any level.
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e  Similarly, exponential kernel ( exp(—y“x - X'“ ZD also embeds infinite number of decision regions with perceptron

boundaries.
Both Laplacian and exponential kernel are RBF kernels with ) and coefficient is user-define parameter. For further details about

these kernels and their derivation readers are referred to Lin (2005).
4. Dataset and methodology

The dataset collected by Marras et al. (1993) in a field study of 235 industrial jobs with low and high-risk values of low-back
disorders was used in this study. The dataset consists of independent variables namely lift rate in number of lifts per hour (LIFTR),
peak twist velocity average (PTVAVG), peak moment (PMOMENT), peak sagittal angle (PSUB), and peak lateral velocity
maximum (PLVMAX) and a single dependent variable (i.e. low-back disorders) having two discrete levels of ‘low risk' and ‘high
risk’. Zurada et al. (1997) used a backpropagation neural network (NN) to classify industrial jobs according to the potential for
low-back disorders using this dataset. A detailed table of both training and test data is provided by Zurada et al. (1997). They used
a total of 148 randomly selected data to train the neural network. Training dataset consists of 74 low-risk and 74 high-risk jobs.
The remaining 87 jobs (50 low risk and 37 high-risk) were used to test the neural network. In order to compare the performance of
the proposed approach with that of Zurada et al. (1997), same dataset for training and testing was used in this study. In the present
study class 1 refers low-risk jobs whereas class 2 represents high-risk jobs.

The concept of the kernel was introduced to extend the capability of the SVMs to deal with non-linear decision surfaces. There
is a little guidance in the literature on the criteria to be used in selecting a kernel, the kernel-specific parameters and the value of
regularization parameter (C). A grid search method together with k-fold cross-validation error and trial and error is one of the most
frequently used methods for parameter selection with SVMs with averaged size of datasets (Ismael et al. 2008). Grid search
method was found to be computationally very expensive because the model must be evaluated at many points within the grid for
each parameter and cross-validation method does not consider test dataset during evaluation of the model. Keeping in view the
problems with the grid search method together with k-fold cross-validation error, trial and error method was used in this study. A

2
number of trials were carried out using polynomial ((x.y + l)degree) and radial basis kernel function (e(— Yy H Xi — X H j) as

well as with different kernels proposed by Lin (2005) with different values of kernel-specific parameter and C, considering
classification accuracy on test dataset as the measure of quality. The value of y was varied between 0.1 and 1 whereas value of C
was varied between 1 and 10. In case of polynomial kernel, degree of polynomial value was varied between 1 and 3. The value of
kernel width parameter y = 0.167 (with radial basis function kernel), degree of polynomial=1(with polynomial kernel) and
regularization parameter C = 2 was found to be performing well with different kernels. In case of AdaBoost, ten iterations were
found to provide highest accuracy with the dataset used in this study.

Classification accuracy was used to compare the performance of different classification algorithms used in this study. In
addition, confusion matrices are also provided for different ensemble approaches used in this study.

5. Results

The aim of the present study is to evaluate the usefulness of infinite ensemble of SVMs as base classifier for LBDs classification
and comparing its performance with SVMs. To test the performance, four different kernels are considered to create infinite
ensemble as mentioned in section 3. A test dataset consisting of 87 jobs, consisting of 50 low risk and 37 high-risk jobs, has been
used to judge the performance of the trained classifiers. Table 1 provides the classification accuracy derived by using SVMs with
different kernels. Results suggest a comparable performance by polynomial and radial basis function kernels with this dataset. In
comparison, result suggests that Laplacian kernel based ensemble approach classified a total of 67 dataset correctly (77.01%). Out
of 50 low-risk and 37 high-risk jobs, a total of 42 low-risk and 25 high-risk jobs were correctly classified by Laplacian kernel
based SVMs. Similarly, Stump kernel based ensemble of SVMs provides an improved classification performance in comparison to
SVMs (Table 1). Results from table 2 suggest a poor performance by Perceptron and exponential kernel based ensemble approach
in comparison to the SVMs. A comparison of results from Table 1 suggests that Laplacian and stump kernel based ensemble of
SVMs provides an increase of about 5% in classification accuracy in comparison to Polynomial/ RBF kernel based SVMs. In
comparison to infinite ensemble of SVMs, AdaBoost based ensemble approach achieve an accuracy of 72.4% suggesting inferior
performance by AdaBoost SVMs with this dataset.

Table 1: Classification accuracies with different kernel using SVMs.

Kernel used
Polynomial | RBF | Stump | Perceptron | Laplacian | Exponential
Overall classification (%) 71.30 71.30 | 75.90 66.70 77.01 63.20
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Results from this study also suggest an improved performance by the infinite ensemble based SVMs approach to classify the
industrial jobs (with both low and high risk jobs) in comparison to the neural network approach proposed by Zurada et al. (1997).
In comparison of classification accuracy of 74.7% achieved by neural network approach, stump and Laplacian kernel based
ensemble of SVMs achieves an accuracy of 75.9% and 77.01% respectively. A comparison of table 2 suggests that out of 50 low
risk jobs Laplacian kernel based infinite ensemble of SVMs classify 42 correctly and out of 37 high risk jobs this kernel classify
25 correctly.

Table 2: Confusion matrices with different ensemble approaches with SVMs

Stump Laplacian Perceptron Exponential AdaBoost

Classl | Class2 | Classl | Class2 | Classl | Class2 | Classl | Class2 | Classl | Class2
Class 1 41 12 42 12 40 19 36 18 42 16
Class 2 9 25 8 25 10 18 14 19 8 21

6. Conclusions

This study discusses SVMs based infinite ensemble approach to classify low-back disorders (LBDs) risk associated with the
industrial jobs. Four different kernels are used to create infinite ensemble of SVMs and their performance has been compared with
AdaBoost SVMs, SVMs and a backpropagation neural network. Results suggests that the infinite ensemble approach works well in
classifying the low-back disorder (LBDs) risk associated with the industrial jobs in comparison to the neural network approach
proposed by Zurada et al. (1997) and AdaBoost SVMs in term of overall classification accuracy. A better performance by
Laplacian kernel based infinite ensemble of SVMs in comparison to other kernels is also concluded from the results. Finally,
performance degradation of ensemble of SVMs in classifying the high risk jobs may be due to possible misclassification of data in
high and low risk jobs (Zurada et al., 1997). Despite the encouraging performance of the proposed approach with used dataset, a
major problem with artificial intelligence-based modeling approaches is their data-dependent nature. Their outputs may change
depending on the dataset, the scale at which the experiments are conducted or the number of data available for training.
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