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Abstract 
 
   Fault detection and isolation (FDI) have become one of the most important aspects of automobile design. A new FDI scheme 
is developed for automotive engines in this paper. The method uses an independent radial basis function (RBF) neural network 
model to model engine dynamics, and the modelling errors are used to form the basis for residual generation. A dependent 
RBFNN model is a model which uses output data of a plant as a target output then use it to train the neural network, while, The 
independent RBFNN model is a higher accuracy than the dependent model and the errors can be detected by this model, because 
this model does not dependent on the output of the plant and it will use its output as a target, so if any faults in the plant will be 
not effect in the model and this faults will be detected easily and clearly. Furthermore, another RBF network is used as a fault 
classifier to isolate different faults from the modelling errors. The method is developed and the performance assessed using the 
engine benchmark, the Mean Value Engine Model (MVEM) with Matlab/Simulink. Five faults have been simulated on the 
MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults considered are 10-20% 
changes superimposed on the measured outputs of manifold pressure, manifold temperature and crankshaft speed sensors; one 
component fault considered is air leakage in intake manifold; the actuator fault considered is the malfunction of fuel injector. 
The simulation results show that all the simulated faults can be clearly detected and isolated in dynamic conditions throughout 
the engine operating range. 
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1. Introduction 
 

A fault is defined as any type of malfunction of components, which may happen in a system and this fault will degrade the 
system performance but not cause catastrophe. Fault detection is the procedure which informs us that something is wrong in the 
system and needs to be repaired. Moreover, fault isolation is to determine which fault occurs among the possible faults. Over the 
last few years, many different fault detection and isolation methods have been proposed.  

FDI for automotive engines has been investigated for more than two decades. Yu and Rizzoni (1991) have introduced 
architecture for a special purpose diagnostic processor, designed specifically to interact as a co-processor with the on-board 
controller(s). The processor considered the structure of model-based failure detection algorithms and the need for simulating the 
dynamics of vehicle subsystems in order to monitor their performance, and processes the information provided by on-board 
sensors to diagnose sensor or actuator malfunctions. The diagnostic information is available both to the controller for possible 
system reconfiguration, and to repair technicians for service bay applications. Blanke et al. (1995) introduced an electro-
mechanical position servo, used in the speed control of large diesel engines, as a benchmark for mode-based fault detection and 
identification (FDI). The benchmark is based on a test facility built by the authors. The equipment simulates the actuators part of a 
speed governor for large diesel engine. The governor is a device that controls the shaft rotational speed on a diesel engine. The 
paper has provided a simple mathematical model of this system for use in the design of fault handling methods and a complete 
nonlinear description for simulation and verification work. A model based diagnosis system for the air path of a turbo charged 
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diesel engine with exhaust gas recirculation (EGR) was constructed by Nyberge et al. (2004). The faults considered were air mass 
flow sensor fault, intake manifold pressure sensor fault, air leakage, and the EGR valve stuck in closed position. The design of the 
diagnosis system then follows the framework of structured hypothesis tests. It has been shown this framework is a useful 
engineering tool to systematically design model based diagnosis systems.  

Isermann (2005) has proposed Model-based fault-detection and diagnosis methods for some technical processes. The goal was to 
generate several symptoms indicating the difference between nominal and faulty status. Based on different symptoms fault 
diagnosis procedures follow, determining the fault by applying classification or inference methods. His contribution gave a short 
introduction into the field and showed some applications for an actuator, a passenger car and a combustion engine. For fault 
diagnosis of diesel engines three detection modules are proposed to generate symptoms based on mainly production- type sensors. 
The symptoms are generated with nonlinear output error and input error parity equations for special model-based characteristic 
quantities like volumetric efficiency, oscillations of pressure, flow and for angular speed and oxygen content.  

The implementation of an instrument fault detection, isolation and accommodation (IFDIA) scheme developed for real time 
automotive applications was studied by Capriglione et al. (2005). The realized scheme was able to identify and accommodate 
different kind of faults: short circuit, open circuit, uncalibration and hold. Moreover the scheme is characterized by good 
performance also in terms of promptness and sensitivity: short and open circuit faults are located in 1 s, while “small” faults as 
uncalibration and old require a grater observation time up to 180 s. In many critical applications like nuclear plants, aircrafts, space 
vehicles and chemical processes, the use of fault tolerant measurement systems is strongly required. Thus, the hardware and/or 
software instrument fault detection, isolation and accommodation (IFDIA) schemes are more and more widespread in many 
contexts. Automotive is one of these, since in the last decade, private and public transportation vehicles have been equipped with a 
lot of sensor-based electronic systems devoted to grant the passenger safety and comfort (Anti-lock braking system, Anti-spin 
regulation, Electronic stability program, Airbag, air conditioning, and so on) as well as to control fuel injection and ignition and 
the pollution emissions of the engines. On-line Sensor fault Detection, isolation, and accommodation in automotive engines had 
studied by Capriglione et al. (2004). Their paper described the hybrid solution, based on artificial neural networks (ANNs), and the 
production rule adopted in the realization of an instrument fault detection, isolation, and accommodation scheme for automotive 
applications. The fault accommodation has shown a good performance with maximum error of 5%.  

Fault detection for modern Diesel engines using signal- and process model-based methods have been proposed by Kimmich et al. 
(2005). Their contribution showed a systematic development of fault detection and diagnosis methods for two system components 
of diesel engines, the intake system and the injection system together with the combustion process. The residuals were generated 
by applied semiphysical dynamic process models, identification with special neural networks, signal models and parity equations. 
The deflection of the residuals allowed the detection and diagnosis of different faults. Further residuals were developed for the 
exhaust system. The additional symptoms increase the fault detection coverage. Tan et al. (2005) have used the external recurrent 
neural networks to identify nonlinear dynamic models for the manifold pressure and the mass air flow processes in automotive 
engines. Dynamic Levenberg-Marquardt algorithm was applied to the weight-estimation problem. Experimental results showed 
that the neural-network-based models are more precise and generalized in performance than the first-principles based models. 
Robustness assessment and adaptive FDI for car engine was investigated by Sangha et al. (2008).  

A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is 
evaluated for a wide range of operational modes to check the robustness of the scheme in their paper. Robustness assessment has 
been carried out against fixed and sinusoidal throttle angle inputs, change in load, change in engine parameter, and all these 
changes occurring at the same time for both adaptive and non-adaptive networks. Wu et al. (2009) in their paper had proposed an 
expert system for fault diagnosis system in internal combustion engines using wavelet packet transform (WPT) and artificial neural 
network (ANN) techniques. To verify the effect of the proposed generalized regression neural network (GRNN) in fault diagnosis, 
a conventional back-propagation network (BPN) was compared with a GRNN network. The experimental results showed the 
proposed system achieved an average classification accuracy of over 95% for various engine working conditions. Because a neural 
network is capable of approximating a nonlinear function to any desired degree of accuracy, it is used as a model of a dynamic 
system. The modelling error is then used as the residual for fault detection. Furthermore, a neural network can also be trained to 
isolate different faults. Timo Sorsa et al. (1991) investigated a number of possible neural network architectures for fault diagnoses. 
The multilayer perceptron network with a hyperbolic tangent as the nonlinear element was reported to be best suited for the task.  

Yu et al. (1998) proposed Radial basis function (RBF) neural networks for process fault diagnosis. The use of the output 
prediction error, between a neural network model and a non-linear dynamic process, as a residual for diagnosing actuator, 
component and sensor faults was analysed. Jamsa-Jounela et al. (2003) had described a fault diagnosis system and discussed some 
application results from the Outokumpu Harjavalta smelter. M. Demetgul et al. (2009) investigated fault diagnosis of pneumatic 
systems with artificial neural network algorithms. A pneumatic manufacturing system was simulated with modular production 
system (MPS) and automated monitoring of the system was considered. Artificial neural networks provide an excellent 
mathematical tool for dealing with non-linear problems. They are especially useful in situations when there is no mathematical 
model of the process considered, so the classical approaches such as observers or parameter estimation methods cannot be applied. 
In this paper, to detect faults, the output of the real system (MVEM) was compared with the output of an independent RBF neural 
network model of the engine. The modelling error is then used as the residual for fault detection. Moreover, another neural 
network is trained as a classifier to isolate different faults using residual vector. The K-means clustering algorithm is used to 
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choose the centres of RBFNN. Recursive least square (RLS) the algorithm is used to update for each new sample the parameter 
matrix W. 
 
 
2. Mean Value Engine Model (MVEM) 

 
The engine model adopted in this study is the mean value engine model developed by Elbert Hendricks (2000), which is a widely 

used benchmark for engine modelling and control. The platform which has been selected for MVEM is the popular 
MATLAB/SIMULINK. The mean value engine model has three sub-systems; manifold filling dynamics, crankshaft speed 
dynamics and Fuel injection dynamics (see Figure 1).  
 
2.1. Major Engine Control Variables 

Due to the increasing requirements of governments and customers, the main objective of SI engine development is to generate a 
power output as high as possible, while at the same time keeping fuel consumption and exhaust emissions down to a minimum in 
order to comply with the requirements of emissions-control legislation. To satisfy these requirements, many variables such as 
engine speed, engine torque, ignition angle, injection timing, emission gas and so on need to be controlled. It is very difficult to 
achieve satisfactory control performance for these variables because they are severely non-linear and complicatedly related to each 
other. Moreover, car engines have several different operating modes including start up, idle, running and braking. Therefore, 
engine dynamics are highly non-linear and multivariable, which makes engine control problems more complex and difficult (S. W. 
Wang et al, 2006 and Balluchi, et al,2000).  

 

Fig.1 Mean value engine model 
 
2.2. Manifold Filling Dynamics 

It includes two nonlinear differential equations: one for the manifold pressure and the other for the manifold temperature. The 
manifold pressure is described as 

)( EGRatap
i mmm
iV
RT

ip &&&& ++−=                                                                                (1) 

Where  is absolute manifold pressure (bar),  is air mass flow past throttle plate (kg/sec),   is air mass flow into intake 
port (kg/sec),  is EGR mass flow (kg/sec), Ti  is intake manifold temperature in Kelvin, Vi is (manifold & port passage) 
volume (m3) and R is gas constant (287×10-5). The manifold temperature dynamics are described by the differential equation 
(Hendricks, et al, 2000). 
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2.3. Crankshaft Speed Dynamic 

The crankshaft dynamics is derived using conservation of rotational energy on the crankshaft (Hendricks, et al, 2000). 
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Both the friction power Pf   and the pumping power Pp are related with the manifold pressure pi and the crankshaft speed n. The 
load power Pb is a function of the crankshaft speed n only. The volumetric efficiency ηi is a function of the manifold pressure pi, 
the crankshaft speed n and the air/fuel ratio AFR. Where I is the scaled moment of inertia of the engine and its load and where the 
mean injection/torque time delay has been taken into account with the variable Δτd.  
 
2.4. Fuel injection dynamics 

According to the identification experiments with an SI engine carried out by Hendricks et al. (Hendricks, et al, 2000), the fuel 
flow dynamics could be described as 
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Where 
dt

ffdm
 is fuel film mass flow, fim& is injected fuel mass flow,  fvm&  is fuel vapor mass flow. The model is based on 

keeping track of the fuel mass flow. The parameters in the model are the time constant τf for fuel evaporation, and the proportion Xf 
of the fuel which is deposited on the intake manifold or close to the intake valves.  
 
3. Engine modelling using RBF neural network 

 
The first step in the engine modelling by using RBFNN is the generation of a suitable training data set. As the training data will 

influence the accuracy of the neural network modelling performance, the objective of experiment design on training data is to 
make the measured data become maximally informative, subject to constraints that may be at hand. A set of random amplitude 
signals (RAS) were designed for the throttle angle position and the fuel mass flow to obtain a representative set of input data. The 
ranges of these excitation signals were bounded between 20 and 60 degrees for the throttle angle position and between 0.0005 and 
0.003 kg/s for the fuel mass flow. The first 300 samples of excitation signals for the throttle angle position is shown in Figures 2 as 
an example. At the beginning the first RBF neural network will be trained and tested. It will receive five inputs signals, which are 
manifold pressure, temperature, crankshaft speed, the throttle angle and the fuel mass flow and has three outputs, manifold 
pressure, temperature, crankshaft speed. By using K-means algorithm and p – Nearest Neighbours method the width in hidden 
layer nodes of the RBF neural network σ and the centres c are calculated. For training the weights w of the RBF neural networks, 
the recursive least square algorithm was applied and the best results were found when the following data was used: µ= 0.98, w(0) 
=1.0×10-6×U (nh×3), P(0)=1.0×108×I (nh). Where I is an identity matrix and U is an ones matrix. The neural network model will use 
only the first three rows of the MVEM output matrix which are contain values of manifold pressure, manifold temperature and 
crankshaft speed, after that the output of the neural network will be fed back and used as training data for this neural network. The 
engine data was divided into two parts, the first 4000 data set is used for training neural network and the 2000 data samples is used 
for neural network model validation, This procedure in order to confirm validity of the neural network model. The Figure 3 a, b 
and c  shows the simulation result of the engine model output and the RBF neural network output during the 100 samples for 
training and 100 samples for test. It can be seen that the good match between the two outputs with a very small error, in general. 
The modelling error of the training data set is often smaller than the test data set. The mean absolute error (MAE) was used to 
evaluate the modelling. For this model the MAE values of crankshaft speed, manifold pressure and temperature are 0.0014, 0.013 
and 0.0047 respectively.  
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Figure 2. Random Amplitude Signal of the Throttle Angle Position. 
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Figure 3, a, b and c. The simulation result of the speed, pressure and temperature engine model output and the RBF neural 
networks output respectively. 
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4. Fault simulation 
 
One component, one actuator and three sensor faults with different levels of intensity have been investigated as practical 

examples of SI engine faults. The component fault is air leakage in the intake manifold. The actuator fault is injected fuel mass 
flow. The three sensor faults are intake manifold pressure, temperature and speed. Details of the simulation of the faults are 
described in the following subsections. 

 
A.  Air leakage Fault: To collect the engine data subjected to the air leakage fault, equation (1) of the manifold pressure is 
modified to equation (7): 

)( lmmm
iV
RT

ip EGRatap
i Δ−++−= &&&&                                                                       (7) 

 Where lΔ   is used to simulate the leakage from the air manifold, which is subtracted to increase the air outflow from the intake 
manifold.  lΔ =0  will represent no air leakage in the intake manifold.  The air leakage levels are simulated as 20% of total air 

intake in the intake manifold. This fault occurs from the sample number 5401 to 5700, see Figure 4. 

 
Figure 4. The simulated faults and sample number when they are present in the fault test data set. 

 
B. Injected fuel mass Fault: For spark ignition (SI) engines, the target is to achieve an air–fuel mixture with a ratio of 14.7 kg air to 
1 kg fuel. This means the normal value of air fuel ratio is 14.7. This value will be changed if there are faults on the fuel injector 
and the amount of fuel. The value of fuel is reduced by 20% of the total fuel mass flow from sample number 4801 to 5100, see 
Figure 4. 
 
C. Speed, Temperature and Pressure Sensor Faults: Speed, pressure and temperature sensor faults considered are 10-20% change 
superimposed on the outputs of crankshaft speed, manifold pressure and temperature sensors. These faults are simulated from 
sample number 3001 to 3300, from sample number 3601 to 3900 and from sample number 4201 to 4500 respectively. The faulty 
data for the sensors is generated using multiplying factors (MFs) of 1.1 and 1.2 for the above over -reading respectively, see Figure 
4. Faulty data are generated by the Modified MVEM with throttle angle at different values between 20

o 
and 60

o 
for all the fault 

conditions. The 5 states with their multiplying factors (MFs) are given in table 1. The sample time is chosen as 0.02 sec. 
 

Table 1. The faults states and multiplying factors. 
No Fault Name MFs 
1 Air Leak 20%  
2 Injected fuel mass flow 20%  
3 Speed sensor 10% over reading 1.1 
4 Pressure sensor 20% over reading 1.2 
5 Temp. sensor 10% over reading 1.1 

 
 
5. Fault detection 
 
   The Figure 5 shows the information flow of fault detection and isolation. The RBF neural network receives five inputs signals, 
the first three inputs signals are manifold pressure, temperature  and crankshaft speed which containing fault information, and the 
second two inputs signals are the throttle angle  and the fuel mass flow and has three outputs with each indicating one of the 
investigated states in table 1. This neural network will use at the beginning only the first three rows of the MVEM output matrix 
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which consists of signals values of manifold pressure, manifold temperature and crankshaft speed, all these three inputs contain 
sensor, component and actuator faults. The output of the neural network will be used as a target matrix, which means this neural 
network is an independent model. The flow chart for the fault detection and isolation is illustrated in Figure 6, steps 1 to 10. 12 
hidden nodes are chosen by k-means method. Width and weights are trained using p -nearest neighbours algorithms and the same 
data of µ, w(0), P(0) which were used to train neural network engine model are used here. The trained network is then tested for all 
faults occurring. Figure 7 shows the test results for fault detection for all faults (sensor, component and actuator) before filtering, it 
can be seen the errors are big. After the filtering operation the results were very good and the errors decreased, see Figure 8. The 
filter operations are done by using equation (8) in order to improve the test results figures and remove any malformation may 
accurse in the figures. 

BFEYAFEXAFE ×+−×= 1                                                                          (8) 
                 

Where, the EAF is the vector after filtering operation, X and Y chosen values, X value should be complemented for Y value, EAF-1 
is the past value of EAF, and EBF  is the vector before the filtering operation. The detection thresholds are chosen as 0.2, (+0.1, -
0.13) and 0.1 for crankshaft speed, manifold pressure and manifold temperature error signals respectively. High thresholds may 
lead to missed detections whilst low thresholds will cause false alarm. Figure 9 shows the residual error (re) which is generated by 
the equation (9). 

2 222 etepenre ++=                                                                                           (9) 
 

Where en, ep and et are the error vectors of the speed, pressure and temperature respectively between the engine model and the 
RBF neural network. Thresholds are chosen as 0.18, If the residual greater than threshold that means the fault occurs.  

 

 

Figure 5. The information flow for the fault detection and isolation 
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Figure 6. Flow chart of fault detection and isolation 
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Figure 7. a, b and c. Test  results of the fault detection of speed, pressure & temperature respectively before filtering. 
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Figure 8. a, b, c. Test  results of the fault detection of speed, pressure & temperature respectively after filtering. 
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Figure 9. The residual error of the fault detection after filtering with 12 hidden nodes. 

 
6. Fault isolation 

 
 The second RBF neural network will receive error signals which are the result signals between the MVEM model outputs and 

the first RBFNN outputs, see Figures 5 and 6. Three variables are chosen as the network inputs: the error signals of crankshaft 
speed, manifold pressure and the manifold temperature. Two levels, 0 and 1 are used as the output target of the isolation. Thus, the 
target matrix is a unity diagonal matrix of dimension 5 with each column being used as the isolation training target vector. The 
target matrix has 6000 rows and 5 columns. From the first row to the 3000th row, from the 3301th row to the 3600th row, from the 
3901th row to the 4200th row, from the 4501th row to the 4800 th row, from the 5101th row to the 5400th and from the 5701th row to 
the 6000th row have zeros, also this target matrix has ones in the first column from the 3001th row to the 3300th row, the second 
column from the 3601th row to the 3900th row, the third column from the 4201th row to the 4500th row, the fourth column from the 
4801th row to the 5100th row, the fifth column from the 5401th row to the 5700th row and all the other entries are zeros, see Figure 
10. Thus, the transpose of the ith row in X0 is used as the training target vector for the ith training pattern. The width and weights are 
trained using p -nearest neighbours algorithms and the network weights with its parameters set are µ= 1.0, w(0)=1.0×10-6×U (nh×5), 
P(0)=1.0×105×I (nh). Hidden nodes which were tried here are 50, 100 and 200 by k-means method. The hidden nodes which are 
chosen here after the filtering operation are 50, this is because the test result is very good and similar to the cases of 100 and 200 
hidden nodes and the size of neural network will be small, consequently the training and testing time will be small, Figure 11 and 
12 show the test result before and after filtering. The isolation thresholds are chosen as 0.5 for all cases. 
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Figure 10. The Target matrix  
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Figure 11,a, b, c, d & e. Fault isolation result of speed, pressure ,temperature, fuel injection & air leak respectively before filtering 
with 50 hidden nodes 
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Figure 12,a, b, c, d & e. Fault isolation result of speed, pressure ,temperature, fuel injection & air leak respectively after filtering 
with 50 hidden nodes  

 
7. Simulation results 

 
The results can be summarized in the following points: 

A. Training and Testing the Neural Network model: The simulation results of training and testing by using 12 hidden nodes were 
very good and in general, the good match between the engine model output and the RBF neural network output was achieved. 
From the Figure 3a it can be seen that the mean absolute error between the engine speed output and the RBFNN is very small, 
however it can be seen a mismatch in Figures 3b and c, the mean absolute errors between the three outputs are shown in table 2. 
 

Table 2. The Mean absolute error (MAE) between the engine model output and the RBF neural network output 
Outputs Mean Absolute 

Errors 
Crankshaft speed 0.0014 

Pressure 0.013 
Temperature 0.0047 

 
B. Detection of the Sensor, Components and Actuator Faults: The test results for fault detection for all kinds of faults were 
examined before and after the filtering operation by using the first RBFNN with 12 hidden nodes and all the faults were detected 
after filtering and were very clear. From the Figure 8, it can be seen the errors values were between - 0.1 and 0.15 except the 
samples in which faults occur. The detection thresholds were chosen as 0.2 for crankshaft speed, (+0.1, - 0.13) for manifold 
pressure and 0.1 for manifold temperature for scaled data. 

 
C. Isolation of the Sensor, Components and Actuator Faults: In this section, another RBF neural network is used to isolate the 
faults. This neural classifier received residual error signals between the MVEM model outputs and the first RBFNN model outputs, 
and the target matrix is shown in Figure 10. To obtain good simulation results, 50, 100 and 200 hidden nodes were used. From the 
figures of the results, 50 hidden nodes after filtering operation were found the best situation and the simulated faults can be clearly 
isolated. This is because of the size of neural is small and training time were short. The isolation thresholds are chosen as 0.5 for 
all cases, see Figure 12.   
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8. Conclusions 
 
The mean value engine model (MVEM) developed by Hendricks (2000) is used for simulations during the research period after 

small modification. Expansion work has been done to the existing MVEM simulation by including air fuel ratio sensor time delay, 
temperature sensor dynamics etc. Three sensor faults (intake manifold pressure, temperature and speed), one component fault 
(leakage in the intake manifold) and one actuator fault (injected fuel mass flow) have been simulated when the simulation model is 
subjected to disturbances and noise. A RBF neural network model was used to model engine dynamics and the training algorithms 
are reviewed and derived. Another RBFNN classifier is used to isolate sensor faults, component fault and actuator fault from the 
modelling errors. By using p – Nearest Neighbours method and K-means algorithm the width in hidden layer nodes of the RBF 
neural network σ and the centres c are calculated for both RBFNNs. The recursive least square algorithm was applied for training 
the weights w of the RBF neural networks. This method can detect and isolate dynamic faults, and this is because the modelling is 
for dynamic system, so can detect and isolate the faults in dynamic condition. From the simulation results it can be seen that both 
RBF neural networks were able to detect and classify all the faults clearly. 
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