
 
 

 

 
MultiCraft 

 
International Journal of Engineering, Science and Technology  

Vol. 3, No. 8, 2011, pp. 26-40 
 

INTERNATIONAL 
JOURNAL OF 

ENGINEERING, 
SCIENCE AND 
TECHNOLOGY

  www.ijest-ng.com 

© 2011 MultiCraft Limited. All rights reserved 
 

Minimization of material volume of three layer compound cylinder having 
same materials subjected to internal pressure 

 

A. A. Miraje1*, S. A. Patil2   
 

1* Department of Mechanical Engineering, M I T College of Engineering, Pune, INDIA 
2 Department of Mechanical Engineering, Sinhgad Institute of Technology & Science, Pune, INDIA 

*Corresponding Author:  e-mail: aamiraje.mitcoe@gmail.com, Tel +91-2030273400, Cell.+91-9423871807 
 

 
Abstract 
 
   A thick cylinder storing fluid with large internal pressure has second order non-linear variation in the hoop stress across the 
wall. Utilization of material of the cylinder is not up to its full capacity. For more uniform hoop stress distribution, compound 
cylinders are formed by shrinkage process where outer cylinder is heated until it will slide freely over inner cylinder thus 
exerting the required shrinkage pressure on cooling. Using the calculated shrinkage pressures between two contacting cylinders, 
it is possible to reduce the hoop stress and make it more or less uniform over the thickness. This paper introduces the 
methodology for minimization of volume of shrink-fitted three layer compound cylinder and to get equal maximum hoop 
stresses in all the cylinders. The analytical results are validated in comparison with FEM in ANSYS Workbench. Both the 
results agree with each other. Thus methodology can be applied to multi-layer compound cylinders used in real-world 
applications. 
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1. Introduction 
 
   Compound cylinders have wide applications in hydraulic presses, forging presses, power plants, gas storages, chemical and 
nuclear plants, military applications etc. To increase the pressure capacity of thick-walled cylinders, two or more cylinders   
(multi-layer) are shrunk into each other with different diametric differences to form compound cylinder. Manufacturing and 
assembly process of such compound cylinders of real-world applications introduces some residual stresses. The level of such 
residual stresses can reach quite significant value and cannot be neglected. These residual stresses can be summed up with hoop 
stress developed due to internal pressure to find maximum hoop stress in all the cylinders.  
   The optimization of bi-metal compound cylinders has been proposed and minimized the weight of compound cylinder for a 
specific pressure by Majzoobi et al. (2006). The variables were shrinkage radius and shrinkage tolerance. They have used SQP 
technique for optimization, the finite element code, ANSYS for numerical simulation and concluded that high pressure cylinders 
can partially be replaced by a lower, lighter and cheaper material to reduce the cost and weight of cylinders. Sequential quadratic 
programming (SQP) is an iterative method for nonlinear optimization. SQP methods solve a sequence of optimization 
subproblems, each which optimizes a quadratic model of the objective subject to a linearization of the constraints. Two layer 
compound cylinder has been introduced and optimized intermediate, outer diameter and shrinkage tolerance to get minimum 
volume of two layer compound cylinders by Patil (2005).  
   Figure 1 shows that radial ( rσ ) and hoop ( θσ ) stress distribution across the wall of thick cylinder is non-linear in nature from 
inner to outer radius of the cylinder. Dimensions and material of the cylinder are usually designed to tolerate the stresses which 
occur in the inner radius of the cylinder while the stresses reduce sharply towards the outer radius. This necessitates that two or 
more cylinders are shrunk into each other forming a compound cylinder (multi-layer). However, as a result of shrinking, stress 
redistribution may occur across the wall of the compound cylinder.  
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Figure 1. Stress distribution across a single thick-walled cylinder 

 
Figure. 2.  Three Layer Compound Cylinder 

   In this paper three cylinders are considered (Figure 2). Cylinder 2 is shrink-fitted on cylinders 1 and cylinder 3 is shrink-fitted on 
cylinders 2. The stress redistribution is strongly influenced by shrinking radii (the outer radii of the inner cylinders and the inner 
radii of the outer cylinders) and shrinking allowances (shrink fit). The main objective of this work is to optimize the values of these 
parameters so that the minimum material volume for the three layer compound cylinder is achieved and maximum hoop stresses in 
all three cylinders become equal. This ensures best advantage of the material of the cylinder. Shrink fit is a very efficient way to 
extend compressive residual stress. 

 
2. Application of Lame’s theory to compound cylinder 

 
Referring to Figure 1, let    

ir   Inner radius of cylinder 

or   Outer radius of cylinder 
 r   Radius in between inner and outer radius of cylinder 
          iP   Internal pressure in the cylinder 

oP  External pressure in the cylinder 
σθ  Hoop stress in the cylinder 

rσ  Radial stress in the cylinder 

zσ  Axial stress in the cylinder 
Radial stress in the cylinder made of homogeneous material is given by 
 

2 2 2 2
1 12 2 1 2 12

2 2 2 2 2
2 1 2 1

( ) 1i s s i
r

Pr P r r r P P
r r r r r

σ
− −

= +
− −

         (A) 

while hoop stress in the cylinder is given by 

 
2 2 2 2

2 2 2 2 2
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Pr P r r r P P
r r r r r
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2.1 Radial and hoop stresses in cylinder 1  

 
Figure 3.  Radial and Hoop Stress distribution in Cylinder 1 

Referring to Figures 2 and 3, let 

 ir   = 1r   Inner radius of cylinder 1  

or   =  2r   Outer radius of cylinder 1 

iP  =  iP   Internal pressure acting in the cylinder 1 

oP  = 12sP   Contact pressure between cylinder 1 and 2 acting as external pressure on the cylinder 1 
Using equation (A), radial stress in the cylinder 1 is given by 

2 2 2 2
1 12 2 1 2 12

2 2 2 2 2
2 1 2 1

( ) 1i s s i
r

Pr P r r r P P
r r r r r

σ
− −

= +
− −

         (1 a) 

while hoop Stress in the cylinder 1 is given by 

 
2 2 2 2

1 12 2 1 2 12
2 2 2 2 2

2 1 2 1

( ) 1i s s iPr P r r r P P
r r r r rθσ
− −

= −
− −

                 (1 b) 

If iP  =  0  i. e. there is no internal pressure, radial stress rσ and hoop stress θσ  reduce to 

2 2
2 1

12 2 2 2
2 1

1r s
r rP

r r r
σ

⎛ ⎞
= − −⎜ ⎟− ⎝ ⎠

          (2 a) 

2 2
2 1

12 2 2 2
2 1

1s
r rP

r r rθσ
⎛ ⎞

= − +⎜ ⎟− ⎝ ⎠
          (2 b) 

rσ  is maximum at outer radius or   =  2r   . Using equation (2 a)  

( )2 12max    sr at r Pσ = −                                         (3) 

rσ  is zero  at inner radius ir   = 1r . 

Using equation (2 b), θσ  at outer radius or   =  2r  is written as follows 

( )2

2 2
2 1

12   2 2
2 1–sat r

r r
P

r rθσ
⎡ ⎤+

= − ⎢ ⎥
⎣ ⎦

                           (4) 

θσ is maximum at inner radius ir   = 1r which can be written by using equation (2 b)  

( )1

2
12 2

 max   2 2
2 1

2 s
at r

P r
r rθσ
⎡ ⎤

= − ⎢ ⎥−⎣ ⎦
                         (5) 
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Figure 4.   Shrinkage allowance between cylinders 1 and 2 

Referring to Figure 4, let 

 1oθε  Hoop strain in the outer wall of cylinder 1 

1r oU  Radial displacement at outer wall of cylinder 1 
 ν  Poisson’s ratio 
 

  In the presented study open type compound cylinder is considered, wherein axial stress zσ  produced due to internal pressure is 
zero. Values of hoop strain by using plane stress hypothesis and plane strain hypothesis at the same interference comes out to be 
very close to each other. Hence plane stress hypothesis can be assumed. 
 
  The radial displacement 1r oU  at outer wall (at or   =  2r  ) of cylinder 1 is given by using equations (3) and (4) 

[ ] ( )
2 2

1 2 1
1 12 122 2

2 2 1

1 1r o
o r s s

U r r
P P

r E E r rθ θε σ σ
⎡ ⎤⎛ ⎞+

= = − ν = − −ν −⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
 

2 2
12 2 2 1

1 2 2
2 1

s
r o

P r r r
U

E r r
⎡ ⎤⎛ ⎞− +

= − ν⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
                                    (6) 

2.2 Radial and hoop stresses in cylinder 2 

 
Figure 5.  Radial and hoop stress distribution in Cylinder 2 due to contact pressure 12sP  

(acting as internal pressure) and contact pressure 23sP  (acting as external pressure) 
Referring to Figure 5, let  

ir   =  2r   Inner radius of cylinder 2 

or   =  3r   Outer radius of cylinder 2 

iP   = 12sP   Contact pressure between cylinder 1 and 2 acting as internal pressure on the cylinder 2 
 oP  = 23sP   Contact pressure between cylinder 2 and 3 acting as external pressure on the cylinder 2 

Using equation (A), radial stress in the cylinder 2 is given by 
2 2 2 2

12 2 23 3 2 3 23 12
2 2 2 2 2

3 2 3 2

( ) 1s s s s
r

P r P r r r P P
r r r r r

σ
− −

= +
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Radial stress in the cylinder 2 at inner radius ir   =  2r  is given by 

( )2 12    sr at r Pσ = −                                                      (7) 

Radial stress in the cylinder 2 at outer radius or   =  3r  is given by 

( )3 23    sr at r Pσ = −                                                      (8) 

Using equation (B), hoop stress in the cylinder 2 is given by 
2 2 2 2

12 2 23 3 2 3 23 12
2 2 2 2 2

3 2 3 2

( ) 1s s s sP r P r r r P P
r r r r rθσ
− −

= −
− −

 

Hoop stress in the cylinder 2 at inner radius ir   =  2r is given by 

( )2

2 2 2
12 3 2 23 3

 max    2 2 2 2
3 2 3 2

( ) 2 ( )s s
at r

P r r P r
r r r rθσ

+
= −

− −
                             (9) 

Hoop stress in the cylinder 2 is maximum at inner radius 2r  (See Figure 5). Hoop stress in the cylinder 2 at outer radius or   =  3r  is 
given by 

( )3

2 2 2
12 2 23 3 2

   2 2 2 2
3 2 3 2

2 ( ) ( )s s
at r

P r P r r
r r r rθσ

+
= −

− −
                               (10) 

Referring to Figure 4, let 
2iθε  Hoop strain in the inner wall of cylinder 2 

2r iU   Radial displacement at inner wall of cylinder 2 
 

Radial displacement 2r iU at inner wall (at r  = 2r ) of cylinder 2 is given by using equations (7) and (9). 

[ ] ( )
2 2 2

2 12 3 2 23 3
2 122 2 2 2

2 3 2 3 2

( ) 2 ( )1 1r i s s
i r s

U P r r P r
P

r E E r r r rθ θε σ σ
⎡ ⎤+

= = − ν = − − ν −⎢ ⎥− −⎣ ⎦
 

2 2 2
3 2 23 32

2 12 2 2 2 2
3 2 3 2

2 ( )s
r i s

r r P rr
U P

E r r r r
⎡ ⎤⎛ ⎞+

= + ν −⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦
                             (11) 

  Total interference 12δ  at the contact between cylinder 1 and 2 is given by algebraic sum of radial displacement 2r iU  at inner wall 
of cylinder 2 and radial displacement 1r oU  at outer wall of cylinder 1.  
  Using equations (6), (11) and referring to Figure 4, we can write 12δ  as follows  

2 2 22 2
12 2 3 2 23 2 32 1

12 2 1 2 2 2 2 2 2
3 2 2 1 3 2

2 ( )s s
r i r o

P r r r P r rr r
U U

E Er r r r r r
⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞+ +

= + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥− − −⎢ ⎥⎝ ⎠⎝ ⎠ ⎣
δ − =

⎦⎣ ⎦
        (12) 

 
Figure 6.  Shrinkage allowance between cylinders 2 and 3 

Referring to Figure 6, let 

 2oθε   Hoop strain in the outer wall of cylinder 2 

2r oU    Radial displacement at outer wall of cylinder 2 
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Radial displacement 2r oU  at outer wall (at r  =  3r  ) of cylinder 2 is given by using equations (8) and (10). 

[ ] ( )
2 2 2

2 12 2 23 3 2
2 232 2 2 2

3 3 2 3 2

2 ( ) ( )1 1r o s s
o r s

U P r P r r
P

r E E r r r rθ θε σ σ
⎡ ⎤+

= = − ν = − − ν −⎢ ⎥− −⎣ ⎦
 

2 2 2
3 12 2 3 2

2 232 2 2 2
3 2 3 2

2 s
r o s

r P r r r
U P

E r r r r
⎡ ⎤⎛ ⎞+

= − − ν⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦
             (13) 

2.3  Radial and hoop stresses in cylinder 3 

 
Figure 7.   Radial and Hoop Stress distribution in Cylinder 3  
due to contact pressure 23sP only ( acting as internal pressure )  

Referring to Figure 7, let  
ir  =  3r      Inner radius of cylinder 3 

or  =  4r      Outer radius of cylinder 3 

iP  =  23sP   Contact pressure between cylinder 2 and 3 acting as internal pressure on the cylinder 3  

oP  = Zero  External pressure on the cylinder 3 
 

Using equation (A), radial stress in the cylinder 3 at inner radius ir  = 3r  is given by 

( )3 23     sr at r Pσ = −                              (14) 

and radial stress in the cylinder 3 at outer radius or  =  4r  is given by 
 ( )4    0r at rσ =                         (15) 

Using equation (B), hoop stress in the cylinder 3 at inner radius ir  = 3r  is given by 

 
3

2 2
23 4 3

 (   ) 2 2
4 3

( )s
max at r

P r r
r rθσ

+
=

−
                             (16) 

Hoop stress in the cylinder 3 at outer radius or  =  4r  is given by 

 
4

2
23 3

(   ) 2 2
4 3

2 ( )s
at r

P r
r rθσ =

−
                             (17) 

θσ  is maximum at inner radius  as compared to at outer radius . 
  Contact pressure 23sP  is acting as internal pressure on the cylinder 3 and external pressure on the cylinder 3 is assumed as zero. 
Residual hoop stress θσ  due to 23sP  on the cylinder 3 at ir  = 3r and or = 4r  is given by equations (16) and (17). 
   
Referring to Figures 6 and 7, let 

3iθε  Hoop strain in the inner wall of cylinder 3 
 3r iU  Radial displacement at inner wall of cylinder 3 
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Radial displacement 3r iU at inner wall (at ir  = 3r ) of cylinder 3 is given by using equations (14) and (16). 

[ ] ( )
2 2

3 23 4 3
3 232 2

3 4 3

( )1 1r i s
i r s

U P r r
P

r E E r rθ θε σ σ
⎡ ⎤+

= = − ν = − ν −⎢ ⎥−⎣ ⎦
 

2 2
23 3 4 3

3 2 2
4 3

( )
( )

s
r i

P r r r
U

E r r
⎡ ⎤+

= + ν⎢ ⎥−⎣ ⎦
             (18) 

Total interference 23δ at the contact between cylinder 2 and 3 is given by algebraic sum of radial displacement 3r iU at inner wall 
of cylinder 3 and radial displacement 2r oU at outer wall of cylinder 2. Using equations (13) and (18), 

 
2 2 2 2 2

23 3 4 3 3 2 12 3 2
3 2 2 2 2 2 2 2

4 3 3 2 3 2

2s s
r i r o

P r r r r r P r r
U U

E Er r r r r r23

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ +
= − = + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥− − −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

δ       (19) 

 
Figure 8.  Tensile hoop stress σθ in all three cylinders due to internal pressure iP only 

  Referring to Figure 8, if the cylinder is subjected to internal pressure iP (and no external pressure oP  = 0), tensile hoop stress is 
caused in all three cylinders which is given by equation (B), where iP  = iP  at ir  = 1r  and oP  = 0 at or  =  4r .  

 
2 2

1 4
2 2 2

4 1

1iPr r
r r rθσ

⎡ ⎤
= +⎢ ⎥− ⎣ ⎦

             (20) 

  Tensile hoop stress due to internal pressure iP  and residual hoop stress due to shrink fit have been superimposed to get the 
resultant hoop stresses.  The resultant maximum hoop stress occurred at the inner surfaces of all three cylinders. 
  Maximum hoop stress at the inner surfaces of cylinder 1 (at 1r ) is given by adding  equations (20) and (5). (Refer to Figure 9). 

2 2 2
4 1 2

1 122 2 2 2
4 1 2 1

2
–i s

r r r
P P

r r r rθσ
⎡ ⎤ ⎡ ⎤+

= −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
          (21) 

         +                =      
(a) Tensile hoop stress    (b) Residual hoop stress due to          (c) Resultant hoop stress 
     due to internal pressure iP          contact pressure 12sP                ( 1θσ  ) 

Figure 9. Superposition of tensile hoop stress due to internal pressure iP  &  
residual hoop stress due to contact pressure 12sP  in cylinder 1 
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  Maximum hoop stress at the inner surfaces of cylinder 2 (at 2r ) is given by adding θσ  given by equations (20) and (9). (Refer to 
Figure 10). 

2 2 2 22 2
1 12 3 2 23 34 2

2 2 2 2 2 2
2 4 1 3 2

( ) 2i s sPr P r r P rr r
r r r r rθσ

⎡ ⎤ + −+
= +⎢ ⎥− −⎣ ⎦

          (22) 

 

          +            =      
a) Tensile hoop stress     (b) Residual hoop stress due to            (c) Resultant hoop stress 

               due to internal pressure iP         contact pressure 12sP and 23sP               ( 2θσ  ) 
Figure 10. Superposition of tensile hoop stress due to internal pressure iP  & residual hoop stress  

due to contact pressure 12sP and 23sP  in cylinder 2 
 

Maximum hoop stress at the inner surfaces of cylinder 3 (at 3r  ) is given by adding θσ  given by equations (20) and (16). 
(Refer to Figure 11). 

2 2 2 2 2
1 4 3 4 3

3 232 2 2 2 2
3 4 1 4 3

i
s

Pr r r r r
P

r r r r rθσ
⎡ ⎤ ⎡ ⎤+ +

= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
           (23) 

 

+ =  
 

(a) Tensile hoop stress    (b) Residual hoop stress due to      (c) Resultant hoop stress 
     due to internal pressure iP          contact pressure 23sP                ( 3θσ ) 

Figure 11. Superposition of tensile hoop stress due to internal pressure iP  and 
          residual hoop stress due to contact pressure 23sP  in cylinder 3 
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3.  Optimum Design Methodology for Three Layer Compound Cylinder 

  After finding hoop stresses at all the radii, the principle of superposition is applied, i.e. the various stresses are then combined 
algebraically to produce the resultant hoop stresses in the compound cylinder subjected to both shrinkage pressures and internal 
pressure iP .  

 
a) Hoop stress due to iP     b) Residual hoop stress due to 12sP & 23sP     (c) Resultant hoop stress 

Figure 12: Superposition of hoop stress due to iP  & residual hoop stresses due to 12sP & 23sP  in all cylinders 
 
  To obtain optimum values of the contact pressures  12sP  and 23sP  which will produce equal hoop stresses in all the three 
cylinders, maximum hoop stresses given by the equations (21), (22) and (23) must be equated. 
 
By equating equations (21) and (22) i. e. 1 2θ θσ σ=  and rearranging, 

2 2 22 2 2 2 2 2
3 2 32 4 1 1 4 2

12 232 2 2 2 2 2 2 2 2 2 2
2 1 3 2 4 1 2 4 1 3 2
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–s i s

r r rr r r r r rP P P
r r r r r r r r r r r
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r d
C

r d
== , 3 3

2
2 2

r d
C

r d
==  , 4

3
3 3

4r d
C

r d
==           (24) 

where 1 2 3 4, , ,d d d d are diameters corresponding to radii 1 2 3 4, , ,r r r r .       

Hence  3 32
1 2

1 2 1

.
r rr

C C
r r r

== ,  4 43
2 3

2 3 2

r r r
C C

r r r
== , 32

1 2 3
1 2 3

4 4

1

.
rr r r

C C C
r r r r

= =         (25) 

Let  
2 22 2 2

3 22 1 2
2 2 2 2 2 2

2 1 3 2 1 2

2 2 1
– –1 –1

r rr C C
r r r r C C

j
+ +

+ = +
−

=                    (26) 

       
2 2 2 2 22 2 2 2 2

1 2 3 2 34 1 1 4 2
2 2 2 2 2 2 2 2 2 2 2

4 1 2 4 1 1 2 3 1 2 3

1 1
1 1

C C C C Cr r r r r
r r r r r C C C

k
C C C

⎡ ⎤ + ++ +
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2 2

3 2
2 2 2

3 2 2

2 2
–1

r C
l

r r C
=

−
=              (28) 

Hence  [ ] [ ]12 23/ /s i sP P k j P l j+=              (29) 

By equating equations (22) and (23) i. e. 2 3θ θσ σ=  and rearranging,  
2 2 2 2 2 2 2 22 2 2

3 2 1 4 3 4 3 31 4 2
12 232 2 2 2 2 2 2 2 2 2 2 2

3 2 3 4 1 2 4 1 4 3 3 2

( ) 2( )
– ( ) ( ) –s i s

r r r r r r r rr r r
P P P

r r r r r r r r r r r r
⎡ ⎤ ⎡ ⎤+ + ++
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3 2 2
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1
– –1

r r C
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r r C
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2 2 2 2 2 22 2 2

1 4 3 3 2 31 4 2
2 2 2 2 2 2 2 2 2 2 2 2

3 4 1 2 4 1 1 2 3 1 2 3

( ) 1 1( )
( ) ( ) 1 1

r r r C C Cr r rn
r r r r r r C C C C C C

+ + ++
= − = −

− − − −
        (31) 

        
2 2 2 2 2

4 3 3 3 2
2 2 2 2 2 2
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2 1 2
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r r r C C
o

r r r r C C
+ +

= + = +
−

            (32) 

Hence  [ ] [ ]12 23/ / s i sP P n m P o m= +              (33) 

Solving equations (29) and (33) to get 12sP  and 23sP  in terms of iP  as follows, 

( ) ( )
( ) ( )12

/ – /
/  –   /s i

n o k l
m o l

P
j

P
⎡ ⎤
⎢ ⎥
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=            (34) 

( ) ( )
( ) ( )23

/  –  /
/  –   /s i
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l j o

P
m

P
⎡ ⎤
⎢
⎢⎣

= ⎥
⎥⎦

           (35) 

Putting the values of 1 2,C C  and 3C , the equations (12) and (19) can be written as 

 
2 2 2
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s sP r C P rC
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δ
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3.1  Analytical Calculations for Optimum Design 

  Material for all the three cylinders is assumed to be the same i. e. steel. For the given volume of fluid to be stored, the internal 
diameter of cylinder 1 ( 1d ) is known. Here it is assumed as 100 mm. Yield strength of the steel material is yσ  = 250 MPa. In case 
of pressure vessels it is observed that failure occurs across the thickness of cylinder where the hoop stress is acting. Although the 
von Mises stress is more than the hoop stress, it is acting on larger area than hoop stress. So chances of failure due to hoop stress is 
more in pressure vessel. Hence maximum hoop stress criteria is used for material suffering. Maximum principal stresses in all the 
cylinders (here it is maximum hoop stress) should not exceed the yield stress of the material to avoid the failure of the compound 
cylinder. Optimum material volume (length is assumed as unity) can be calculated using the following steps. 
 
 Steps in Optimum Design 

1. Assume internal diameter of cylinder 1 ( 1d ) say 100 mm.  

2. Select the ratios 2 2
1

1 1

r d
C

r d
== , 3 3

2
2 2

r d
C

r d
==  , 4

3
3 3

4r d
C

r d
==   

3. For the given internal pressure iP , one can find contact (shrinkage) pressures 12sP and 23sP in terms of ratios 1 2,C C  and 3C  

using equations (34) and (35). 
4. Find the volume of the compound cylinder using  2 2

4 1.( ) / 4Fx d dπ= −  
5. Minimize the volume subjected to the constraints, 

i) 1 yθσ σ<=   ii) 2 yθσ σ<=  iii) 3 yθσ σ<=   iv) 12 0δ >  v) 23 0δ >  
6. Optimized parameters 1 2 3, ,C C C and 12 23,δ δ are used for the design. 

   By selecting the various values if 1 2 3, ,C C C  and using iterative numerical method (with the help of computer programming), 
contact (shrinkage) pressures 12sP and 23sP  for given internal pressure iP  are calculated using equations (34) and (35) resp. These 
contact pressures are then used to find interferences 12 23,δ δ with the help of equations (36) and (37) resp. Volume is minimized 
subjected to the above said constraints.  
  A lot of combinations for 1 2 3, ,C C C  starting from 1.1 to 1.5 with increment of 0.10, 0.05, 0.02 have been tried. Actually the 
condition that maximum hoop stresses in all three cylinders being equal is met by number of combinations of 1 2 3, ,C C C .  Due to 
this, the output of the computer program is very long.  Out of these some selected combinations have been included in this paper 
where volume is relatively less as compared to rest of the combinations. But for only one set, the volume is minimum. To show 
that, six sets of combination of 1 2 3, ,C C C  have been listed. Using the 6 selected combinations of 1 2 3, ,C C C  diameters 

2 3 4, ,d d d and 12 23,δ δ are calculated through computer program and results are listed in the table1. 
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Table 1:  Analytical Results of numerical method using computer program (for 1d  = 100 mm and yσ = 250 MPa) 

Combination of  1 2 3, ,C C C       
Parameters ↓ 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

1C  1.200 1.200 1.250 1.450 1.160 1.200 

2C  1.300 1.450 1.250 1.300 1.360 1.300 

3C  1.450 1.300 1.450 1.200 1.430 1.440 

2d  ( mm ) 120.000 120.000 125.000 145.000 116.000 120.000 

3d  ( mm ) 156.000 174.000 156.250 188.500 157.760 156.000 

4d  ( mm ) 226.200 226.200 226.562 226.200 225.597 224.640 
Fx  ( Volume ) (mm3) 32331.400 32331.330 32460.230 32331.330 32117.320 31778.980 

1θσ  ( MPa ) 247.496 247.496 246.135 247.496 249.868 249.719 

2θσ  ( MPa ) 247.496 247.496 246.135 247.496 249.868 249.719 

3θσ  ( MPa ) 247.496 247.496 246.135 247.496 249.868 249.719 

12δ ( mm ) 0.022 0.022 0.027 0.045 0.018 0.022 

 23δ ( mm ) 0.032 0.046 0.027 0.034 0.038 0.032 

12sP  ( MPa ) 18.939 18.939 22.471 32.501 15.718 18.922 

23sP  (MPa ) 20.996 21.581 20.778 17.910 21.867 20.894 
 
From the table it is observed that minimum volume is 31778.980 mm3 corresponding to values in set number 6 where    

1C = 1.200,  2C   = 1.300,  3C  = 1.440. 
 

4.  Validation Procedure by FEM  
 
  Now-a-days in the industry FEM is widely used due to its reliability. In the present analysis, certain assumptions are made and to 
validate these assumptions, FEM solutions is used. 
  By taking the corresponding values of 1 2 3, ,C C C from the set number 6 of the table 1 and taking 1d = 100 mm remaining 
diameters 2 3 4, ,d d d are calculated. Using the values of 12 23,δ δ shrink fit is applied between cylinders 1 & 2 and between cylinders 
2 & 3 respectively in ANSYS Workbench. Contact between cylinders 1 & 2 as well as between cylinders 2 & 3 is applied using 
contact tool in ANSYS Workbench. The values of 12 23,δ δ are radius based. These values are doubled to take diametric effect in the 
Finite Element Model. 

Table 2:  Data for modeling in ANSYS (for set number 6) to validate analytical results 

1C  2C  3C  2d  2id  3d  3id  4d  12δ  23δ  

1.200 1.300 1.440 120.000 119.956 156.000 155.936 224.640 0.022 0.032 
 

where     1d ,  2d   =  inner & outer diameters of cylinder 1 respectively.  

2id  , 3d  =  inner & outer diameters of cylinder 2 respectively for shrink fit. 

3id , 4d   =  inner & outer diameters of cylinder 3 respectively for shrink fit. 
 

  FEM model of three layered compound cylinder is prepared in ANSYS Workbench using values of the diameters from table 2. 
Results of FEM by ANSYS Workbench are listed in the figures 13, 14, 15, 16, 17. 
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Figure 13.  12sP  (without iP ) = 19.21 MPa (Avg)         Figure 14.   23sP  ( without iP ) =  21.33 MPa (Avg) 

    
Figure 15. Maximum Principal Stress in cylinder 1                Figure 16. Maximum Principal Stress in cylinder 2 

 

 
Figure 17. Maximum Principal Stress in cylinder 3 
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5.  Results   

  Analytical results and FEM (ANSYS) results are summarized in Table 3. 

Table 3: Comparison of Analytical and ANSYS results for 6 combination sets of 1 2 3, ,C C C  

Set 

No 
Results 

12sP   

(MPa) 

23sP   

(MPa) 

 1θσ  

(MPa) 

 2θσ  

(MPa) 

 3θσ  

(MPa) 

Set 1 

Analytical 18.939 20.996 247.496 247.496 247.496 

ANSYS 19.620 (Avg) 21.705 (Avg) 250.270 251.850 251.730 

Difference 3.59 % 3.37 % 1.12 % 1.77 % 1.71 % 

Set 2 

Analytical 18.939 21.581 247.496 247.496 247.496 

ANSYS 19.530 (Avg) 22.085 (Avg) 250.990 251.190 253.270 

Difference 3.12 % 2.33 % 1.41 % 1.49 % 2.33 % 

Set 3 

Analytical 22.471 20.778 246.135 246.135 246.135 

ANSYS 22.630 (Avg) 21.510 (Avg) 249.230 250.200 250.520 

Difference 0.70 % 3.52 % 1.25 % 1.65 % 1.78 % 

Set 4 

Analytical 32.501 17.910 247.496 247.496 247.496 

ANSYS 32.593 (Avg) 18.073 (Avg) 248.960 254.740 250.750 

Difference 0.28 % 0.91 % 0.59 % 2.92 % 1.31 % 

Set 5 

Analytical 15.718 21.867 249.868 249.868 249.868 

ANSYS 16.203 (Avg) 22.165 (Avg) 254.490 253.730 254.350 

Difference 3.08 % 1.36 % 1.84 % 1.54 % 1.79 % 

Set 6 

Analytical 18.922 20.894 249.719 249.719 249.719 

ANSYS 19.210 (Avg) 21.330 (Avg) 253.100 257.490 254.250 

Difference 1.52 % 2.08 % 1.35 % 3.11 % 1.81 % 

 
  From the table 3, it is observed that there is very small difference in analytical and FEM results, i. e. FEM gave virtually similar 
results as the analytical results (Refer to Figure 18).  
  

    
  (a) 1θσ  in  MPa       (b) 2θσ  in MPa 
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                          (c )  3θσ  in MPa      (d) 12sP  in MPa (without internal pressure) 
 

 
 (e) 23sP  in MPa (without internal pressure)      

 
Figure 18: Difference in analytical and ANSYS Software results   

 
6. Conclusion 
   
The difference between analytical results and ANSYS results is below 4 % with respect to analytical results. This difference is due 
to numerical techniques of Finite Element Method in ANSYS. Since analytical results are validated by FEM calculations, the 
design methodology proposed in this paper can be successfully applied into the real-world mechanical applications for minimizing 
the material volume of multi-layered compound cylinders to assure best utilization of material. Patil (2005) proposed the 
optimization of intermediate, outer diameter and shrinkage tolerance to get minimum volume of two layer compound cylinders as 
37974.94 mm3. In comparison with this, proposed methodology for three layer compound cylinders gave volume as 31778.980 
mm3 (for same internal diameter = 100 mm and same material of yσ  = 250 MPa) which is quite significant to save the material 
and serve the purpose. 
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