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Abstract 
 
   This paper discusses the use of Distance based optimal designs in the design of experiments (DOE) and artificial neural 
networks (ANN) in optimizing the stacking sequence for simply supported laminated composite plate under uniformly 
distributed load (UDL) for minimizing the deflections and stresses. A number of finite element analyses have been carried out 
using Distance-based optimal design, for training and testing of the ANN model. The deflections and stresses were found by 
analyses which were done by finite element analysis software. The ANN model has been developed using multilayer perceptron 
(MLP) back propagation algorithm. The adequacy of the developed model is verified by coefficient of determination (R). The 
sensitivity analysis has been performed to study the behavior of the laminated composite plate. The results obtained from the 
ANN model are compared with the finite element results.  For various fibre orientations, deflections and stresses analyses are 
performed to get the optimal fibre orientations. A verification tests are also performed to prove the effectiveness of the ANN 
technique after the optimum levels of fibre orientations are determined. The confirmation experimental results show that 
deflections and stresses are very good agreed with the finite element (FE) results. Consequently, the Distance-based optimal set 
of laminates and ANN are shown to be effective for optimization of stacking sequence of laminated composite plates.                     
  
Keywords: DOE, Laminated composite plates, ANN, MLP, Distance- based optimal design, Finite element analysis. 
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1. Introduction 
 
   The application of composites is increasingly being used in a large variety of structures including aerospace, marine and civil 
infrastructure owing to the many advantages they offer: high strength/stiffness for lower weight, superior fatigue response 
characteristics, facility to vary fibre orientation, material and stacking pattern. At the same time, the fabricated material poses new 
problems, such as failure due to delamination and pronounced transverse shear effects due to the high ratio of in-plane modulus to 
transverse shear modulus. Such difficulties can be analyzed to predict the behavior of composite laminates accurately (Kant et al, 
1988). Optimum design of fiber composite plates is one of the most interesting and yet intricate problems of structural mechanics. 
This is due to the increased number of the variables and levels of interrelation as compared to the case of isotropic materials.  In 
order to optimally design such a plate, the number of layers or plies necessary as identified by their angles of fiber orientations 
must be decided upon, as well as their required thicknesses for a specified load carrying capacity. Laminated composite materials 
are usually fabricated from unidirectional plies of given thickness and with fibre orientations limited to a small set of angles, eg., 
0o, 45o, -45o and 90o (Todoroki and Ishikawa, 2004). For designing of such laminates and optimizing the stacking sequence for 
various strength and stiffness requirements, integer programming and genetic algorithms are popularly used (Haftka, 1992; Richie 
and Haftka, 1995). Unfortunately for integer programming techniques usually require large computational resources; where as 
genetic algorithms may not give guaranty to integer valued solutions.  
   The analysis of plates and shell using the finite element method has been studied by a variety of approaches.  Lin and Lee 
(2004) used the genetic algorithm to optimize the stacking sequence of laminated composite structures. In that, a local search is 
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replaced by a regression model to reduce the huge calculation time of genetic algorithm. They found that, genetic algorithm (GA) 
converged much sooner than a standard GA. Abouhamze and Shakeri (2007) applied weighted summation method to optimize 
stacking sequence of laminated cylindrical panels with respect to the first natural frequency and critical buckling load. Riche and 
Haftka (1993) used a genetic algorithm to optimize the stacking sequence of a composite laminate for maximum the buckling 
load. Shakeri and Gol (2007) is optimized the natural frequency and buckling load using genetic algorithms. In that, they solved a 
series of optimization problems combining the two objective functions, the Pareto set is generated by optimizing a combination of 
the two objectives and the best stacking sequence is obtained. Todoroki and Terada (2004) developed the improved Fractal 
Branch and Bound method for stacking-sequence optimizations of Laminates using D-Optimal designs for maximum buckling 
load.  
   A new iteration fractal branch and bound method is proposed to optimize the multiple stacking sequences of a hat-type stiffened 
panel (Todoroki and Sekishiro, 2007). Al-filfily (2011) used response surface methodology and genetic algorithm to obtain 
maximum buckling load for laminated composite plate subjected to both mechanical and thermal loads. He used the probabilistic 
design system analysis module included in the ANSYS program. Todoroki and Ishikawa (2004) applied the D-optimal designs in 
the design of experiments, response surface methodology and genetic algorithm to determine the optimum stacking sequence for 
maximum buckling loads of a laminated composite cylinder under axial compression load. Choudhary and Tungikar (2011) 
analyzed the geometrically nonlinear behavior of laminated composite plates using the finite element analysis. They studied the 
effect of number of layers, effect of degree of orthotropy (both symmetric and anti symmetric) and different fibre orientations on 
central deflections.Yuarrming et al (2005) carried the optimization of a hat stiff stiffened laminated composite panel of a typical 
passenger bay of a blended wing body type transport airplane using neural network based response surface method and genetic 
algorithm to determine the minimum weight. Han et al (2006) performed the post buckling analysis of laminated composite plates 
when subjected to the combination of in-plane shear, compression and lateral load. They used an Element-based Lagrangian 
formulation. They concluded that, the combination of various types of loading and lay-up sequences play a major role in 
determining the nonlinear characteristics.  
   Farshi and Herasati (2005) designed the composite plate for minimum weight with minimum thickness that can sustain multiple 
static loadings applied normal to its surface without exhibiting failure of any kind in anyone of its layers, treating that the fibre 
orientation as discrete variables. They concluded that, the largest value of safety factor would always correspond to the best 
combination of normalized thicknesses in an assumed stacking order of the ply angles.  Van et al (2007) developed locking-free 
4-node element, within the framework of the first-order shear deformation theory (FSDT) that is able to work well in highly 
distorted forms for analysis of laminated composite plates/shells of different shapes. Ngo Nhu Khoa and Tran Ich Thinh (2007) 
developed a rectangular non-conforming element based on Reddy’s higher order shear deformation plate theory to analyze the 
laminated composite plates. They concluded that, the size of mesh and the convergence of method is involved by thickness ratio 
(h/a). Civalek (2008) developed a new numerical technique, the discrete singular convolution (DSC) method, for static analysis of 
thick symmetric cross-ply laminated composite plates based on the first-order shear deformation theory. They concluded that, the 
deflections response to a uniform load is higher than the response to a sinusoidal load and the deflection and stress values are 
sensitive to the kernel parameter r and grid numbers. Tahani and Nik (2009) developed an analytical method for bending analysis 
of laminated composite plates with arbitrary lamination and boundary conditions.  Pandya and Kant (1988) considered the higher 
order displacement model to bring out the effects of neglecting transverse normal stress/strain but at the same time retaining the 
higher-order in-plane degrees-of-freedom in the formulation. They found that, the results of transverse shear stresses obtained 
using equilibrium equations and plate constitutive relations are maximum for the sandwich plate rather than the laminated plates.     
   Aktaş (2011) studied the optimality criteria for central composite, Box-Behnken designs, using D-optimality and distance based 
optimality to achieve a robust design and compared with the original design approach. Marengo and Todeschini (1992) developed 
a  new algorithm for optimal, distance based, experimental design which does not require any preliminary hypothesis about a 
regression model and the best set of experiments defined through a fast exchange algorithm. In that, in each cycle, a substitution 
is selected to provide the maximum increase of the minimum distance between the currently selected experiments. Vukmiroviã  et 
al and Kuzmanoviã et al (2005, 2011) used the two different optimality criteria (information and distance based) for constructing 
the efficient  conjoint experimental design. Todoroki and Sasai (2003) used the D-optimal designs for Stacking sequence 
optimizations using genetic algorithm with zoomed response surface on lamination parameters for maximizing the buckling load. 
The Present work is concerned with the optimization of stacking sequence of laminated composite plates using Distance based 
optimal design of experiments in the design of experiments technique and artificial neural networks. The conformation 
experiments show that the maximum absolute relative error predicted by ANN and FE results is 4.31% which is less than 5%. 
Hence ANN model predicted results are very good agreed with the FE results. 
 
2.  Geometry of the Linear Layered Structural Shell Element 
 
   There are many element types, in ANSYS software, available to model layered composite materials. In our FE analysis, the 
linear layered structural shell element is used.  It is designed to model thin to moderately thick plate and shell structures with a 
side-to-thickness ratio of roughly 10 or greater. The linear layered structural shell element allows a total of 250 uniform-thickness 
layers. Alternately, the element allows 125 layers with thicknesses that may vary bilinearly over the area of the layer. It also has an 
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option to offset the nodes to the top or bottom surface. The geometry of the linear layered structural shell element is shown in 
Figure 1. 
 

 

Figure1. Geometry of 8-node element with six degrees of freedom 
Where 
xIJ = Element x-axis if ESYS (Element co-ordinate system) is not supplied. 
x = Element x-axis if ESYS is supplied. 
LN = Layer Number 
NL = Total Number of Layers 
I, J, K, L, M, N, O, P = Nodes 
The input includes element geometry, element material properties, boundary conditions and loadings. Briefly, the force-strain and 
moment-curvature relationships for a linear variation of strain through the thickness of kth layer may be defined as in Eq. (1). 
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Where {MT} and {BT} are resultant forces and moments for considering thermal effects.  The stress output is shown in Figure 2. 
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Figure 2. Linear Layered Structural Shell Element Stress Output  

Where xIJ = Element x-axis if ESYS is not supplied. 
             x = Element x-axis if ESYS is supplied  
 
3. Design of Experiments and Artificial neural networks 
 
3.1 Design of Experiments 
   A Design of Experiment (DOE) is a structured, organized method for determining the relationship between factors affecting a 
process and the output of that process. Standard DOE arrangements are available for box-like or spherical domains. However, we 
cannot use such simple geometrical arrangement of points for more complicated design domains. Instead, a Distance based optimal 
computer-generated DOE is used to select design data points. Distance-based optimality criterion spreads the design points 
uniformly over the design space. The distance-based method can be used when it is not possible or desirable to select a model in 
advance. The distance-based method provides one solution for selecting the design points (Meyers and Montgomery, 1995).  
 
3.2 Artificial neural Networks 
   The use of artificial neural networks (ANN) has been well accepted in the areas of telecommunication, signal processing, pattern 
recognition, prediction, process control and financial analysis. Artificial neural networks which are simplified models of the 
biological neuron system, is a massively parallel distributing processing system made up of highly interconnected neural 
computing elements or processing units is called neurons. Neural networks are built by connecting these neurons together by 
weighted inter connections. Determination of these weights called training is the most significant task. In supervised learning the 
network is trained to learn a mapping from certain inputs to given outputs. An example of supervised learning is the back 
propagation method for multilayer perceptron (MLP) networks. Multilayer means the addition of one or more hidden layers in 
between the input and output layers.  In the network each neuron receives total input from all of the neurons in the preceding layer 
according to the Eq. (2). 



Reddy et al./ International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 295-310 

 

299

 

∑
=

=
N

0j iXijWjnet                                                                    (2) 

Where netj is the total or net input and N is the number of inputs to the jth neuron in the hidden layer. Wij is the weight of the 
connection from the ith neuron in the forward layer to the jth neuron in the hidden layer. A neuron in the network produces its 
output (Out j) by processing the net input through an activation (Transfer) function, such as Tangent hyperbolic function as in Eq. 
(3).  

netje1

netje-1
)jf(netjOut −+

−
==                                                     (3) 

In the training process the algorithm is used to calculate neuronal weights, so that the squared error between the calculated outputs 
and observed outputs from the training set is minimum and is calculated using Eq. (4). 

2)
i i iyi(dE ∑∑ −=                                 (4) 

Where di is the desired response (or target signal), yi are the output units of the network, and the sums run over time and over the 
output units. When the mean square error is minimized, the power of the error (i.e. the power of the difference between the desired 
and the actual ANN output) is minimized (Jose Principe et al, 2006). 
 
4. Stacking sequence optimization using artificial neural networks 
 
4.1 Model description 
   The physical structure that used in this work is a fibre reinforced composite plate, shown in Figure 3. The length and width of the 
plate is 250mm and thickness of the plate is 25mm. the ply orientation is treated as a design variable. 

 
 

 
Figure 3. Uniformly loaded simply supported composite plate 

 
4.2 Finite element model 
  A total 120 analyses are performed in this design study, using a finite element model of the plate. The model was developed using 
linear layered structural shell element in ANSYS 10.0, using 1600 elements. The global x-coordinate is taken along the length of 
the plate, the global y-coordinate is taken along the width of the plate while the global z-direction is taken out the plate surface. 
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There are 40 elements in the axial direction and 40 along the width one (see Figure 3). The plate is analyzed for deflections and 
stresses under simply supported boundary condition when the plate is subjected to uniformly distributed load. 
 
4.3 Validation of linear layered structural shell element- case study   
In order to validate the usage of the linear layered structural shell element, a numerical example is solved in static analysis. The 
boundary condition is simply supported and the geometry and material properties are as follows: 
E1/E2=40, G12=G13=0.6E2, G23=0.5E2, 25.012 =υ , a/h=10, a=10. q=1.0. The center deflection and stresses are presented here in 
non-dimensional form using the following: 
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Table 1 and Table 2 represent comparisons of results of nondimensional displacement obtained from Reddy (1997) and the 
ANSYS computer program. The results using a free mesh show an excellent correlation to the results given by Reddy (1997).  
 

Table 1. Nondimensional displacement of composite plates (cross- ply) 

  
4.4 Experimental Details 
   In the present study, the Distance- based optimality design has been implemented to select a feasible set of laminates from 
among all feasible laminates. Let us consider the case of a 16-ply laminate. The total number of entire feasible laminates is 
3×4×4×4×4 ×4 ×4×4=49152, because we consider only a symmetric laminate and we adopt 3 levels (00, 45o and 90o)  for the first 
ply orientation and the remaining plies with 4 levels (-45o, 00, 45o and 90o). We can select feasible laminates from the set of 
feasible laminates using distance based optimal. In this study, the total 120 feasible laminates were selected for training and testing 
of the artificial neural network model. The selected Distance- based optimal set of laminates design was performed using 
MINITAB 14 software and is presented in Table 3. The material properties used through out this study are shown in Table 4 
(Baker et al., 2004).  
 
4.5 Development of ANN model 
   One of the key issues when designing a particular neural network is to calculate proper weights for neuronal activities. These are 
obtained from the training process applied to the given neural network. To that end, a training sample is provided, i.e. a sample of 
observations consisting of inputs and their respective outputs. The observations are fed to the network. In the training process the 
algorithm is used to calculate neuronal weights, so that the squared error between the calculated outputs and observed outputs from 
the training set is minimized (Principe et al, 2006). 
4.5.1Designing of the Neural Network Architecture 
The optimal neural network architecture 8-30-4 was used in this study. It was designed using NeuroSolutions 4.0 software. The 
network consists of one input, one hidden and one out put layer. The input layer has8 neurons, hidden layer has thirty neurons and 
output layer has four neurons respectively. Since deflection, stresses (Normal stress in X-direction (Sx),Normal stress in Y-

Mesh  0/90  0/90/0  0/90/90/0 0/90/0/90 
2 × 2  14.222  6.8178  6.5423  6.7662 
4 × 4  14.478  -  6.7402  6.9897 
10×10  14.488  6.9904  -  6.9965 
20×20  14.488  6.9905  6.7459  6.9966 
40 × 40  14.475  6.9857  6.7405  6.9904 
FSDT (Reddy) 14.069  6.919  6.682  6.9260 
Difference (%) 2.8857  0.9640  0.8754                0.929 
           

Table 2. Nondimensional displacement of composite plates (θ/- θ/ θ/- θ) 
Mesh  5  15    
2 × 2  6.7716  6.3811 
4 × 4      -  6.6625 
10×10  6.9652      - 
20×20  -  6.6668 
40 × 40  6.9623  6.6631   
FSDT (Reddy) 6.741  6.086 
Difference (%) 3.2828  9.4824 
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direction (Sy), shear stress in XY plane (Sxy)) prediction in terms of ply orientation was the main interest in this research, neurons 
in the input layer corresponding to the number of plies the output layer corresponds to deflection and stresses. 
4.5.2. Generation of Train and Test Data  
To calculate the connection weights, a set of desired network output values are needed. Desired output values are called the 
training data set. The training data set in this study was selected based on Distance-based optimal design in the design of 
experiments. In this study, 110 data sets were used for training and 10 data sets were used for testing the network and are given in 
Table 3. 

 
 

Table 3. Selected Distance- based optimal set of laminates 
S.No.    stacking sequence                         S.No.   Stacking sequence                               S.No.                  Stacking sequence 
Training Data
1. [90/90/90/90/90/90/90/90]s 
2. [0/-45/-45/-45/-45/-45/-45/-45]s 
3. [0/-45/-45/-45/45/90/90/90]s 
4. [0/45/90/-45/90/90/-45/-45]s 
5. [0/90/-45/90/-45/90/-45/45]s 
6. [0/90/90/-45/-45/-45/45/90]s 
7. [90/-45/-45/90/90/90/0/-45]s 
8. [90/-45/90/-45/90/-45/90/0]s 
9. [90/90/90/90/0/-45/-45/-45]s 
10. [0/-45/90/45/90/90/45/45]s 
11. [0/45/-45/90/90/45/45/90]s 
12. [0/45/90/90/45/-45/90/45]s 
13. [90/-45/0/-45/0/-45/0/90]s 
14. [90/-45/0/90/-45/0/-45/0]s 
15. [90/0/-45/-45/0/90/-45/0]s 
16. [90/0/0/0/90/-45/-45/-45]s 
17. [90/0/90/-45/-45/0/0/-45]s 
18. [90/90/-45/0/-45/-45/0/0]s 
19. [0/-45/-45/-45/90/-45/45/0]s 
20. [0/-45/-45/0/-45/45/-45/90]s 
21. [0/-45/90/45/-45/-45/0/90]s 
22. [0/0/90/90/-45/90/-45/0]s 
23. [0/0/90/90/90/0/-45/-45]s 
24. [0/45/-45/-45/-45/0/90/90]s 
25. [0/45/-45/90/-45/0/90/-45]s 
26. [0/45/-45/90/0/-45/-45/90]s 
27. [0/90/-45/-45/45/0/-45/-45]s 
28. [0/90/45/-45/-45/90/-45/0]s 
29. [45/90/45/-45/0/-45/90/-45]s 
30. [90/-45/-45/90/0/90/45/90]s 
31. [90/-45/0/45/90/-45/90/90]s 
32. [90/-45/45/90/90/0/90/-45]s 
33. [90/-45/90/-45/0/45/90/90]s 
34. [90/0/45/90/90/90/-45/90]s 
35. [90/45/90/-45/90/-45/0/90]s 
36. [90/90/-45/0/0/90/45/90]s 
37. [90/90/-45/45/90/90/-45/0]s 
38. [90/90/0/90/90/-45/0/45]s 
39. [90/90/45/90/-45/0/0/90]s 
40. [0/90/90/-45/0/-45/-45/-45]s 
41. [45/90/-45/0/90/-45/90/90]s 
42. [45/90/90/90/-45/0/90/-45]s 
43. [90/90/90/-45/-45/90/45/90]s 
44. [90/90/90/0/90/45/45/-45]s 

45. [0/-45/-45/-45/90/90/-45/-45]s 
46. [0/-45/-45/90/45/90/-45/45]s 
47. [0/-45/90/-45/-45/90/-45/-45]s 
48. [0/-45/90/90/-45/-45/-45/-45]s 
49. [0/45/0/45/-45/0/-45/-45]s 
50. [0/90/-45/-45/-45/-45/-45/90]s 
51. [0/90/-45/90/90/-45/-45/-45]s 
52. [90/-45/-45/45/90/0/-45/90]s 
53. [90/-45/90/-45/90/45/-45/45]s 
54. [90/-45/90/45/45/90/-45/-45]s 
55. [90/-45/90/90/-45/-45/90/45]s 
56. [90/-45/90/90/-45/90/90/90]s 
57. [90/90/-45/-45/90/45/45/-45]s 
58. [90/90/45/90/-45/90/-45/-45]s 
59. [90/90/90/-45/90/90/-45/90]s 
60. [0/-45/-45/45/-45/45/90/45]s 
61. [0/-45/0/-45/90/-45/-45/90]s 
62. [0/-45/45/-45/90/-45/90/90]s 
63. [0/0/-45/-45/-45/90/90/-45]s 
64. [0/90/-45/-45/0/90/-45/90]s 
65. [0/90/90/45/-45/-45/-45/45]s 
66. [90/-45/-45/-45/-45/45/90/90]s 
67. [90/45/90/-45/-45/-45/-45/90]s 
68. [90/90/45/90/90/-45/90/-45]s 
69. [90/90/90/90/90/45/-45/0]s 
70. [0/-45/-45/90/45/-45/45/90]s 
71. [0/-45/0/-45/0/45/0/0]s 
72. [0/-45/0/90/45/90/90/0]s 
73. [0/-45/45/90/0/45/45/90]s 
74. [0/45/-45/-45/-45/-45/45/-45]s 
75. [0/45/-45/90/45/90/-45/-45]s 
76. [0/90/90/0/0/45/45/0]s 
77. [90/-45/45/-45/-45/90/45/0]s 
78. [90/-45/45/90/90/90/90/90]s 
79. [45/-45/45/-45/45/-45/45/-45]s 
80. [0/0/0/0/0/0/0/0]s 
81. [0/0/0/0/0/0/45/-45]s 
82. [0/0/0/0/0/90/90/90]s 
83. [0/0/0/0/45/-45/45/-45]s 
84. [0/0/0/0/90/90/90/90]s 
85. [0/0/45/-45/45/-45/45/-45]s 
86. [0/0/90/90/45/-45/45/-45]s 
87. [0/0/90/90/90/90/90/90]s 
88. [0/45/-45/45/-45/90/90/90]s 

89. [0/90/0/90/90/90/0/0]s 
90. [0/90/90/90/90/90/45/-45]s 
91. [0/90/90/90/90/90/90/90]s 
92. [45/0/0/-45/0/45/0/-45]s 
93. [45/-45/0/0/0/0/0/0]s 
94. [45/-45/0/0/0/90/90/90]s 
95. [45/-45/45/-45/0/0/0/0]s 
96. [45/-45/45/-45/45/-45/0/0]s 
97. [45/-45/45/-45/45/-45/90/90]s 
98. [45/-45/45/-45/90/90/90/90]s 
99. [45/-45/90/90/90/0/0/0]s 
100. [45/-45/90/90/90/90/90/90]s 
101. [90/0/0/0/0/0/0/0]s 
102. [90/45/-45/45/-45/0/0/0]s 
103. [90/45/-45/90/45/90/-45/90]s 
104. [90/90/0/0/0/0/0/0]s 
105. [90/90/0/0/0/0/45/-45]s 
106. [90/90/45/-45/45/-45/45/-45]s 
107. [90/90/90/90/0/0/0/0]s 
108. [90/90/90/90/45/-45/45/-45]s 
109. [90/90/90/90/90/90/0/0]s 
110. [90/90/90/90/90/90/45/-45]s 
 
Test data 
 
111. [0/-45/45/90/90/-45/-45/90]s 
112. [0/-45/90/90/-45/45/90/-45]s 
113. [90/-45/-45/0/0/0/90/-45]s 
114. [0/-45/-45/90/45/-45/0/-45]s 
115. [0/-45/90/-45/45/-45/-45/0]s 
116. [90/-45/45/-45/90/90/45/-45]s 
117. [90/90/-45/90/45/45/90/0]s 
118. [90/0/-45/0/90/90/45/45]s 
119. [90/45/45/0/-45/0/90/45]s 
120. [0/90/-45/0/0/45/45/0]s 
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Table 4. Material properties (Boron/epoxy) 

 
4.5.3. Neural network training 
For calculation of weight variables, often referred to as network training, the weights are given quasi-random, intelligently chosen 
initial values. They are then iteratively updated until convergence to the certain values using the gradient descent method. Gradient 
descent method updates weights so as to minimize the mean square error (MSE) between the network prediction and training data 
set as in Eq. (5) and (6). 
 

ijΔWold
jiWnew

jiW +=                                                                                  (5) 

∑
= ∂

∂
−=

k

1t jout
ijW

Et-kαηijΔW                                                                                  (6) 

 
Where E is the MSE and outj is the jth neuron output. η is the learning rate [step size, momentum] parameter controlling the 
stability and rate of convergence of the network.. The learning rate [step size 1.0, momentum 0.7] selected and the training process 
takes place on a Intel(R) Atom™ processor PC for 65,000 training iterations.. The minimum mean square error is calculated for 
training data is 0.0000201305. Figure 4 depicts the convergence of minimum MSE with epochs. The comparison between ANN 
model output and experimental output for training data sets is shown in Figure 5. Figure 5 showing that, the predicted values using 
ANN is very good correlation and representation with the experimental results. The experimental outputs are resulted from the FE 
model using ANSYS. 
   In order to judge the ability and efficiency of the ANN model to predict the deflections and stress values, percentage deviation 
(Ø) and the average percentage deviation ( Ø ) were used and calculated as in Eq. (7) and (8) 

 

100%
alExperiment
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Øi ×=

−
                                                                                             (7) 

Where Ø i = percentage deviation of single sample data 
            

n

n

1i iØ
Ø

∑
==                                                                                                              (8) 

Where Ø  = average percentage deviation of all sample data and n= size of the sample data. The average percentage deviation for 
deflection and stresses (Sx, Sy and Sxy) of training data calculated as 0.028875%, 1.587178%, 2.119705% and 3.018923% 
respectively. 
 
4.5.4 Neural network testing 
The ANN predicted results are in very good agreement with experimental results and the network can be used for testing. Hence 
the testing data sets are applied for the network, which were never used in the training process. The results predicted by the 
network were compared with the experimental measured values. The average percentage deviation for deflection and stresses (Sx, 
Sy and Sxy) of test data was found to be 6.132743%, 1.3096766%, 0.0945797% and 5.7492823% respectively. 
4.5.6. Regression Analysis 
To have more precise investigation into the model, a regression analysis of ANN predicted and experimental measured values 
were performed and is shown in Figure 6. The adequacy of the developed model is verified by using coefficient of determination 
(R2). 0≤  R2≤ 1. The R2 is the variability in the data accounted for by the model in percentage (Montgomery, 2001). 

 

 
E1(GPa)         E2(GPa)     E3(GPa)       G12(GPa)      G23(GPa)       G13(GPa)    12υ      23υ       13υ  
_________________________________________________________________________________ 
210            19         19  4.8       4.8  4.8 0.25     0.25      0.25 
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Figure 6. ANN Predicted outputs Vs Experimental measured outputs 

 
The regression coefficients are calculated to estimate the correlation between the ANN predicted values by the ANN model and 
the experimental measured values resulted from finite element tests. The regression coefficients are calculated by using Eq. (9). 
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Where tj= targets or experimental values or measured values 
           oj= outputs or ANN predicted values. 
There is a high correlation between the ANN predicted values by the ANN model and the experimental measured values resulted 
from finite element analyses .The correlation coefficients for deflections and stresses are 0.999975785, 0.999975785, 
0.999959755, 0.999929404 and 0.999909954 respectively, which shows there is a strong correlation in modeling deflections and 
stresses. From Fig 5, it is very difficult to distinguish the best linear fit line from the perfect line, because the fit is so good. The 
sensitivity test was performed to study the variation of deflections and stresses with fibre orientation angles and is shown through 
Figures 7(a)-(d). From Figure 7(a) it is observed that, the deflection is decreases as the fibre orientation angle increases. But only 
in layer5 and layer 7, the deflection increases. From Figure 7(b)-(d) it is seen that, normal stress in x-direction increases as the 
fibre orientation angle increases, but in top and bottom layers decreases. The normal stress in y-direction decreases with the 
increase of fibre orientation angles, where as in layer1, layer2 and layer 7 increases. The transverse shear stress is found to increase 
with increase in fibre orientation angle but in top, bottom and in layer 3 decreases for side to thickness ratio (a/h)=10. 
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Figure 7 (a). Nondimensional deflection for varied fibre Orientation angles  

 
Figure 7 (b). Nondimensional stress (Sx) for Varied fire Orientation  
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Figure 7 (c). Nondimensional stress (Sy) for Varied fire Orientation  

 

 
Figure 7 (d). Nondimensional stress (Sxy) for Varied fire Orientation  

 
4.5.8. Optimization of ply orientation by ANN 
   The developed ANN architecture is used to provide deflections and stresses. A total 49152 set of laminates is fed to the 
optimally designed neural network for predicting the deflections and stresses. The optimal stacking sequence corresponds to the 
minimum deflection and stresses are given in Table 5. A verification tests are also performed to prove the effectiveness of the 
ANN technique after the optimum levels of fibre orientations are determined. The FE results are compared with the ANN results and 
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maximum percentage error is obtained as 4.31%. The nondimensional results predicted from ANN correlates very well with that of from 
finite element (FE) analyses.  

Table5. Optimal stacking sequence obtained by ANN 

 
 
4.5.9. Numerical results for anti- symmetric laminated composite plate 
   The linear layered structural shell element is used to analyse the anti-symmetric laminated composite plate for deflections and 
stresses. The material properties presented in Table 4 are utilized in this study. The plate is analysed with different fibre 
orientations. The non-dimensional deflections and non-dimensional stresses for symmetric and anti-symmetric laminated plates are 
presented in Table 6. 

 
 
5. Conclusions 
 
   The two stage effort of obtaining the optimal stacking sequence by a new distance-based optimal design in design of experiments 
and artificial neural networks has resulted in fairly useful method for laminated composite plates. The following conclusions are 
drawn from the results for laminated composite material plates: 
• The developed ANN model could predict the deflections and stresses (Sx, Sy, and Sxy) with an average percentage deviation of 

0.028875%, 1.587178%, 2.119705% and 3.018923% respectively from training data set. 
• The ANN model could predict the deflections and stresses (Sx, Sy, and Sxy) with an average percentage deviation of 

6.132743%, 1.3096766%, 0.0945797% and 5.7492823% respectively from test data set. 
• The ANN predicted results are very good agreement with the finite element results. 
• For anti-symmetric laminated composite plates [45/-45]8, the non-dimensional deflection and transverse shear stress are lower 

compared to the symmetrical one. 
• For anti-symmetric laminated composite plates [0/90]8, the Normal stress in x-direction is  lower compared to the symmetrical 

one. 
 
6. Extensions and future studies 
 
   The proposed distance- based optimal designs can be applied in structural analysis in determining the optimal set of laminates 
that requires practical stacking sequences for calculations because the new Distance-based optimal set of laminates provides 
optimal stacking sequences. The proposed Distance-based optimal design is not limited to 16-ply laminates. It is applicable to 
laminates of any number of plies by changing the ply thickness. The stacking sequence optimization can also be done using 
genetic algorithms; simulated annealing etc. the proposed design of experiments technique can also be applied to study the 
thermal, buckling and vibration behavior of laminated composite plates and shells. 
 
Nomenclature 
 
DOE  Design of Experiments 
FE  Finite element  
ANN  Artificial neural networks 
UDL  Uniformly distributed load 

Fibre orientation                  Nondimensional       Nondimensonal                Non-dimensional             Nondimensional 
                                      Deflection                         Normal stress                  Normal stress                   Transverse  
                                                                              in X-direction                   in Y-direction                   shear stress 

 
[0/90/0/90/0/90/0/90/           18.21264   0.88539   7.3502         0.3963 
0/90/0/90/0/90/0/90] 
[0/90/0/90/0/90/0/90]s          18.15792             7.5472   0.86512                 0.33870 
[45/-45/45/-45/45/-45/45/-45/     14.56388   3.286   3.0166         0.94943 
45/-45/45/-45/45/-45/45/-45] 
 [45/-45/45/-45/45/-45/45/-45] s 14.57604                                2.9773                                 2.9887                          2.6967 

Parameter Optimal stacking sequence       Nondimensional FE Output    Nondimensional ANN Output       %Error 
Deflections: [45/-45/45/-45/-45/90/45/0]s 14.56464  14.39728            1.149 
Stress (Sx): [90/45/-45/-45/-45/45/-45/-45]s 0.64264   0.62666                           2.486 
Stress (Sy): [0/45/-45/-45/-45/-45/45/-45]s 0.62979   0.6026453                          4.31 
Stress (Sxy): [0/45/-45/45/-45/90/90/90]s 0.18073   0.1851099                          2.423 
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MLP  Multilayer perceptron 
R  Coefficient of determination 
N  In-plane force resultants 
M   Moment resultants 
A  Extensional stiffness matrix, relates in-plane forces to the in-plane strains 
B  Coupling stiffness matrix, which couples the forces and moments to the mid-plane strain-curvature. 
D   Bending moment stiffness matrix which relates bending moments to the plate curvature. 
ε   Membrane strains 
K  Curvature strains 
Tx, Ty, Txy   In-plane forces per unit length (output as TX, TY, and TXY) 
Mx, My, Mxy   Bending moments per unit length (output as MX, MY, and MXY) 
Nx, Ny    Transverse shear forces per unit length (output as NX and NY) 
σx,.    Direct stress (output as SX) 
σxy,   Shear stress (output as SXY) 
 E1  Young’s modulus of the material in X1 direction 
E2  Young’s modulus of the material in X2 direction 
E3  Young’s modulus of the material in X3 direction 
G12  Shear moduli in 1-2 plane 
G13  Shear moduli in 1-3 plane 
G23   Shear moduli in 2-3 plane 

12υ   Major poisson’s ratio 1-2 plane 

13υ   Major poisson’s ratio 1-3 plane 

23υ   Major poisson’s ratio 2-3 plane 
a   Length of the plate 
b  Width of the plate 
h  Thickness of the plate 
q   Intensity of uniformly distributed load 
w  Deflection 
w    Non-dimensional displacement 

xσ (Sx)   Normal stress in x-direction 

x
σ   Non-dimensional stress in x-direction 

yσ (Sy)  Normal stress in Y-direction 

y
σ   Non-dimensional stress in Y-direction 

xy
τ (Sxy)  Shear stress in XY plane 

xy
τ   Non-dimensional shear stress in XY plane 

Qij  Reduced stiffness coefficients 
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