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Abstract 
 
  The advancement in automation and accuracy of machine tool made it possible to produce high quality industrial products. One 
of the main perceptions of quality in mechanical products is its physical appearance. One of the most important factors in 
physical appearance is the surface roughness. A number of research publications addressed this issue of surface roughness 
measurement and analyses. This research focuses on study and analyses of surface quality improvement in end milling operation 
of Al/SiCp metal matrix composite. These materials are selected as they are most widely used in automobile and aerospace 
industry. This research paper develops an improved mathematical model for surface roughness (Ra) prediction in end milling of 
Al/SiCp MMC. The impacts of spindle speed, feed rate, depth of cut and various percentage weight of silicon carbide are studied 
on surface roughness. The result obtained using Response Surface Methodology (RSM) gives a good prediction of surface 
roughness when compared with actual surface roughness. 
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1. Introduction 
 
   The recent advancements in the CNC machine tool technology and the wide availability in manufacturing of mechanical 
components made it possible to produce high quality products. The factors defining "quality of a component" are generally its 
geometrical and dimensional tolerance, material specification, optimal design efficiency and good surface finish. The surface 
operations during manufacturing are affected by these factors directly or indirectly. They not only affect the surface quality but 
also influence the tool wear, fracture and work piece rejection, which leads to economic losses, Groover (2000).  
  Metal-matrix composites (MMCs) have been increasingly used in industries because of their improved properties over those of 
non-reinforced alloys. Among the various types of MMCs, aluminium-based composites have been found in various engineering 
applications such as the aerospace and automobile industries. The most popular reinforcements are silicon carbide (SiC) and 
alumina (Al2O3). Aluminum, titanium, and magnesium alloys are commonly used as the matrix phase. The density of most of the 
MMCs is approximately one third that of steel, resulting in high-specific strength and stiffness, Quan and Ye (2003). It is possible 
to produce high-quality MMC components to near-net shape through various manufacturing techniques, but additional machining 
is unavoidable to achieve the desired surface quality and dimensional tolerance for efficient assembly, Hung et al. (1996).  
   Several studies have been done in order to examine the efficiency of different cutting tool materials, such as carbide, coated 
carbide, and diamond in turning, milling, drilling, reaming, and threading of MMC materials. The main problem while machining 
MMC is the extensive tool wear caused by the very hard and abrasive reinforcements. Manna et al. (2003) investigated the 
machinability of Al/SiC MMC and found that no built-up edge (BUE) is formed during machining of Al/SiC MMC at high speed 
and low depth of cut and also observed a better surface finish at high speed with low feed rate and low depth of cut. Kumar Reddy 
et al. (2008) studied quality of components produced during end milling of Al/SiC particulate metal matrix composites (PMMCs). 
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The results showed that the presence of the reinforcement enhances the machinability in terms of both surface roughness and lower 
tendency to clog the cutting tool, when compared to a non-reinforced Al alloy.  

Palanikumar (2007) developed a model for surface roughness through response surface method (RSM) while machining GFRP 
composites. Four factors five level central composite rotatable design matrix was employed to carry out the experimental 
investigation. Analysis of variance (ANOVA) was used to check the validity of the model. Muthukrishnan et al. (2009) developed 
two modeling techniques used to predict the surface roughness namely ANOVA and ANN. Oktem et al. (2005) developed an 
effective methodology to determine the optimum cutting conditions leading to minimum surface roughness while milling of mold 
surfaces by coupling RSM with a developed genetic algorithm (GA). Alauddin et al. (1995) predicted the surface roughness of 190 
BHN steel after end milling using a mathematical model depending on cutting speed, feed rate and depth of cut. They used the 
response surface methodology (RSM) to explore the effect of these parameters on surface roughness. C-olak et al. (2007) predicted 
surface roughness of milling surface related to cutting parameters by using the genetic expression programming method. They 
considered cutting speed, feed rate and depth of cut of end milling operations for predicting surface roughness and predicted a 
linear equation for surface roughness related to experimental study.  

The researchers also used response surface methodology (RSM) to explore the effect of such cutting parameters as cutting 
speed, feed rate and depth of cut on surface roughness. Alauddin et al. (1997) also established a mathematical model for predicting 
the tool in the end milling process of 190 BHN steel under dry cutting conditions. The model included the following variables: 
cutting speed, feed rate and axial depth of cut. It also verified the suitability of the prediction model via ANOVA.  

This paper focuses on machining of Al/SiCp metal matrix composites which is widely used in engineering applications. The 
chemical composition of the LM25 aluminum alloy is shown in Table-1.  

 
Table 1. Chemical composition of LM25 aluminum alloy 

Material Si Mg Mn Fe Cu Ni Ti 
LM25 Al alloy 7 0.33 0.3 0.5 0.1 0.1 0.2 

 
2.  Surface roughness 
 

The surface roughness parameter used to evaluate surface roughness in this study is the Roughness average (Ra). This parameter 
is also known as the arithmetic mean roughness value, Arithmetic Average or Centerline Average. Within the presented research 
framework, the discussion of surface roughness is focused on the universally recognized Ra. Ra is recognized universally as the 
commonest international parameter of roughness. The average roughness is the area between the roughness profile and its centre 
line, or the integral of the absolute value of the roughness profile height over the evaluation length as shown in Figure 1, Yang and 
Chen (2001). 

 
 
 

 
 

Figure 1. Surface roughness profile  
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Table 2. Process parameters and their limits  
 
 
 
 
 
 
 

Table 3. Experimental design matrix and results  

Ex. No. 
 

 
Coded values 

 
Surface roughness (Ra) ( µm) 

 
X1 

 
X2 X3 X4 

Experimental 
values 

Predicted values 

Initial model Improved 
model 

1.  -1 -1 -1 -1 4.406 4.418 4.413 
2.  1 -1 -1 -1 3.812 3.768 3.758 
3.  -1 1 -1 -1 6.034 6.035 6.036 
4.  1 1 -1 -1 5.229 5.234 5.231 
5.  -1 -1 1 -1 4.472 4.468 4.483 
6.  1 -1 1 -1 3.802 3.823 3.828 
7.  -1 1 1 -1 6.032 6.098 6.106 
8.  1 1 1 -1 5.312 5.301 5.301 
9.  -1 -1 -1 1 4.978 4.998 4.997 
10.  1 -1 -1 1 4.395 4.334 4.342 
11.  -1 1 -1 1 6.789 6.773 6.778 
12.  1 1 -1 1 5.945 5.958 5.972 
13.  -1 -1 1 1 5.071 5.070 5.066 
14.  1 -1 1 1 4.402 4.410 4.412 
15.  -1 1 1 1 6.804 6.857 6.847 
16.  1 1 1 1 6.054 6.046 6.042 
17.  -2 0 0 0 6.202 6.143 6.140 
18.  2 0 0 0 4.638 4.682 4.679 
19.  0 -2 0 0 3.679 3.709 3.706 
20.  0 2 0 0 7.008 6.962 6.959 
21.  0 0 -2 0 5.062 5.103 5.115 
22.  0 0 2 0 5.299 5.242 5.254 
23.  0 0 0 -2 4.334 4.316 4.313 
24.  0 0 0 2 5.639 5.641 5.638 
25.  0 0 0 0 5.183 5.189 5.185 
26.  0 0 0 0 5.177 5.189 5.185 
27.  0 0 0 0 5.221 5.189 5.185 
28.  0 0 0 0 5.163 5.189 5.185 
29.  0 0 0 0 5.155 5.189 5.185 
30.  0 0 0 0 5.199 5.189 5.185 
31.  0 0 0 0 5.229 5.189 5.185 

 
3. Response surface modeling  
 
   Response surface modeling was used to establish the mathematical relationship between the response (Yu) and the various 
machining parameters. The general second order polynomial response surface mathematical model, which analyses the parametric 
influences on the various response criteria, can be described as follows: 

Factors / Coding of levels -2 -1 0 +1 +2 
Spindle speed, N  (RPM)  2000 2500 3000 3500 4000 
Feed rate, f (mm/rev) 0.02 0.03 0.04 0.05 0.06 
Depth of cut, d (mm) 0.5 1 1.5 2 2.5 
Silicon Carbide, S (%wt.) 5 10 15 20 25 
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where, Xi (1, 2, k) are coded level of k quantitative variables. The coefficient bo is the free term, the coefficients bi are the linear 
terms, the coefficients bii are the quadratic terms, and the coefficients bij are the interaction terms. Applying the least square 
technique, the values of these coefficients can be estimated by using the observations collected (Y1, Y2, Yn) through the design 
points (n). To establish the initial model and refined model, a software package MiniTab was used to determine the coefficients of 
mathematical modeling based on the response surface regression model.  
 
4. Experimental Work  
 
   In this investigation LM 25 Aluminum with various %wt.of silicon carbide are used. The test sample dimensions were               
100 mm × 50 mm × 40 mm. In total 5 work pieces (Al reinforced with 5%, 10%, 15%, 20% and 25% weight of SiCp) are prepared. 
The machining is done on HASS CNC milling machine. The tools used are carbide having diameter 12 mm and number of flutes: 
4. CNC programs for the experiment were generated on FANUC software. The level of parameters selected for the experiments 
were given in the Table.2. Thirty one experiments are carried out according to the central composite design (CCD).The surface 
roughness (Ra) of the machined test specimens was measured using a Talysurf tester with a sampling length of 10mm.  
 
5. Result and Discussion 
 
5.1 Modeling and statistical analysis: The data given in the Table 3 is analysed by using a software package MiniTab ver 15. The 
regression analysis presented in Table 4. Model in Table 4 is the initial model and includes all the linear, square and interactions 
terms.  
 

Table 4: Statistical Analysis of all linear, square and interaction terms 
 

Estimated Coefficients for Ra (Un coded Units) 
 

 
Predictor 

 

 
Coefficient 

 

 
P value 

 
Constant            4.716 <0.000 
X1 (N, rpm)             -0.002 <0.000 
X2 (f, mm/rev)              61.948 <0.000 
X3  (d, mm)              0.050 0.810 
X4 (S, %wt.)          0.099 <0.000 
X1

2        0.000 <0.000 
X2

2         365.551 <0.001 
X3

2            -0.017 0.628 
X4

2     -0.002 <0.000 
X1 X2        -0.008 <0.004 
X1 X3            0.000 0.927 
X1 X4    -0.000 0.758 
X2 X3           0.612 0.791 
X2 X4        0.789 <0.003 
X3 X4       0.002 0.638 
S = 0.0450746   R-Sq = 99.85%     R-Sq(adj) = 99.72% 
Analysis of Variance 

Source DF Seq SS Adj SS Adj MS F P 
Regression 14 22.0127 22.013718 1.572334 763.09 0.000 
Linear 4 21.7361 0.313339 0.078294 38.00 0.000 
Square 4 0.2282 0.228666 0.057041 27.68 0.000 
Interaction 6 0.0485 0.048455 0.008076 3.92 0.013 
Residual Error   16 0.0330 0.032508 0.002060   
Total 30 22.0456     

 
The empirical equation for predicting the surface roughness (Ra) is: 
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Ra = 4.716 – (0.002 X1) + (61.948 X2) + (0.050 X3 ) + (0.099 X4) + (365.551 X2

2) – (0.017X3
2) – (0.002 X4

2) 
        – (0.008 X1 X2) + (0.612 X2 X3)+ (0.789 X2 X4) + (0.002 X3 X4)             (2) 
   

Analysis of variance (ANOVA) is given at the end of the Table 4. It shows the value of p < 0.05 for all linear, square and 
interactions terms. i.e. all these effects are significant on the surface roughness (Ra). The initial model also indicates that the DOC 
is insignificant factor, but it has less influence on surface roughness. In the light of above initial model, the insignificant square and 
interaction terms can be removed to generate a more precise model. Table 5 shows an improved model in which only significant 
terms (p < 0.05) from Table 4 are considered. 
 
5.2 Improved modeling and statistical analysis: Table 5 takes into account only major factors, factor square and factor interactions 
that are influencing on the surface roughness. Based on 5 % confidence interval i.e. the value of p < 0.05, in linear terms spindle 
speed, feed rate, depth of cut and %wt. of SiCp; in square terms spindle speed, feed rate and %wt. of SiCp; in interaction terms 
spindle speed-feed rate and feed rate-%wt. of SiCp plays an important role in affecting surface roughness. R-Sq(adj) is 99.78% 
indicating that our model can predict within 99.78% accuracy.  
 

Table 5: Statistical Analysis of improved model 
 

Estimated Coefficients for Ra (Uncoded Units) 
 

 
Predictor 

 

 
Coefficient 

 

 
P value 

 
Constant            4.736 <0.000 
X1 (N, rpm)             -0.002 <0.000 
X2 (f, mm/rev)              62.509 <0.000 
X3  (d, mm) 0.070 <0.000 
X4 (S, %wt.)          0.097 <0.000 
X1

2        0.000 <0.000 
X2

2         370.013 <0.000 
X4

2     -0.002 <0.000 
X1 X2        -0.008 <0.001 
X2 X4        0.789 <0.001 
S = 0.0404235  R-Sq = 99.84%     R-Sq(adj) = 99.78% 
Analysis of Variance 

Source DF Seq SS Adj SS Adj MS F P 
Regression 9 22.0113 22.011329 2.445703 1496.70 0.000 
Linear 4 21.7361 0.396642 0.099161 60.68 0.000 
Square 3 0.2277 0.227661 0.075887 46.44 0.000 
Interaction 2 0.0476 0.047611 0.023805 14.57 0.000 
Residual Error   21 0.0343 0.034315 0.001634   
Total 30 22.0456     

 
The empirical equation for predicting the surface roughness Ra is:  

 
Ra= 4.736 – 0.002X1+ 62.509X2 + 0.070X3 + 0.097X4 + 370.013X2

2 – 0.002X4
2 – 0.008X1X2 + 0.789X2X4               (3) 

 
The normal probability plot, given in Figure 2, shows a clear pattern (as the points are almost in a straight line) indicating that all 

the factors and their interaction given in Table 5 are affecting the surface roughness. Also the errors are normally distributed and 
the regression model is well fitted with the observed values. Figure 3 indicates that the maximum variation of -0.15 to 0.10, which 
shows the high correlation that exists between fitted values and observed values. This plot is the typical testing for the assumption 
of constant variance. If the assumption is satisfied, the residual plot should be structureless. It is obvious that it is subjective and 
difficult to determine whether the plot is structured. To get rid of this ambiguity, in this paper, the assumption of constant variance 
was checked by Brown–Forsythe test. At 95% confidence level, the critical value of Brown–Forsythe test is 4.06. In this study, 
Brown–Forsythe test statistic was 3.58. With the smaller value of the test statistic than its critical value, it can be concluded that 
the assumption of constant variance of residuals is satisfied. After the validity of the assumptions was carefully checked, no 
assumption was violated. Therefore, the ANOVA of this screening experiment was sufficiently reliable, Kanlayasiri et al. (2008)   
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Figure 2. Normal probability plot for surface roughness 
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Figure 3. Residual Vs fitted values for surface roughness 
 
Following conclusions can be deduced from Figure 4. 

 
Speed: An increase in speed will significantly reduce the surface roughness. At low cutting speed (s), the unstable larger 
BUE is formed and also the chips fracture readily producing the rough surface. As the cutting speed (s) increases, the 
BUE vanishes, chip fracture decreases, and, hence, the roughness decreases, Palanikumar K et al.(2007). This conclusion 
is also supported by practically obtained values.  
 
Feed: An increase in feed will increase surface roughness. Increase in feed rate increases the chatter and heat generation, 
which increases the surface roughness. This conclusion is also supported by observation.  
 
DOC: Increasing the depth of cut would slightly increase the surface roughness. 
%Wt. Of SiCp: An increase in %wt. of SiCp will increase surface roughness. This conclusion is also supported by 
observation.  

 



Arokiadass et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 78-87 

 

84

 

Spindle speed - feed rate: From experience we know that spindle speed and feed rate interaction effects the surface 
roughness. Figure 5 shows that increasing the spindle speed decrease the surface roughness but increase feed rate will 
decrease the surface roughness. With the lower feed rates, the BUE forms readily and is accompanied by feed marks 
resulting in increased roughness and the surface roughness (Ra) decreases as the cutting speed (s) increases. At low 
cutting speed (s), the unstable larger BUE is formed and also the chips fracture readily producing the rough surface. As 
the cutting speed (s) increases, the BUE vanishes, chip fracture decreases, and, hence, the roughness decreases. The best 
surface finish was achieved at the lowest feed rate and highest cutting speed combination, Choudhury et al.(1998) and 
Palanikumar et al.(2007).This conclusion may be very useful as for mass production, optimal values for spindle speed and 
feed rate can be set hence reduce the manufacturing time without losing surface finish. 

 

40003500300025002000

7

6

5

4

0.060.050.040.030.02

2.52.01.51.00.5

7

6

5

4

252015105

Speed

M
ea

n

Feed

DOC %wt. of SiCp

Main Effects Plot for Surface roughness (Ra)
Data Means

 
 

Figure 4. Main effects plot for surface roughness 
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Figure 5. Spindle speed-Feed rate interaction plot for surface roughness 
 

Feed rate - %wt. Of SiCp: From experience we know that feed rate and %wt. of SiCp interaction effects the surface 
roughness. Figure 6 shows that increasing the feed rate will increase the surface roughness. Also increasing the %wt. of 
SiCp will increase the surface roughness. The reason being, addition of reinforcing materials which are normally harder 
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and stiffer than the matrix, machining becomes significantly more difficult than in the case for conventional materials. 
The best surface finish is achieved at the lowest feed rate and lowest %wt. SiCp combination,.Quan and Zehua (2000). 
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Figure 6. Feed rate-%wt. of SiCp interaction plot for surface roughness 
 

6. Analysis for optimization of the responses  
 

The After building the regression model, a numerical optimization technique using desirability functions can be used to optimize 
the response. The objective of optimization is to find the best settings that minimize a particular response, Myers RH, Montgomery 
DC. (2002). A desirability value, where 0 ≤ d ≤ 1. The value of d increases as the "desirability" of the corresponding response 
increases. The factor settings with maximum desirability are considered to be the optimal parameter conditions. Most of the 
standard statistical software packages (Minitab, Design, Expert, etc.) employ this popular technique for response optimization. In 
the present case, Minitab was used to optimize the response parameters.  

 

 
Figure 7. Optimum results for minimum surface roughness 

 
The optimization plot for surface roughness has been shown in Fig. 7. It is revealed that highest desirability could be obtained at 

high cutting speed, low feed rate, low depth of cut and high cutter diameter. The goal was to minimize the surface roughness. The 
upper value and target has been fixed at 7.008 and 3.678 μm, respectively. The parameter setting for achieving a surface roughness  
as low as of 2.5946 μm has  been predicted as spindle speed (N) 4000 rpm, feed rate  (f) 0.020 mm/rev, depth of cut (d) 0.50 mm, 
and weight of silicon carbide (S) 5%. The desirability of optimization has been calculated as 1.0000, i.e., all the parameters are 
within their working range. 
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7. Conclusions  
 

1. In this research the effect of process parameters spindle speed, feed rate, depth of cut and various percentage weight of 
silicon carbide were studied statistically on surface roughness for LM25 Al/SiCp MMC.  

2. Response surface methodology is used to study the effect of these parameters and their interaction on surface roughness.  
3. An empirical equation is formed by using RSM in MiniTab software to predict the surface roughness LM25 Al/SiCp 

MMC. The predicted value of improved model gives better result when compared with the actual measured values.  
4. In the order of their influence, Feed rate, Spindle speed, % wt. of SiCp, Feed rate-Spindle speed interaction and Feed rate-

% wt. of SiCp interaction has most influence on surface roughness.  
5. The study also concluded that the effect of depth of cut on surface roughness is negligible based on 95 % confidence level 

(p > 0.05).  
6. From the developed mathematical model, the optimal machining parametric combination, i.e., spindle speed (N) 4000 

rpm, feed rate (f) 0.020 mm/rev, depth of cut (d) 0.50 mm, and weight of silicon carbide (S) 5%. was found out to achieve 
the minimum surface roughness as 2.5946 μm. 
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