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Abstract 
 
   The problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo elastic polygonal cross-sectional 
bar immersed in fluid is studied using Fourier expansion collocation method, with in the framework of linearized, three 
dimensional theory of thermoelasticity. Three displacement potential functions are introduced, to uncouple the equations of 
motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and 
antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional 
Zinc bar.  The computed non-dimensional wave numbers are presented in the form of dispersion curves. 
 
Keywords: vibration of cylinder, thermal cylinder immersed in fluid, fluid loaded cylinder, solid- fluid interaction, transversely 
isotropic cylinder, rod immersed in fluid. 
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1. Introduction 
 
   The phenomenon of thermo elastic bar of polygonal cross sections immersed in a fluid finds a wide range of applications in all 
fields of science and engineering including atomic physics and metallurgy. Nagaya (1981, 1982, 1983, 1985) discussed wave 
propagation in an infinite bar of arbitrary cross section and the wave propagation in an infinite cylinder of both inner and outer 
arbitrary cross section applicable to a bar of general cross section, based on three-dimensional theory of elasticity. The boundary 
conditions along the free surface of arbitrary cross section are satisfied by means of Fourier expansion collocation method. Sinha 
et al. (1992) have studied the axisymmetric wave propagation in circular cylindrical shell immersed in a fluid, in two parts. In Part 
I, the theoretical analysis of the propagation modes is discussed and in Part II, the axisymmetric modes excluding tensional modes 
are obtained theoretically and experimentally and are compared. Berliner and Solecki (1996) have studied the wave propagation in 
a fluid loaded transversely isotropic cylinder. In that paper, Part I consists of the analytical formulation of the frequency equation 
of the coupled system consisting of the cylinder with inner and outer fluid and Part II gives the numerical results.  Easwaran and 
Munjal (1995) investigated the effect of wall compliance on lowest order mode propagation in a fluid filled or submerged 
impedance tubes. Based on the closed form analytical solution of the coupled wave equations and applying the boundary 
conditions at the fluid-solid interface, an eigenequation was obtained and then the dispersion behavior of wave motion was 
analyzed. Also, they investigated axial attenuation characteristics of plane waves along water filled tubes submerged in water or 
air.  
   Suhubi (1964) studied the longitudinal vibration of a circular cylinder coupled with a thermal field. Later with Erbay (Erbay and 
and Suhubi, 1986) he studied the longitudinal wave propagation in a generalized thermo elastic infinite cylinder and obtained the 
dispersion relation for a constant surface temperature of the cylinder. Lord and Shulman (1967) formulated a generalized 
dynamical theory of thermo elasticity using the heat transport equation that included the time needed for the acceleration of heat 
flow. Green and Lindsay (1972) presented an alternative generalization of classical thermo elasticity. Restrictions on constitutive 
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equations were discussed with the help of an entropy production inequality proposed by Green and Laws. They have showed that 
the linear heat conduction tensor was symmetric and that the theory allows for second sound effects. Venkatesan and Ponnusamy 
(2002, 2007) studied the wave propagation in solid and generalized solid cylinder of arbitrary cross-sections immersed in fluid 
using the Fourier expansion collocation method. Dayal (1993) investigated the free vibrations of a fluid loaded transversely 
isotropic rod based on uncoupling the radial and axial wave equations by introducing scalar and vector potentials. Nagy (1995) 
studied the propagation of longitudinal guided waves in fluid-loaded transversely isotropic rod based on the superposition of 
partial waves. Guided waves in a transversely isotropic cylinder immersed in a fluid was analyzed by Ahmad (2001). Ponnusamy 
(2007) and later with Rajagopal (Ponnusamy and Rajagopal, 2010) have studied, the wave propagation in a generalized thermo 
elastic solid cylinder of arbitrary cross-section and in a homogeneous transversely isotropic thermo elastic solid cylinder of 
arbitrary cross-sections respectively using the Fourier expansion collocation method.  
   In this paper, the wave propagation in a transversely isotropic thermoelastic solid bar of polygonal cross-section immersed in 
fluid is studied using Fourier expansion collocation method. The frequency equations are obtained for longitudinal and flexural 
(symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal 
cross-sectional Zinc bars. The computed non-dimensional wave numbers are presented in the form of dispersion curves.  
 
2. Formulation of the problem 

 
   In this section, we consider a homogeneous transversely isotropic, thermally conducting elastic bar of infinite length immersed in 
fluid with uniform temperature 0T  in the undisturbed state initially. ru , uθ  and zu  are respectively the radial, tangential and 

axial displacement components, which are defined through the cylindrical coordinates ,r θ  and z .      
   The governing field equations of motion and heat conduction in the absence of body force are Sharma and Sharma (2002): 

( )1 1
, , , ,rr r r zr z rr r ttr r uθ θ θθσ σ σ σ σ ρ− −+ + + − =                                                                      (1a) 

1 1
, , , ,2r r z z r ttr r uθ θθ θ θ θ θσ σ σ σ ρ− −+ + + =                                                                               (1b)  

1 1
, , , ,rz r z zz z rz z ttr r uθ θσ σ σ σ ρ− −+ + + =                                                                                   (1c) 

( ) ( )( )1 2
1 , , , 3 , , 0 1 3 ,rr r zz t rr zz t

K T r T r T K T c T T e e eθθ ν θθρ β β− −+ + + − = + +                                 (1d) 

and 

11 12 13 1rr rr zzc e c e c e Tθθσ β= + + −                                                                                          (2a) 

12 11 13 1rr zzc e c e c e Tθθ θθσ β= + + −                                                                                          (2b) 

13 13 33 3zz rr zzc e c e c e Tθθσ β= + + −                                                                                         (2c) 

66r rc eθ θσ = , 44z zc eθ θσ =  44rz rzc eσ =                                                                                (2d) 

   where , , , , ,rr zz r z rzθθ θ θσ σ σ σ σ σ  are the stress components, , , , , ,rr zz r z rze e e e e eθθ θ θ  are the strain components, T  is the 

temperature change about the equilibrium temperature 0T ,  11c , 12c , 13c , 33c , 44c  and ( )66 11 12 / 2c c c= −  are the five elastic 

constants, 1β , 3β  and 1K , 3K  respectively thermal expansion coefficients and thermal conductivities along and perpendicular to 

the symmetry, ρ  is the mass density, cν  is the specific heat capacity.  

The strain ije  are related to the displacements are given by 

               ,rr r re u= , ( )1
,re r u uθθ θ θ

−= +  ,zz z ze u=                                                                    (3a) 

               ( )( )1
, ,r r re u r u uθ θ θ θ

−= + − , ( )1
, ,z z ze u r uθ θ θ

−= +  , ,rz z r r ze u u= +                              (3b) 

   The comma in the subscripts denotes the partial differentiation with respect to the variables.     
   Substituting the Eqs. (3) and (2) in the Eq. (1), results in the following three-dimensional equations of motion and heat 
conduction are obtained as follows: 

( ) ( )
( ) ( )

1 2 2 2
11 , , 11 66 , 66 ,

1
44 , 44 13 , 66 12 , 1 , ,

r rr r r r r

r zz z rz r r r tt

c u r u r u r c c u r c u

c u c c u r c c u T u
θ θ θθ

θ θ β ρ

− − − −

−

+ − − + +

+ + + + + − =
                                          (4a) 
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( ) ( ) ( )
( )

1 2 1 2
12 66 , 66 11 , 66 , ,

2 1
11 , 44 , 44 13 , 1 , ,

r r r rr r

zz z z tt

r c c u r c c u c u r u r u

r c u c u r c c u T u
θ θ θ θ θ

θ θθ θ θ θ θβ ρ

− − − −

− −

+ + + + + −

+ + + + − =
                                 (4b) 

( ) ( )( )
( )

1 2 1
44 , , , 44 13 , ,

44 13 , 33 , 3 , ,

z rr z r z r z z

r rz z zz z z tt

c u r u r u r c c u u

c c u c u T u
θθ θ θ

β ρ

− − −+ + + + +

+ + + − =                                                 (4c) 

( ) ( )( )1 2
1 , , , 3 , , 0 1 3 ,rr r zz t rr zz t

K T r T r T K T c T T e e eθθ ν θθρ β β− −+ + + − = + +                             (4d) 

 
3. Solutions of the Field Equation 
 
   To obtain propagation of harmonic waves in polygonal cross-sectional bars, we assume solutions of the displacement 
components to be expressed in terms of derivatives of potentials first introduced by Mirsky (1964) and used as well by Berliner 
and Solecki (1996). Thus, we seek the solution of the Eq. (4) in the form Mirsky (1964) as 

( ) ( )1 1 ( )
, ,, ,

0
( , , , ) i kz t

n r nr n n r n
n

u r z t r r e ω
θθθ ε φ ψ φ ψ

∞
− − +

=

⎡ ⎤= + + +⎣ ⎦∑                                  (5a) 

( ) ( )1 1 ( )
, ,, ,

0
( , , , ) i kz t

n n rn n n r
n

u r z t r r e ω
θθ θθ ε φ ψ φ ψ

∞
− − +

=

⎡ ⎤= − + −⎣ ⎦∑                                  (5b) 

( ) ( )

0
( , , , ) i kz t

nz n n
n

u r z t i a W W e ωθ ε
∞

+

=

⎡ ⎤= +⎣ ⎦∑                                                                (5c) 

( ) ( ) ( )2
44 3

0
, , , i kz t

nn n
n

T r z t c a T T e ωθ β ε
∞

+

=

⎡ ⎤= +⎣ ⎦∑                                                         (5d) 

   where 1 2nε =  for 0n = , 1nε =  for 1n ≥ , 1i = − , k  is the wave number, ω is the frequency, ( ),n rφ θ ,   ( ),nW r θ  

and  ( ),n rψ θ are the displacement potentials  and ( ),nT r θ is the temperature change for the symmetric mode and the barred 
quantities are the displacement potentials and temperature change for the antisymmetric modes of vibration and a  is the 
geometrical parameter of the bar. 
   By introducing the dimensionless quantities such  
as /x r a= , kaς = , 2 2 2

44a cρωΩ = , 11 11 44c c c= , 13 13 44c c c= , 33 33 44c c c= , 66 66 44c c c= , 1 3β β β= ,

( )1 2 2
44 3 0k c T aρ β= Ω , 2

44 3 0d c c Tνρ β=  and substituting Eq. (5) in Eq. (4), we obtain 

( ) ( )2 2 2
11 131 0n n nc c W Tς φ ς β∇ + Ω − − + − =                                                          (6a) 

( ) ( )( )2 2 2
13 331 0n n nc c W Tς φ ς ς+ + ∇ + Ω − − =                                                        (6b) 

( )2 2 2
1 3 0n n nW d ik ik Tβ φ ς ς∇ − + + ∇ − =                                                                (6c) 

and  

     ( )( )2 2 2
66/ 0ncς ψ∇ + Ω − =                                                                   (7) 

where 2 2 2 1 2 2 2x x x x θ− −∇ ≡ ∂ ∂ + ∂ ∂ + ∂ ∂   
The Eq. (6) can be written as  
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( ) ( )
( ) ( )

2 2 2
11 13

2 2 2
13 33

2 2 2
1 3

1

1 ( , , ) 0n n n

c c

c c W T

d ik ik

ς ς β

ς ς ς φ

β ς ς

⎡ ⎤∇ + Ω − − + −⎣ ⎦
⎡ ⎤+ ∇ + Ω − − =⎣ ⎦

⎡ ⎤∇ − + ∇ −⎣ ⎦

                   (8) 

 
Equation (8), on simplification reduces to the following differential equation:  
  

              ( )( )6 4 2 , , 0n n nA B C D W Tφ∇ + ∇ + ∇ + =
                                              (9)

 

where 

              11 1A ic k=    (10a) 

               ( ) ( ) ( )( ) ( )2 22 2 2 2 2 2
1 33 11 13 11 31B ik c c c c d ikς ς ς ς β= Ω − + Ω − + + + − +                 (10b) 

                

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

2 22 2 2 2 2 2 2 2
11 33 3 3 1 33

2 2 2 2 2
13 3 13

2 2 2
33

1

1 1

C c c d ik d ik ik c

c d ik c

c

ς ς ς ς ς

ς ς βς βς

β ς

⎡ ⎤⎡ ⎤= Ω − − + + Ω − − + Ω −⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤+ + − + + +⎣ ⎦

+ Ω −

 

                             (10c)          

 ( ) ( )( )2 2 2 2 2 2
33 3D c d ikς ς ς ς⎡ ⎤= Ω − Ω − − −⎣ ⎦                             (10d) 

Factorizing the relation given in Eq.(9) into cubic equation for ( ) ( )2 , 1, 2,3ia iα = , the solutions for the symmetric modes are 
obtained as 

                       ( )
3

1
cosn in n i

i
A J ax nφ α θ

=

=∑         (11a) 

                       ( )
3

1
cosn i in n i

i
W d A J ax nα θ

=

=∑                                                                                                                           (11b) 

                       ( )
3

1
cosn i in n i

i
T e A J ax nα θ

=

=∑                                                           (11c)                  

   The solutions for the antisymmetric modes , nn Wφ  and nT  are obtained by replacing cos nθ  by sin nθ  in Eq. (11). Since we 

are considering solid bar of polygonal cross-section, the Bessel function of the second kind nY  is absent. Here ( )2 0iaα > ,  

( )1,2,3i =  are the roots of the algebraic equation  

    ( ) ( ) ( )6 4 2 0A a B a C a Dα α α− + + = .     (12) 

   The solutions corresponding to the root ( )2 0iaα =  is not considered here, since ( )0nJ  is zero, except for 0n = . The Bessel 

function nJ  is used when the roots ( ) ( )2 , 1, 2,3ia iα = are real or complex and the modified Bessel function nI  is used when 

the roots ( ) ( )2 , 1, 2,3ia iα =  are imaginary. 

   The constants id  and ie  defined in the Eq. (11) can be calculated from the equations  

                   ( ) ( )( )2 2 2
13 111 i i ic d e c aς β α ς+ + = − −Ω +                                         (13a) 
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                      ( ) ( )( ) ( ) ( )2 22 2
33 131i i i ic a d e a cς α ς α ςΩ − − − = +                                     (13b) 

Solving the Eq. (7), the solution to the symmetric mode is obtained as  
                       ( )4 4 sinn n nA J ax nψ α θ=                                                                 (14) 

where ( )2 2 2
4aα ς= Ω − . If ( )2

4 0aα < , the Bessel function nJ  is replaced by the modified Bessel function nI . The solution 

for the antisymmetric mode nψ  is obtained from Eq. (14) by replacing sin nθ  by cos nθ .  
 
4. Equations of motion of the fluid 
 
   In cylindrical polar coordinates r , θ  and z  the acoustic pressure and radial displacement equation of motion for an invicid 
fluid are of the form (Achenbach, 1973): 
                          ( )1

, , ,( )f f f f f f
r r r z zp B u r u u uθ θ

−= − + + +    (15) 

and  
                          2

, ,f
f r tt rc u− = Δ    (16) 

respectively. Where fB , is the adiabatic bulk modulus, fρ  is the density, f f
fc B ρ=  is the acoustic phase velocity in the 

fluid, and  
                          ( )1

, , ,( )f f f f
r r r z zu r u u uθ θ

−Δ = + + + .    (17) 

Substituting 
                     ,

f f
r ru φ= , 1

,
f fu rθ θφ

−=  and ,
f f
z zu φ=    (18) 

and seeking the solution of  (16) in the form 

                       ( ) ( )

0
( , , , ) cosf f i kz t

n n
n

r z t r n e ωφ θ ε φ θ
∞

+

=

=∑ .    (19) 

The fluid that represents the oscillatory waves propagating away is given as 
                       ( )1

5 5( )f
n n nA H axφ α=     (20) 

where ( )2 2 2
5

f
a Bα ρ ς= Ω − , in which fρ ρ ρ= , 44

f fB B c= , ( )1
nH  is the Hankel function of the first kind. 

If 2
5( ) 0aα < , then the Hankel function of first kind is to be replaced by nK , where nK  is the modified Bessel function of the 

second kind. By substituting Eq.(19) in Eq. (15) along with Eq.(20), the acoustic pressure for the fluid can be expressed as 

                       ( ) ( )'
12

5 5
0

( ) cos ai z Tf
n n n

n
p A H ax n e ς

ε ρ α θ
∞

+Ω

=

= Ω∑     (21) 

 
5. Boundary conditions and Frequency equations 
 
   In this problem, the free vibration of a transversely isotropic thermoelastic solid bar of polygonal cross-section is considered. 
Since the boundary is irregular, the Fourier expansion collocation method is applied on the boundary of the cross-section. Thus, 
the boundary conditions obtained are 
 

 ( ) ( ) ( ) ( ) ( ) 0.f f
pp pq zp r r ii ii i

p u u Tσ σ σ+ = = = − = =                                               (22) 

where p  is the coordinate normal to the boundary and q  is the coordinate in the tangential direction. Here ppσ  is the normal 

stress, pqσ and zpσ  are the shearing stresses and ( )i
is the value at the i th−  segment of the boundary. Since the coordinate 

p  and q  are functions of r  and θ , it is difficult to find transformed expressions for the stresses. Therefore the polygonal 

boundary is divided into small segments such that the variations of the stresses are assumed to be constant. Assuming the angle iγ , 
between the normal to the segment and the reference axis to be constant, the transformed expressions for the stresses are followed 
by Nagaya (1983), 
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( ) ( )( )
( )( )

2 2 1 2 2
11 12 , 11 12 ,

1
66 , 13 , 1

cos ( ) sin ( ) sin ( ) cos ( )

, sin 2( )

pp i i r r i i r

r i z z

c c u r c c u u

c r u u u r c u T

θ θ

θ θ θ

σ θ γ θ γ θ γ θ γ

θ γ β

−

−

= − + − + − + − +

+ − − − + −
               (23a) 

                                                                                                                                                                     

( )1 1
66 , , , ,( ( )) sin 2( ) ( ( ) )cos 2( )pq r r r i r r ic u r u u r u u uθ θ θ θ θσ θ γ θ γ− −= − + − + − + −                                     (23b) 

( )1
44 , , , .( ) cos( ) ( )sin( )zp r z z r i z z ic u u u r uθ θσ θ γ θ γ−= + − − + − .                                                              (23c) 

 Applying the Fourier expansion collocation method along the curved surface of the boundary, the transformed 
expressions for the stresses are  

 ( ) ( ) ( ) 0ai z T
pppp i i

S S e ς +Ω⎡ ⎤+ =⎣ ⎦             (24a) 

 ( ) ( ) ( ) 0ai z T
pqpq i i

S S e ς +Ω⎡ ⎤+ =⎣ ⎦                   (24b) 

 ( ) ( ) ( ) 0ai z T
zpzp i i

S S e ς +Ω⎡ ⎤+ =⎣ ⎦    (24c) 

 ( ) ( ) ( ) 0ai z T
rr i i

S S e ς +Ω⎡ ⎤+ =⎣ ⎦                                                                                                               (24d) 

 ( ) ( ) ( ) 0ai z T
tt i i

S S e ς +Ω⎡ ⎤+ =⎣ ⎦                                                                                                                (24d) 

where, 

( ) ( )1 2 3 5 1 2 3 4 5
10 0 20 0 30 0 50 0 1 2 3 4 5

1
0.5pp n n n n n n n n n n

n
S A e A e A e A e A e A e A e A e A e

∞

=

= + + + + + + + +∑    (25a) 

( ) ( )1 2 3 1 2 3 4
10 0 20 0 30 0 1 2 3 4

1

0.5pq n n n n n n n n
n

S A f A f A f A f A f A f A f
∞

=

= + + + + + +∑                 (25b) 

( ) ( )1 2 3 1 2 3 4
10 0 20 0 30 0 1 2 3 4

1
0.5zp n n n n n n n n

n
S A g A g A g A f A f A f A f

∞

=

= + + + + + +∑                        (25c)  

( ) ( )1 2 3 5 1 2 3 4 5
10 0 20 0 30 0 50 0 1 2 3 4 5

1

0.5r n n n n n n n n n n
n

S A h A h A h A h A h A h A h A h A h
∞

=

= + + + + + + + +∑                 (25d) 

( ) ( )1 2 3 1 2 3
10 0 20 0 30 0 1 2 3

1
0.5t n n n n n n

n
S A k A k A k A k A k A k

∞

=

= + + + + +∑                                                                                          (25e)  

( )4 1 2 3 4 5
40 1 2 3 4 50

1

0.5 n n n n npp n n n n n
n

S A e A e A e A e A e A e
∞

=

= + + + + +∑    (26a) 

( )4 1 2 3 4
40 1 2 3 40

1

0.5 n n n npq nn n n
n

S A f A f A f A f A f
∞

=

= + + + +∑                 (26b) 

( )4 1 2 3 4
40 1 2 3 40

1
0.5 n n n nzp nn n n

n
S A g A g A g A g A g

∞

=

= + + + +∑                                          (26c)  

( )4 1 2 3 4 5
40 1 2 3 4 50

1

0.5 n n n n nr n n n n n
n

S A h A h A h A h A h A h
∞

=

= + + + + +∑                                                         (26d) 

( )1 2 3
1 2 3

1
.n n nt n n n

n
S A k A k A k

∞

=

= + +∑                 (26e) 

   The functions 
jj
ne k−  used in the boundary conditions of the symmetric and antisymmetric cases are given in Appendix A. The 

boundary conditions along the entire range of the boundary cannot be satisfied directly. To satisfy the boundary conditions, the 
Fourier expansion collocation method due to Nagaya (1983) is applied along the boundary. Performing the Fourier series 
expansion to the transformed expression in Eq. (22) along the boundary, the boundary conditions are expanded in the form of 
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double Fourier series for symmetric and antisymmetric modes of vibrations. For the symmetric mode, the equation, which satisfies 
the boundary conditions, is obtained in matrix form as follows: 

1 2 3 5 1 1 3 3 4 4 5 5
00 00 00 00 01 0 01 0 01 0 01 0

1 2 3 5 1 1 3 3 4 4 5 5
0 0 0 0 0 0 0 0

1 2 3 1 1 3 3 4 4
10 10 10 11 1 11 1 11 1

1 2 3 1 1 3
0 0 0 1 1

0 0 0

0

N N N N

N N N N N NN N NN N NN N NN

N N N

N N N N NN N N

E E E E E E E E E E E E

E E E E E E E E E E E E
F F F F F F F F F

F F F F F F F

L L L L

M M M M M M L M M M M M M

L L L L

L L L

M M M M M M L M M M M M M

L 3 4 4
1

1 2 3 1 1 3 3 4 4
00 00 00 01 0 01 0 01 0

1 2 3 1 1 3 3 4 4
0 0 0 0 0 0

1 2 3 5 1 1 3 3 4 4 5 5
00 00 00 00 01 0 01 0 01 0 01 0

1 2 3 5 1
0 0 0 0 0

0 0
0 0 0

0 0 0

N N NN

N N N

N N N N NN N NN N NN

N N N N

N N N N N

F F
G G G G G G G G G

G G G G G G G G G
H H H H H H H H H H H H

H H H H H H

L L

L L L L

M M M M M M L M M M M M M

L L L L

L L L L

M M M M M M L M M M M M M

L

10

20

30

50

11

1

1 3 3 4 4 5 5
0 0 0

1 2 3 1 1 3 3
5100 00 00 01 0 01 0

1 2 3 1 1 3 3
50 0 0 0 0

0 0 0 0 0

0 0 0 0 0

N

NN N NN N NN N NN

N N

NN N N N NN N NN

A
A
A
A
A

A

H H H H H H
AK K K K K K K

AK K K K K K K

⎡⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣

M

M

M

M

M

ML L L

L L L L

MM M M M M M L M M M M M M

L L L L

0

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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where, 
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L
j j

mn n n l
l

K k R m d
θ
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ε π θ θ θ

−=

= ∑∫                                                                              (28) 

   Here 1, 2,3i = ,4 and 5, I  is the number of segments, iR  is the coordinate r  at the boundary and N  is the number of terms in 
the Fourier series.  
The boundary conditions for the antisymmetric modes are written in the form of a matrix as given below: 
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    (29) 

The Fourier coefficients , , , ,
j j j j j
mn mn mn mnmnE F G H K  are obtained by replacing cos mθ  by sin mθ  and  sin mθ  by cos mθ  

in Eq. (28).For the nontrivial solutions of the systems of equations, given in Eqs. (27) and (29), the determinant of the coefficient 
matrix must vanish and these determinants give the frequencies of symmetric and antisymmetric modes of vibration respectively. 
 
6. Particular case  
 
   For isotropic materials,  
 11 33 2c c λ μ= = + , 44c μ= , 13c λ= , 12 13c c=  and ( )44 66 11 12 2c c c c= = −                            (30) 

Where λ  and μ are Lame’s constant. 

Using the values in various relevant relations and equations, along with 1 3 0β β= =  and 1 3 0K K= = , the problem is reduced 
to free vibration analysis of polygonal cross sectional bar immersed in fluid. Also, the frequency equations obtained in this method 
matches well with the frequency equations of Venkatesan and Ponnusamy (2007) which shows the exactness of our method.  
 

A. 6.1 Frequency equation of polygonal cross-sectional plate 
   Substituting the wave number k = 0 in the corresponding expressions and solutions in the previous sections, the problem is 
converted to two-dimensional vibration analysis of polygonal cross-sectional plate immersed in fluid. The boundary conditions for 
a polygonal cross-sectional plate immersed in fluid is obtained as follows 
       ( ) ( ) ( )' ' 0f f

pp pqi i i
p u uσ σ+ = = − =                                                                                      (31)

        
the stresses '

ppσ and '
pqσ , u and fu  have the same meaning as discussed in the previous sections.  

 Performing the Fourier series expansion as discussed in the previous sections to Eq. (31) along the boundary, the boundary 
conditions along the surfaces are expanded in the form of double Fourier series. For the symmetric mode, the boundary conditions 
are expressed as follows. 

( )1 2 1 2 3
0 10 0 20 1 2 3

0 1
cos 0m m m mn n mn n mn n

m n
X A X A X A X A X A mε θ

∞ ∞

= =

⎡ ⎤+ + + + =∑ ∑⎢ ⎥⎣ ⎦
 

( )1 2 1 2 3
0 10 0 20 1 2 3

1 1
sin 0m m mn n mn n mn n

m n
Y A Y A Y A Y A Y A mθ

∞ ∞

= =

⎡ ⎤+ + + + =∑ ∑⎢ ⎥⎣ ⎦
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( )1 2 1 2 3
0 10 0 20 1 2 3

0 1
cos 0m m m mn n mn n mn n

m n
Z A Z A Z A Z A Z A mε θ

∞ ∞

= =

⎡ ⎤+ + + + =∑ ∑⎢ ⎥⎣ ⎦
                                                 (32)                   

       
Similarly, for antisymmetric mode, the boundary conditions are expresses as 
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                                               (33)      
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= ∑ ∫            (34)                    

and where 1, 2j = , and 3 , I  is the number of segments, lR  is the coordinate r  at the boundary and N is the number of 

truncation of the Fourier series. The frequency equations are obtained by truncating the series to 1N + terms, and equating the 

determinant of the coefficients of the amplitude 0inA = and 0inA = , for symmetric and antisymmetric modes of vibrations. 
Thus, the frequency equation for the symmetric mode is obtained from Eq. (32), by equating the determinant of the coefficient 
matrix of  0inA = . Therefore we have 

1 2 1 1 2 2 3 3
00 00 01 0 01 0 01 0

1 2 1 1 2 2 3 3
0 0 1 1 1

1 2 1 1 2 2 3 3
00 00 01 0 01 0 01 0

1 2 1 1 2 2 3 3
0 0 1 1 1

1 2 1 1 2 2 3 3
00 00 01 0 01 0 01 0

N N N

N N N NN N NN N NN

N N N

N N N NN N NN N NN

N N N

X X X X X X X X

X X X X X X X X

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Z Z Z Z Z Z Z Z

Z

L L L

M M M M M M M M

L L L

L L L

M M M M M M M M

L L L

L L L

M M M M M M M M

1 2 1 1 2 2 3 3
0 0 1 1 1

0

N N N NN N NN N NNZ Z Z Z Z Z Z

=

L L L

                        (35) 

 
 Similarly, the frequency equation for antisymmetric mode is obtained from the eq. (33) by equating the determinant of the 
coefficient matrix of inA to zero. therefore, for the antisymmetric mode, the frequency equation obtained as 

( )3 1 2 3
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m n
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= =
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where 
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⎡ ⎤= − −⎣ ⎦                                                                         (37) 

 The barred expressions for the antisymmetric case are obtained by replacing cos nθ  by sin nθ  and sin nθ  by cos nθ  in  Eq. 
(37). 
 
7. Numerical results and discussion 
 
   The frequency equations obtained in symmetric and antisymmetric cases given in Eqs.(27) and (29) are analyzed numerically for 
thermal bars of polygonal (triangular, square, pentagonal and hexagonal) cross-sections immersed in fluid. The material chosen for 
the numerical calculation is Zinc, whose elastic constants is given in Sharma and Sharma (2002)  are 11 2

11 1.628 10c Nm−= × , 
11 2

12 0.362 10c Nm−= × , 11 2
13 0.508 10c Nm−= × 11 2

33 0.627 10c Nm−= × , 11 2
44 0.385 10c Nm−= ×  and 

density 3 37.14 10 kg mρ −= × . The thermal properties such as thermal expansion coefficients 6 2 1
1 5.75 10 degNmβ − −= × , 

6 2 1
3 5.17 10 degNmβ − −= × , 

thermal conductivities 2 1 1
1 1.24 10 degK Wm− −= × , 2 1 1

3 1.24 10 degK Wm− −= × , specific heat capacity 
2 1 13.9 10 degc Jkgν

− −= ×  and the reference temperature 0 296T K= o , and for fluid the density 31000 /f kg mρ =  and 

phase velocity 1500 / secc m=  are used for the numerical calculations.  
               The geometric relations for the polygonal cross-sections given by Nagaya (1983) 

as ( ) 1
cosi iR b θ γ

−
= −⎡ ⎤⎣ ⎦                                                                                                                 (38) 

where b is the apothem The relation given in Eq. (38) is used directly for the numerical calculation. The dimensionless wave 
numbers, which are complex in nature, are computed by fixing Ω  for 0 1.0< Ω ≤  using secant method (applicable for complex 
roots, Antia, 2002). The basic independent modes like longitudinal and flexural modes of vibration are analyzed and the 
corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional bar in the range 0θ =  andθ π=  is 
divided into many segments for convergence of wave number in such a way that the distance between any two segments is 
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negligible. The computation of Fourier coefficients given in Eq. (28) is carried out using the five point Gaussian quadrature. The 
results of longitudinal and flexural (symmetric and antisymmetric) modes are plotted in the form of dispersion curves. The 
notations used in the figures namely, LmTF, FsTF and FaTF respectively  denotes the longitudinal mode of vibration for thermal 
bar immersed in fluid, the flexural (symmetric and antisymmetric) modes of vibration of thermal bar immersed in fluid. Similarly, 
the notations RLmTF, and ILmTF respectively denotes the real and imaginary parts of vibration for longitudinal modes of thermal 
bar immersed in fluid.  The 1 refer to the first mode and 2 refer the second mode and so on in all the dispersion curves.   
 
7.1 Triangular and Pentagonal cross-sections 
   The triangular and pentagonal cross-sectional cylinders (Figs.2(c) and 2(d) of Nagaya (1983), the vibration displacements are 
symmetrical about the x axis for the longitudinal mode and antisymmetrical about the y axis for the flexural mode since the cross-
section is symmetric about only one axis. Therefore n and m are chosen as 0, 1, 2, 3… in Eq. (27) for the longitudinal mode and n, 
m=1, 2, 3 … in Eq. (29) for the flexural mode.  
   A graph is drawn for non-dimensional frequency Ω  versus dimensionless wave number ς  for longitudinal mode of triangular 
cross sectional thermal bar immersed in fluid is shown in Fig.1.  

 
Fig.1 Non dimension frequency Ω versus dimensionless wave number  ς of longitudinal mode of  

triangular cross sectional thermal bar immersed in fluid 
 

   From the Fig.1, it is observed that, as the non dimensional frequency increases, the dimensionless wave number ς   also 

increases. Between 0.5Ω =  to 0.6Ω = , the first and second modes of vibrations merges, it indicate, the transport of heat energy 
between the modes of vibration. A comparison is made between the non-dimensional frequencies Ω  versus real ( )ς  and 

imaginary ( )ς  parts of dimensionless wave numbers for the longitudinal modes of triangular thermal bar immersed in fluid is 
shown in Fig.2. 
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Fig.2 Comparison between non dimensional frequency Ω versus dimensionless real ( )ς and imagnary  ( )ς  parts of wave 

number   for longitudinal modes triangular cross sectional thermal bar immersed in fluid 
 

   From the Fig.2, it is observed that the displacement of heat energy from solid to fluid  linearly increases on increasing frequency 
for the real part of wave number, where as the imaginary part of wave number  decreases, this is the proper physical behaviour of a 
bar/cylinder/thermal bar immersed in fluid. It is also observed that, the imaginary part of wave number tends to zero by increasing 
its frequency.  
   The dispersion curve shown in Fig. 3, is drawn between the non dimensional frequency Ω  versus dimensionless wave number 
ς  for flexural anti symmetric modes of triangular cross sectional thermal bar immersed in fluid. From the Fig. 3, it is observed 

that, the transfer of heat energy from solid to fluid medium is not uniformly distributed, shows that, the trend line have many ups 
and downs. At 0.5Ω = , the wave number reaches its peak and then it starts to decrease. 

 
Fig. 3 Non dimensional frequency Ω  versus dimensionless wave number ς  of flexural antisymmetric  

modes of triangular cross section bar immersed in fluid 
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Fig.4 Non dimension frequency Ω  versus dimensionless wave number ς of longitudinal mode of  

pentagonal cross sectional thermal bar immersed in fluid 
 
   The Fig.4, shows that the non-dimensional frequency Ω versus dimensionless wave number ς  of transversely isotropic 
pentagonal cross-sectional thermal bar immersed in fluid for longitudinal modes of vibration. It is observed that as the frequency 
increases, the non-dimensional wave number ς  also increases linearly. Between 0.3Ω =  and 0.7Ω = , the numbers  merge 
with each other. It shows that the heat energy transferred between the modes of vibrations, beyond that the dispersion behaves 
well. 
   A Comparison is made for a pentagonal cross sectional bar (without thermal and fluid) with the pentagonal cross sectional 
thermal bar and pentagonal cross sectional thermal bar immersed in fluid is shown in Fig. 5.  

 
Fig. 5 Comparison between non dimensional frequency Ω  versus dimensionless wave number ς  for a longitudinal mode of 

pentagonal cross sectional bar, thermal bar and bar immersed in fluid 
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   From the Fig.5, it is observed that, the non dimensional wave numbers are increased by increasing its frequency in all the three 
types of bars. Among the displacement of energy, the thermal bar leaks more energy from solid to the vacuum, and the bar 
immersed in fluid leaks less energy by comparing it with the other two types of bars.   
 
7.2 Square and Hexagonal cross-sections 
   In case of longitudinal vibration of square and hexagonal cross-sectional bars, the displacements are symmetrical about both 
major and minor axes since both the cross-sections are symmetric about both the axes. Therefore the frequency equation is 
obtained by choosing both terms of n and m are chosen as 0, 2, 4, 6… in Eq. (27). During flexural motion, the displacements are 
antisymmetrical about the major axis and symmetrical about the minor axis. Hence the frequency equation is obtained by choosing 
n, m=1, 3, 5,… in Eq. (29).   
   A graph is drawn between the non dimensional frequency Ω versus dimensionless wave number for longitudinal modes of 
vibration and is shown in the Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6 Non dimension frequency Ω  versus dimensionless wave number ς | of flexural (symmetric and antisymmetric) modes of 

Square cross sectional thermal bar immersed in fluid 
 

   From the Fig. 6, it is observed that, the anti symmetric modes of vibration gets highly dispersive by comparing the flexural 
symmetric modes of vibrations. A dispersion curve is drawn between the non dimensional frequency Ω  versus dimensionless 
wave number ς  of longitudinal modes of hexagonal cross sectional thermal bar immersed in fluid and is shown in Fig. 7.  
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Fig. 7 Non dimension frequency Ω  versus dimensionless wave number ς of longitudinal mode of hexagonal  

cross sectional thermal bar immersed in fluid 
 
   From the Fig. 7, it is observed that, the cross over points between the third and the fourth modes at 0.3Ω =  and the modes 2 
and 3 at  0.4Ω =  and the modes 1 and 2 at 0.5Ω = indicates that there will be exchange of heat energy between the modes of 
vibrations.  
   The non-dimensional frequencies are obtained for the longitudinal modes of polygonal cross-sectional isotropic plates immersed 
in fluid are given in the Eq. (32).  Using the Eq. (32), the non-dimensional frequencies are obtained using that a graph is drawn to 
compare the non-dimensional frequency of longitudinal modes vibration for triangle, square, pentagon and hexagonal cross-
sectional plates immersed in fluid is shown the Fig. 8. From the figure, it is observed that the behavior of triangle and pentagon 
cross-sectional plates behave similar, similarly, the square and hexagonal cross-sectional plates behave similar. 
 
7.3 Comparisons of the results of the bar immersed in a fluid and in vacuum 
   To demonstrate the difference in the results of the polygonal cross sectional thermal bar immersed in a fluid and bar in vacuum, 
the difference in the absolute values of wave number ς  are obtained and presented in tables to study the amount of heat energy 
leakage from solid into fluid. Tables 1 and 2 respectively show the percentage of difference for longitudinal and flexural mode of 
vibrations in case of polygonal cross sections. From the Tables, it is observed that the fluid loaded system radiates energy into the 
surrounding fluid medium. The percentage increase in energy transfer from the solid to its surrounding environment is compared 
between, the cases of a solid bar in vacuum and solid bar immersed in fluid. It is noted that, the energy transfer is lesser in case, 
where the solid bar is immersed in fluid. The trend is similar, both in longitudinal and flexural modes of vibration for all polygonal 
geometric bars. That is the eigen modes in this case are referred to as leaky modes. It is clear from these results that frequency 
dependence of any such leaky modes is quite complex and appear to be dependent on all the physical and geometric parameters.      
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Fig. 8 Comparison between the frequency response of longitudinal modes triangular, square, pentagonal and  

hexagonal cross-sectional plates immersed in fluid 
 

Table 1: Comparison of the non-dimensional wave numbers ζ  for the transversely isotropic thermal polygonal (triangular, 
square, pentagonal and hexagonal) bar immersed in a fluid and for the bar in vacuum for longitudinal vibration 

 
Geometry  Ω   ζ   Increase in 

Percentage 
 Thermal bar in vacuum  Thermal bar immersed in fluid 

Triangle  0.1  0.1196  0.0811  3.85 
 0.3  0.3564  0.2443  11.21 
 0.5  0.5927  0.4116  18.11 
 0.7  0.8327  0.5677  26.50 
 1.0  1.0818  0.8275  25.43 

         

Square  0.1  0.1196  0.0811  3.85 
 0.3  0.3564  0.2439  11.25 
 0.5  0.5924  0.4094  18.30 
 0.7  0.8309  0.5627  26.82 
 1.0  1.2021  0.8181  38.40 

         

Pentagon  0.1  0.1196  0.0811  3.85 
 0.3  0.3564  0.2438  11.26 
 0.5  0.5922  0.4089  18.33 
 0.7  0.8305  0.5614  26.91 
 1.0  1.1999  0.8156  38.43 

         

Hexagon  0.1  0.1196  0.0811  3.85 
 0.3  0.3564  0.2438  11.26 
 0.5  0.5922  0.4087  18.35 
 0.7  0.8303  0.5608  26.95 
 1.0  1.1991  0.8145  38.46 
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Table 2 Comparison of the non-dimensional wave numbers ζ  for the transversely isotropic thermal polygonal (triangular, 
square, pentagonal and hexagonal) bar immersed in fluid and for the bar in vaccum for flexural vibration. 

 
Geometry  Ω   ζ   Increase in 

Percentage 
 Thermal bar in vacuum  Thermal bar immersed in fluid 

Triangle  0.1  0.1153  0.0405  7.48 
 0.3  0.3932  0.1997  19.35 
 0.5  0.6499  0.3686  28.13 
 0.7  0.8939  0.9349  4.10 
 1.0  1.3092  1.4508  14.16 

         

Square  0.1  0.1436  0.0426  10.10 
 0.3  0.4224  0.1558  26.66 
 0.5  0.7081  0.3461  36.20 
 0.7  1.0025  0.8612  14.13 
 1.0  1.4145  2.3676  95.31 

         

Pentagon  0.1  0.1185  0.0403  7.82 
 0.3  0.3895  0.1544  23.46 
 0.5  0.6518  0.3374  31.44 
 0.7  0.8898  0.4984  39.14 
 1.0  1.1266  0.2450  88.16 

         

Hexagon  0.1  0.1389  0.0404  9.85 
 0.3  0.4265  0.1539  27.26 
 0.5  0.7077  0.3339  37.38 
 0.7  0.9796  0.4820  49.76 
 1.0  1.4152  2.5009  108.57 

 
8. Conclusions 
 
   In this paper, the wave propagation in a transversely isotropic thermoelastic solid bar of polygonal (triangular, square, 
pentagonal and hexagonal) cross-sections immersed in fluid  is analyzed by satisfying the boundary conditions on the irregular 
boundary using the Fourier expansion collocation method and the frequency equations for the longitudinal and flexural modes of 
vibration are obtained. Numerically the frequency equations are analyzed for the Zinc bar of different cross-sections such as 
triangular, square, pentagonal and hexagonal. The computed dimensionless wave numbers are plotted as dispersion curves. The 
problem can be analyzed for any other cross-section by using the proper geometric relation. 
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( )4

4 sinn nh nJ ax nα θ=                                                                                                                                     (A25) 

( ) ( ) ( ) ( ) ( ){ }5 1 1
5 5 51 sinn n n nh nH ax a H ax nα α α θ+= −                                                                                            (A26) 

( ) ( ) ( ) ( ) ( ){ }1cos 1 cos sin , 1,2,3
i
n i i n i i n i ik e n n J ax a J ax n iθ γ α α α θ γ θ+= − + − − =                                              (A27) 

4 5
0, 0n nk k= =                                                                                                                                                      (A28) 

 
Notations 

 

inA , inA  arbitrary integration constants 
A, B, C, D algebraic constants   

fB  adiabatic bulk modulus of the fluid 
a                                   geometrical parameter of the cylinder  
cν  specific heat capacity 

d                                   2
44 0 0vc c Tρ β    

id , ie                            integration constants      

, , , ,i i i i i
n n n n ne f g h k        coefficients of inA   

, , , ,
i i i i i
n n nn ne f g h k           coefficients of inA   

11 12 13 44 66, , , ,c c c c c                             elastic constants 

rre , eθθ , zze                   normal strain components 

re θ , rze , zeθ                   shear strain components 

, , , , , , ,j j j j j j j j
mn mn mn mn mn mn mn mnE F G H K X Y Z       Fourier coefficients for symmetric mode 

, , , , , , ,
j j j j j j j j
mn mn mn mn mn mn mnmnE F G H K X Y Z   Fourier coefficients for  antisymmetric  mode 
( )1
nH                           Hankel function of the first kind 

i                                1−  

nJ                                Bessel function of the first kind  

K                                  thermal conductivity                                
N                              number of terms in a Fourier series 

fp                                acoustic pressure of the fluid 

lR                                  coordinate r at the l th−  boundary of the surface         

, , , ,pp pq zp r tS S S S S    transferred boundary conditions for symmetric mode 

, , , ,pp pq zp r tS S S S S   transferred boundary conditions for antisymmetric mode 
t                                     time 
T                                   temperature                  

aT                                  dimensionless time parameter 

0T                                    reference temperature 

( ),nT r θ                           temperature potential for symmetric mode 

( ),nT r θ                          temperature potential for antisymmetric mode 

r , θ , z                         cylindrical coordinates 

( ), , ,ru r z tθ                     radial displacement of solid 
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( ), , ,u r z tθ θ                   circumferential displacement of solid  

( ), , ,zu r z tθ                   axial displacement of solid  

( ), , ,f
ru r z tθ                 radial displacement of fluid 

( ), , ,fu r z tθ θ                 circumferential displacement of fluid 

( ), , ,f
zu r z tθ                axial displacement of fluid 

Greek symbols   
 

( )jaα                            roots of the algebraic equation 

1 3,β β                                  thermal stress coefficient 

Δ    dilatation of the fluid 

nε                               1/ 2=  when 0n =  or 1 when 1n ≥    

( ),n rφ θ , ( ),nW r θ , ( ),n rψ θ  displacement potentials for the symmetric mode of the solid 
fφ  change of variable to define displacements of the fluid 

( )f
n rφ        displacement potential of fluid in symmetric  

( ),n rφ θ , ( ),nW r θ , ( ),n rψ θ displacement potential for the antisymmetric mode for solid 

lγ                                  angle between normal to the segment and the reference axis 

λ , μ                             Lame’ constants                 

lθ                               angle between the reference axis and the l th−  segment   
ρ                                   density of solid 

fρ                                 density of fluid                       

ρ                         dimensionless density ratios of the fluids with solids 

, ,rr zzθθσ σ σ                   normal stress components 

, ,r z rzθ θσ σ σ                  shear stress components 
ς  non-dimensional wavenumber 
Ω                                  non-dimensional frequency 
ω                                  angular frequency 

2 2 2 1 2 2 2x x xx θ− −∂∇ ≡ ∂ ∂ + + ∂ ∂∂ Laplace operator   
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