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Abstract 

 
Unsteady hydromagnetic Couette flow of a viscous, incompressible and electrically conducting fluid between two infinitely 

long parallel porous plates, taking Hall current into account, in the presence of a transverse magnetic field is studied. Fluid flow 
within the channel is induced due to impulsive movement of the lower plate of the channel. Magnetic lines of force are assumed 
to be fixed relative to the moving plate. Solution of the governing equations is obtained by Laplace transform technique. The 
expression for the shear stress at the moving plate due to primary and secondary flows is also derived. Asymptotic behavior of 
the solution valid for small and large values of time t  is analyzed to gain some physical insight into the flow pattern. Numerical 
values of the primary and secondary velocities are displayed graphically versus non-dimensional channel width variable η  for 
various values of Hall current parameter m , magnetic parameter 2M , suction/injection parameter S  and time t  whereas the 
numerical values of shear stress at the moving plate due to primary and secondary flows are presented in tabular form for 
different values of 2, ,m M S  and .t  
 
Keywords: Hydromagnetic Couette flow, suction/injection, magnetic field, impulsive movement of the plate, modified 
Hartmann boundary layer. 
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1. Introduction 

 
Theoretical/experimental investigation of unsteady hydromagnetic Couette flow in the presence of a transverse magnetic field is 

significant from a practical point of view because fluid transients may be expected at the start-up time in so many MHD devices 
viz. MHD pumps, MHD generators, MHD accelerators, MHD flow meters, nuclear reactors using liquid metal coolant etc. 
Katagiri (1962) studied unsteady hydromagnetic Couette flow of a viscous, incompressible and electrically conducting fluid in the 
presence of a uniform transverse magnetic field when the fluid flow within the channel is induced due to impulsive movement of 
one of the plates of the channel. Muhuri (1963) analyzed this problem in a parallel plate porous channel when the fluid flow within 
the channel is induced due to uniform accelerated movement of one of the plates of the channel. In their problem Katagiri (1962) 
and Muhuri (1963) considered that the magnetic lines of force are fixed relative to the fluid. Singh and Kumar (1983) studied the 
problem considered by Katagiri (1962) and Muhuri (1963) in a non-porous channel when the magnetic lines of force are fixed 
relative to the moving plate. It may be noted that the study of hydromagnetic flow within a porous channel may find application in 
designing of cooling systems with liquid metals, geothermal reservoirs, underground energy transport, petroleum and mineral 
industries, in purification of crude oils etc. Prasad Rao et al. (1982), Makinde and Chinyoka (2001), Makinde and Osalusi (2006), 
Abbas et al. (2006), Attia (2007), Hayat et al. (2007, 2008), Khan et al. (2009) and Seth et al. (2011) studied hydromagnetic flow 
within an infinitely long parallel plate channel with porous boundaries considering different aspects of the problem. In all these 
investigations, effects of Hall current are not taken into account. It is well known that, in an ionized fluid where density is low 
and/or magnetic field is strong, the effects of Hall current become significant as stated by Cowling (1957) since Hall current 
induces secondary flow in the flow-field. Hall current on the fluid flow have many applications in MHD power generation, nuclear 
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power reactors, underground energy storage systems, and in several areas of astrophysical and geophysical interest. Jana and Dutta 
(1977) investigated effects of Hall current on unsteady MHD Couette flow within a non-porous channel when the magnetic lines 
of force are fixed relative to the fluid. Bhaskara Reddy and Bathaiah (1982) studied effects of Hall current on MHD Hartmann 
flow through a porous channel. 

The purpose of the present investigation is to study the effects of Hall current on unsteady hydromagnetic Couette flow of a 
viscous, incompressible and electrically conducting fluid within an infinitely long parallel plate porous channel in the presence of a 
uniform transverse magnetic field. Fluid flow within the channel is induced due to impulsive movement of the lower plate of the 
channel and magnetic lines of force are fixed relative to the moving plate of the channel. Present study may find applications in 
hybrid MHD energy generators, material processing in petroleum, metallurgy and mineral industries, geophysical and 
astrophysical problems of interest etc. 
   The paper is organized as follows: In Section 2, formulation of the problem and its solution is given. In Section 3, the expression 
for shear stress at the moving plate is mentioned. In Section 4, asymptotic solutions for small and large values of time t  are 
provided. In Section 5, i.e. in Results and Discussion, the behavior of the primary and the secondary velocities and the non-
dimensional shear stress at the moving plate due to the primary and secondary flows with respect to various values of the Hall 
current parameter m , magnetic parameter 2M , suction/injection parameter S  and time t  are discussed. The present results are 
compared with available results of Seth et al. (2011) and Singh and Kumar (1983) and are found to be in good agreement. Finally 
in Section 6, conclusions of the present study are provided.  
 
2. Formulation of the Problem and its Solution  

 
Consider unsteady flow of a viscous, incompressible and electrically conducting fluid between two parallel porous plates at 

0z =  and z h=  of infinite length, in x and y-directions, in the presence of a uniform transverse magnetic field 0H  applied 
parallel to the z-axis (See Fig. 1). Initially (i.e. when time 0t′ ≤ ), the fluid and plates of the channel are assumed to be at rest. At 
time 0t′ >  the lower plate at 0z =  starts moving with uniform velocity 0U  in the x-direction while the upper plate at z h=  is 
kept fixed. The fluid suction/injection takes place through the porous plates of the channel with uniform velocity 0W ( 0 0W >  for 
suction and 0 0W <  for injection). It is assumed that the no applied or polarization voltage exits so that the effects of polarization 

of the fluid is negligible (i.e. the induced electric field 0E =
r

) and the induced magnetic field produced by fluid motion are 
neglected in comparison to applied one (Cramer and Pai, 1973). Since the plates are of infinite extent in the x  and y -directions, 
all physical quantities, except pressure, depend on z  and t′  only. 
 

 
 

Figure 1. Physical Model of the Problem 
 

Therefore, the fluid velocity qr  and the magnetic field H
r

 are given by  

0 0( , , ), (0, 0, ),q u v W H H′ ′= =
rr          (1) 

where u′  and v′  are fluid velocity in x-direction and y-direction respectively.  
Under the above assumptions, the governing equations for the fluid motion are given by 
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2 22
0

0 2 2 ( ),
(1 )

e Hu u uW u mv
t z z m

σμ
υ

ρ
′ ′ ′∂ ∂ ∂ ′ ′+ = − −
′∂ ∂ ∂ +

        (2) 

2 22
0

0 2 2 ( ),
(1 )

e Hv v vW mu v
t z z m

σμ
υ

ρ
′ ′ ′∂ ∂ ∂ ′ ′+ = − +
′∂ ∂ ∂ +

         (3) 

where , , , , ,e e e emυ σ ρ μ ω τ ω=  and eτ  are the kinematic coefficient of viscosity, the electrical conductivity of the fluid, the fluid 
density, the magnetic permeability, the Hall current parameter, the cyclotron frequency and the electron collision time respectively. 
The initial and boundary conditions for fluid flow are given by 

0u v′ ′= =   for 0 z h≤ ≤   and 0,t ′ ≤        (4) 

0, 0u U v′ ′= =   at 0z =   for 0,t′ >        (5) 
0u v′ ′= =   at z h=   for 0.t′ >        (6) 

Equation (2) is valid when the magnetic lines of force are fixed relative to the fluid. On the other hand, when the magnetic lines of 
force are fixed relative to the moving plate (Rossow, 1958), equation (2) is replaced by  

2 22
0

0 02 2 ( ).
(1 )

e Hu u uW u mv U
t z z m

σμ
υ

ρ
′ ′ ′∂ ∂ ∂ ′ ′+ = − − −
′∂ ∂ ∂ +

        (7) 

Equations (3) and (7) are presented in the compact form as  
2 22

0
0 02 2 (1 ) ,

(1 )
e Hq q qW q im U

t z z m
σμ

υ
ρ

′ ′ ′∂ ∂ ∂ ′+ = − + −⎡ ⎤⎣ ⎦′∂ ∂ ∂ +
        (8) 

where q u iv′ ′ ′= + , and 1i = − . 
The initial and boundary conditions (4) to (6), in compact form, become 

0q′ =   for 0 z h≤ ≤  and 0,t ′ ≤         (9) 

0q U′ =   at 0z =   for 0,t′ >         (10) 
0q′ =   at z h=   for 0.t′ >         (11) 

Representing equation (8), in non-dimensional form, we obtain 
2 2

2 2 (1 ) ,
(1 ) e

q q q MS q im R
t mη η

∂ ∂ ∂
+ = − + −⎡ ⎤⎣ ⎦∂ ∂ ∂ +

        (12) 

where 2
0/ , / , / , /z h q q h t t h S W hη υ υ υ′ ′= = = = is the suction/injection parameter ( 0S >  for suction and 0S <  for 

injection), 2 2 2 2
0 /eM H hσμ ρυ=  is the magnetic parameter which is the square of Hartmann number and 0 /eR U h υ=  is the 

Reynolds number. 
The initial and boundary conditions (9) to (11), in non-dimensional form, become 

0q =   for 0 1η≤ ≤   and 0,t ≤        (13) 

eq R=   at 0η =    for 0,t >        (14) 
0q =   at 1η =    for 0.t >        (15) 

Applying the Laplace transform, equation (12) with the help of the initial condition (13) reduces to   

( ) 2 22

2 2 2

1
,

1 (1 )
eim M M Rd q dqS p q

dd m p mηη

⎧ ⎫+⎪ ⎪− − + = −⎨ ⎬
+ +⎪ ⎪⎩ ⎭

        (16) 

where 
0

( , ) , 0ptq e q t dt pη
∞ −= >∫  and p  being the Laplace transform parameter. 

Boundary conditions (14) and (15) after taking the Laplace transform become 
/eq R p=   at 0η =           (17) 

0q =    at 1η =           (18) 
The solution of equation (16) subject to the boundary conditions (17) and (18) is given by 

( ) ( ) ( )
( )

1 1

1 1

22

2 2
0

( 1)1 ,
(1 ) * (1 ) *

ck dkk
ak bk

j
k

M e eMq e e
pm p p m m p p m

− −∞
− −

=

⎡ ⎤− +
⎢ ⎥= + − −
⎢ ⎥+ + + +
⎣ ⎦

∑      (19) 

where  



Seth et al./ International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 172-183 

 

175

 

{ }2 2 2
1

( , ) / , 2 , 2 2 , , 1 ,

/ 2 / 4 * and * (1 ) / (1 ) .

j eq q z p R a k b k c k d k

k S p S m m M im m

η η η η= = + = + − = + = + − ⎫⎪
⎬

= + + + = + + ⎪⎭  
Taking the inverse Laplace transform of equation (19), we obtain 

( )* 2 2
2

0

2 2 2
2

1 11
21 2 2

( 1) (1 )
2 2 (1 ) 2

s sa a
m t

j
k

s s skb b c
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m t t
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λ λ λ

λ λ

λ λ λ
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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+⎝ ⎠ ⎝ ⎠ ⎝

∑

2 2 2

*

2 2 2

2 2 2 22 2 2 2
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c d de erfc t e erfc t e erfc t
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λ λ λ
λ λ λ
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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⎧⎪
⎨ ⎟

⎠⎪⎩

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎫⎞⎛ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎟− ⎜ + + − + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

,
⎤
⎪⎥
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(20) 

where  

1/21/222 2 2 4 2 2

2 2 2 2

( , ) / , ,

1, .
4 42 1 (1 ) 1

j e j jq q t R u iv i

S M m M S M
m m m

η λ α β

α β

= = + = + ⎫
⎪
⎪⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎬⎪ ⎪⎢ ⎥= + + ± +⎜ ⎟ ⎜ ⎟ ⎪⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟+ + + ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦ ⎭

      (21) 

Solution (20) is the general solution for unsteady hydromagnetic Couette flow within an infinitely long parallel plate porous 
channel with Hall effects when the fluid flow within the channel is induced due to impulsive movement of the lower plate of the 
channel. It clearly demonstrates a unified representation of initial hydromagnetic Couette flow, final steady flow confined within 
modified Hartmann boundary layer and the decaying oscillations excited by the interaction between Hall current, magnetic field, 
suction/injection and initial impulsive motion when the magnetic lines of force are fixed relative to the moving plate. This solution 
is valid for every value of time t . In the absence of Hall current (i.e. 0m = ), solution (20) is in agreement with the solution 
obtained by Seth et al. (2011). In the absence of Hall current and suction/injection (i.e. 0S = ), it agrees with the solution obtained 
by Singh and Kumar (1983).  
 
3. Shear Stress at the Moving Plate 

 
Non-dimensional shear stress components xjτ  and yjτ  at the moving plate 0η =  due to primary and secondary flows are given 

by 
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(22) 
where 2 , 2 2a k b k′ ′= = +  and 1 .d k′ = +  

 
4. Asymptotic Solutions 

 
To gain physical insight into the flow pattern, we now discuss the asymptotic behavior of the solution (20) for small and for 

large values of time t . 
 
Case I: When time t  is small (i.e. 1t < ) 

For small values of time t , solution (20) assumes the following form 
2 22 22

1 14 42 2
1 12

0

42 2
12
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2 2(1 ) 2 2
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    (24) 

where 
2 2 2

1 22 2, .
4 1 1

S M mMm m
m m

= + =
+ +

 

It is evident from the expressions (23) and (24) that there arises a Rayleigh boundary layer of thickness ( )O t  near the moving 

plate at 0η =  due to the initial impulsive movement of the plate. Also it may be noted from (23) and (24) that the primary velocity 
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ju  and the secondary velocity jv  are affected by the Hall current, magnetic field and suction/injection. In the absence of Hall 
current, (i.e. 0m = ), the secondary velocity vanishes. This is due to fact that Hall current induces secondary flow in the flow-field. 
There are no inertial oscillations in the flow-field. 
 
Case II: When time t  is large (i.e. 1t > ) 

For large values of time t , solution (20) may be represented in the following form 
( , ) ,j js jtu t u uη = +            (25) 

where 

( ) ( )

2 2
2

0

2 2
2

1 cos cos
(1 )

( 1) cos sin cos sin ,
(1 )

S Sa b

js
k

S Sk c d

u e a e b
m
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From the expressions (25) and (28) we observe that, the fluid flow is in quasi-steady state. The terms jsu  and jsv  represent final 

steady state flow. The steady state flow is confined within a thin boundary layer of thickness ( )1( / 2)O Sα −+ . This boundary layer 
may be recognized as the modified Hartmann boundary layer and may be viewed as the classical Hartmann boundary layer 
modified by Hall current and suction/injection. It is noticed from equation (21) that α  increases with increase in either magnetic 
parameter 2M  or suction/injection parameter S  or both. Thus we conclude that the thickness of the modified Hartmann boundary 
layer decreases with increase in either 2M  or S  or both. It is also seen from equations (26) and (29) that steady state flow 
represents spatial oscillations in the flow-field excited by Hall current, magnetic field and suction/injection. The unsteady part of 
the flow in equations (25) and (28), represented by jtu  and jtv , exhibits inertial oscillations in the flow-field excited by Hall 
current and magnetic field. The unsteady state flow represented by jtu  and jtv  is divided into two parts viz. 

1 1
,jt jtu v  and 

2 2
,jt jtu v . 

The inertial oscillations in 
1jtu  and 

1jtv  dampen out effectively in dimensionless time of ( ) ( )( )( )12 2 2/ 4 / (1 )O S M m
−

+ + , whereas 

in 
2jtu  and 

2jtv , they dampen out effectively in dimensionless time of ( )( )12 2/ (1 )O M m
−

+  when the final steady state is 

developed. This implies that suction/injection reduces the time of decay of inertial oscillations in the major part of the unsteady 
state flow whereas Hall current increases the time of decay of inertial oscillations in both the parts of the unsteady state flow. In 
the absence of Hall current, there are no inertial oscillations in the flow-field. 
 
5. Results and Discussion 

 
To study the effects of Hall current, magnetic field, suction/injection and time on the flow-field, the numerical values of the 

primary velocity ju  and the secondary velocity jv , computed from the analytical expression (20) mentioned in Section 2 by 
MATLAB software, are displayed graphically versus non-dimensional channel width variable η  in Figs. 2 to 9 for various values 

of the Hall current parameter m , magnetic parameter 2M , suction/injection parameter S  and time t . To compare our results with 
already existing results of Seth et al. (2011) and Singh and Kumar (1983) we have drawn the profiles of fluid velocity versus non-
dimensional channel width variable η  for various values of 2M , taking 0m = , 1 and 0S S= =  in Figs. 10 and 11. Figures 2 and 
3 illustrate the influence of Hall current on the primary velocity ju  and the secondary velocity jv . It is seen from Figure 2 that the 

primary velocity ju  decreases on increasing m . The secondary velocity jv  increases in the lower half of the channel and it 
decreases in the upper half of the channel on increasing m . This implies that the Hall current tends to retard fluid flow in the 
primary flow direction throughout the channel and fluid flow in the secondary flow direction in the upper half of the channel. It 
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has the reverse effect on the secondary flow in the lower half of the channel. Figures 4 and 5 demonstrate the effects of magnetic 
field on both the primary and secondary velocities. It is noticed from Figures 4 and 5 that both the primary velocity ju  and the 

secondary velocity jv  increase on increasing 2M  which implies that magnetic field tends to accelerate fluid flow in both the 
primary and secondary flow directions. This tendency of the magnetic field may be attributed to the movement of the magnetic 
lines of force along with the moving plate of the channel. Figures 6 and 7 display the influence of suction/injection on the primary 
and secondary fluid velocities. The primary velocity ju  decreases on increasing ( 0)S >  whereas it increases on increasing ( 0)S <  

in the region 0 0.8η≤ < . The secondary velocity jv  decreases on increasing ( 0)S >  in the region 0 0.6η≤ <  whereas it 

increases on increasing ( 0)S <  throughout the channel. This implies that suction retards fluid flow in the primary flow direction in 
the major part of the channel whereas injection has the reverse effect on it. Suction retards fluid flow in the secondary flow 
direction in the region 0 0.6η≤ <  whereas injection accelerates fluid flow in the secondary flow direction throughout the channel. 
Figures 8 and 9 depict the influence of time on the primary and secondary velocities. Both the primary velocity ju  and the 

secondary velocity jv  increase on increasing time t  which implies that fluid flow in both the primary and secondary flow 
directions are accelerated due to the passage of time. Figures 10 and 11 show that our results are in good agreement with the 
results obtained by Seth et al. (2011) and Singh and Kumar (1983).    
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    Figure 10. Velocity profiles when 0, 1m S= =  and 0.05t =                         Figure 11. Velocity profiles when 0, 0m S= =  and 0.05t =  
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The numerical values of the non-dimensional shear stress at the moving plate due to primary and secondary flows, computed from 
the expression (22) mentioned in Section 3 by MATLAB software, are presented in tabular form in Tables 1 to 3 for various values 
of 2, ,m M S  and t . To compare our results with that of existing results of Seth et al. (2011) and Singh and Kumar (1983) we 

have presented numerical values of shear stress at the moving plate for various values of 2 andM S  in Table 4. From Table 1 we 

see that the primary shear stress xjτ  increases on increasing m  whereas it decreases on increasing 2M . The secondary shear stress 

yjτ  increases, attains maximum and then decreases on increasing m  whereas it increases on increasing 2M . This implies that the 
Hall current tends to enhance the primary shear stress at the moving plate. Magnetic field tends to reduce the primary shear stress 
at the moving plate whereas it has the reverse effect on the secondary shear stress at the moving plate. It is found from table 2 that 
the primary shear stress xjτ decreases on increasing t  for all values of S  and it increases on increasing ( 0)S >  and decreases on 

increasing ( 0)S <  in magnitude. This implies that suction tends to enhance primary shear stress at the moving plate whereas 
injection has the reverse effect on it. Primary shear stress reduces with the passage of time at each time level. It is observed from 
table 3 that the secondary shear stress yjτ  decreases on increasing ( 0)S <  in magnitude for every value of time t  considered 

whereas it decreases on increasing ( 0)S >  when 0.05t ≤ . Secondary shear stress yjτ  increases on increasing t  when ( 0)S > . 
This implies that injection tends to reduce the secondary shear stress at the moving plate at each time level whereas suction tends 
to reduce it when 0.05t ≤ . Secondary shear stress at the moving plate increases with passage of time at each time level in case of 
suction. It is seen from Table 4 that our results are found to be in good agreement with the results obtained by Seth et al. (2011) 
and Singh and Kumar (1983).  
 

Table 1. Primary and secondary shear stress at the moving plate when 1S =  and 0.05t =   
2M ↓ m→ xjτ−  yjτ−  

0.5 1.0 1.5 0.5 1.0 1.5 
10 2.2435 2.8371 3.1870 0.6424 0.7796 0.6833 
15 1.9315 2.6982 3.1819 0.9479 1.1280 0.9792 
20 1.6755 2.5580 3.1468 1.2421 1.4610 1.2563 

 
 

Table 2. Primary shear stress xjτ−  at the moving plate when 1.0m =  and 2 10M =   

t ↓ S → -3 -2 -1 0 1 2 3 
0.03 2.0767 2.4182 2.7950 3.2077 3.6562 4.1405 4.6600 
0.05 1.4330 1.7265 2.0582 2.4285 2.8371 3.2838 3.7678 
0.07 1.1222 1.3729 1.6638 1.9950 2.3655 2.7742 3.2200 
0.09 0.9455 1.1572 1.4106 1.7057 2.0410 2.4140 2.8234 

  
 

Table 3. Secondary shear stress yjτ−  at the moving plate when 1.0m =  and 2 10M =   

t ↓ S → -3 -2 -1 0 1 2 3 
0.03 0.5658 0.5964 0.6202 0.6323 0.6305 0.6171 0.5969 
0.05 0.6577 0.7074 0.7474 0.7722 0.7796 0.7723 0.7566 
0.07 0.6624 0.7435 0.8103 0.8576 0.8837 0.8921 0.8903 
0.09 0.6120 0.7312 0.8323 0.9099 0.9623 0.9940 1.0136 

 
 

Table 4. Shear stress xjτ−  at the moving plate when 0m =  and 0.05t =   
2M ↓ S → -3 -2 -1 0 1 2 3 

2 1.1797 1.4926 1.8599 2.2835 2.7642 3.3013 3.8925 
4 1.0691 1.3516 1.6836 2.0667 2.5015 2.9873 3.5222 
6 0.9689 1.2240 1.5240 1.8704 2.2637 2.7032 3.1871 
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6. Conclusions 
 
The present investigation deals with the theoretical study of the unsteady hydromagnetic Couette flow within an infinitely long 

parallel plate porous channel with Hall effects. The significant results are summarized below: 
1. For small values of time t , a Rayleigh boundary layer of thickness ( )O t  arises near the moving plate and both the 

primary and secondary velocities are affected by Hall current, magnetic field and suction/injection. 
2. For large values of time t , fluid flow is in quasi-steady state. Steady state flow is confined within a thin modified 

Hartmann boundary layer. The steady state flow represents spatial oscillations in the flow-field excited by the Hall 
current, the magnetic field and suction/injection, whereas the unsteady flow exhibits inertial oscillations in the flow-field 
excited by Hall current and magnetic field.  

3. Hall current tends to retard fluid flow in the primary flow direction throughout the channel and fluid flow in the 
secondary flow direction in the upper half of the channel. It has the reverse effect on the secondary flow in the lower half 
of the channel. 

4. Magnetic field tends to accelerate fluid flow in both the primary and secondary flow directions. This tendency of the 
magnetic field may be attributed to the movement of the magnetic lines of force along with the moving plate of the 
channel.  

5. Suction retards fluid flow in the primary flow direction in the major part of the channel whereas injection has the reverse 
effect on it. Suction retards fluid flow in the secondary flow direction in the region 0 0.6η≤ <  whereas injection 
accelerates fluid flow in the secondary flow direction throughout the channel.  

6. Fluid flow in both the primary and secondary flow directions is accelerated due to the passage of time.  
7. Hall current tends to enhance the primary shear stress at the moving plate.    
8. Magnetic field tends to reduce the primary shear stress at the moving plate whereas it has the reverse effect on the 

secondary shear stress at the moving plate.  
9. Suction tends to enhance primary shear stress at the moving plate whereas injection has the reverse effect on it.  
10. Primary shear stress at the moving plate reduces with the passage of time at each time level. 
11. Injection tends to reduce the secondary shear stress at the moving plate at each time level whereas suction tends to reduce 

it when 0.05t ≤ .  
12. Secondary shear stress at the moving plate increases with passage of time at each time level in case of suction.     

 
Nomenclature 
 

0H  - uniform transverse magnetic field 
h  - width of the channel 

2M  - magnetic parameter 
m  - Hall current parameter 
p  - Laplace transform parameter 
S  - suction/injection parameter 
t  - non-dimensional time 

eR  - Reynolds number 

0U  - uniform velocity in x-direction 
,j ju v  - non-dimensional primary and secondary velocity respectively 

, ,x y z - Cartesian coordinates  
ρ  - fluid density 
σ  - electrical conductivity 
υ  - kinematic coefficient of viscosity 
η  - channel width variable 

eμ  - magnetic permeability 

eω  - cyclotron frequency 

eτ  - electron collision time 
,xj yjτ τ  - primary and secondary shear stress at the moving plate respectively. 
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