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Abstract

The problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo elastic polygonal cross-sectional
bar immersed in fluid is studied using Fourier expansion collocation method, with in the framework of linearized, three
dimensional theory of thermoelasticity. Three displacement potential functions are introduced, to uncouple the equations of
motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and
antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional
Zinc bar. The computed non-dimensional wave numbers are presented in the form of dispersion curves.
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1. Introduction

The phenomenon of thermo elastic bar of polygonal cross sections immersed in a fluid finds a wide range of applications in all
fields of science and engineering including atomic physics and metallurgy. Nagaya (1981, 1982, 1983, 1985) discussed wave
propagation in an infinite bar of arbitrary cross section and the wave propagation in an infinite cylinder of both inner and outer
arbitrary cross section applicable to a bar of general cross section, based on three-dimensional theory of elasticity. The boundary
conditions along the free surface of arbitrary cross section are satisfied by means of Fourier expansion collocation method. Sinha
et al. (1992) have studied the axisymmetric wave propagation in circular cylindrical shell immersed in a fluid, in two parts. In Part
I, the theoretical analysis of the propagation modes is discussed and in Part 11, the axisymmetric modes excluding tensional modes
are obtained theoretically and experimentally and are compared. Berliner and Solecki (1996) have studied the wave propagation in
a fluid loaded transversely isotropic cylinder. In that paper, Part I consists of the analytical formulation of the frequency equation
of the coupled system consisting of the cylinder with inner and outer fluid and Part Il gives the numerical results. Easwaran and
Munjal (1995) investigated the effect of wall compliance on lowest order mode propagation in a fluid filled or submerged
impedance tubes. Based on the closed form analytical solution of the coupled wave equations and applying the boundary
conditions at the fluid-solid interface, an eigenequation was obtained and then the dispersion behavior of wave motion was
analyzed. Also, they investigated axial attenuation characteristics of plane waves along water filled tubes submerged in water or
air.

Suhubi (1964) studied the longitudinal vibration of a circular cylinder coupled with a thermal field. Later with Erbay (Erbay and
and Suhubi, 1986) he studied the longitudinal wave propagation in a generalized thermo elastic infinite cylinder and obtained the
dispersion relation for a constant surface temperature of the cylinder. Lord and Shulman (1967) formulated a generalized
dynamical theory of thermo elasticity using the heat transport equation that included the time needed for the acceleration of heat
flow. Green and Lindsay (1972) presented an alternative generalization of classical thermo elasticity. Restrictions on constitutive



17 Ponnusamy / International Journal of Engineering, Science and Technology, Vol. 3, No. 9, 2011, pp. 16-36

equations were discussed with the help of an entropy production inequality proposed by Green and Laws. They have showed that
the linear heat conduction tensor was symmetric and that the theory allows for second sound effects. Venkatesan and Ponnusamy
(2002, 2007) studied the wave propagation in solid and generalized solid cylinder of arbitrary cross-sections immersed in fluid
using the Fourier expansion collocation method. Dayal (1993) investigated the free vibrations of a fluid loaded transversely
isotropic rod based on uncoupling the radial and axial wave equations by introducing scalar and vector potentials. Nagy (1995)
studied the propagation of longitudinal guided waves in fluid-loaded transversely isotropic rod based on the superposition of
partial waves. Guided waves in a transversely isotropic cylinder immersed in a fluid was analyzed by Ahmad (2001). Ponnusamy
(2007) and later with Rajagopal (Ponnusamy and Rajagopal, 2010) have studied, the wave propagation in a generalized thermo
elastic solid cylinder of arbitrary cross-section and in a homogeneous transversely isotropic thermo elastic solid cylinder of
arbitrary cross-sections respectively using the Fourier expansion collocation method.

In this paper, the wave propagation in a transversely isotropic thermoelastic solid bar of polygonal cross-section immersed in
fluid is studied using Fourier expansion collocation method. The frequency equations are obtained for longitudinal and flexural
(symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal
cross-sectional Zinc bars. The computed non-dimensional wave numbers are presented in the form of dispersion curves.

2. Formulation of the problem

In this section, we consider a homogeneous transversely isotropic, thermally conducting elastic bar of infinite length immersed in
fluid with uniform temperature T, in the undisturbed state initially. U, U, and U, are respectively the radial, tangential and

axial displacement components, which are defined through the cylindrical coordinates r,6 and Z .
The governing field equations of motion and heat conduction in the absence of body force are Sharma and Sharma (2002):

Cpe 1705+ 0, +17 (00 —0p )= P,y (1a)
Oror T rilo-aa,a T0,, T Zrilo'rg = PUgy (1b)
Oy 170, ,+0,,+1 0, =pu,, (1c)
K, (Trr T+ r*ZT'99)+ KT, —pcT, =T, ( B.(e +e4)+ B, ),t (1d)
and
Oy =Cyu€, +Cp€y +Cia€,, — T (2a)
Ogg = Cpo€y +C1€p +Ci€,, — AT (2b)
0, = Cia€y +Cig€yy +C3e8,, — ST (2¢)
Or9 = Ce6Cr01 Ty, = Cas€y, O, =Cyy€y, (2d)
where o, ,0,,,0,,,0,4,0,,,0,, are the stress components, €,,,€,,,€,,,€,,,€,,,€,, are the strain components, T is the

temperature change about the equilibrium temperature T,, C;;, C;,, C;3, Cy3, Cyy and Cyy = (C11 —Clz)/Z are the five elastic
constants, 3, f; and K, K respectively thermal expansion coefficients and thermal conductivities along and perpendicular to

the symmetry, o is the mass density, C, is the specific heat capacity.

v

The strain €; are related to the displacements are given by

-1
€ =U, . =T (U +Uy,) €, =U (3a)

m prd 7,2

-1 -1
€ = (Ue,r +r (Ur,a _ua)) € = (ue,z +r uz,e) €, =U,, +U,, (30)

The comma in the subscripts denotes the partial differentiation with respect to the variables.
Substituting the Egs. (3) and (2) in the Eq. (1), results in the following three-dimensional equations of motion and heat
conduction are obtained as follows:
-1 —2 -2 -2
Ciy (ur,rr +r Ur,r -r Ur)_ r (Cll + Cee)ua,a +r C66ur,96’ (42)
-1
FTCuU, ,, + (C44 + Cls)uz,rz +r (Cse +Cp ) Upro =BT, = PU, 4
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-1 -2 -1 -2
r (C12 +C66)ur,r9 +r (Cee + Cll)ur,0 + Ceg (ua,rr Uy, —r ua)

(4b)
-2 -1
+I 7 Culy gg T Chuly ,, +T (C44 + C13)uz,92 =BT, =pUyy
1 -2 1
C44 (uz,rr +r uz,r +r uz,99)+ r (C44 + C13)(ur,z + ue,ez)
+(C44 +C13)ur,rz +Cy3U, 5 =BT, = pu,, (4c)
K, (T,rr + rilT,r + rizT,ee ) + KT, —pC, T, =T, (ﬂl (err + €0 ) + S8, ),t (4d)

3. Solutions of the Field Equation

To obtain propagation of harmonic waves in polygonal cross-sectional bars, we assume solutions of the displacement
components to be expressed in terms of derivatives of potentials first introduced by Mirsky (1964) and used as well by Berliner
and Solecki (1996). Thus, we seek the solution of the Eq. (4) in the form Mirsky (1964) as

U (r,6,2,1) = ni;sn (e 77000) 4 (B0 + 17000 ) €10 (52)
Uy (1, 0,2,1) = Z;e (s =0 )+ (7700~ ) B (5b)
U (r,6,2,t) = (i_/a)i;gn [W, +W, it (50)
T(r,0,2,t)= (044/ﬂ;a2)2gn [T, +To e (54)

where &, :1/2 forn=0, g, =1for n>1, i=+-1, Kk is the wave number, @ is the frequency, ¢n(r,t9), Wn(r,é?)

and v, (r, 0) are the displacement potentials and T, (r, 0) is the temperature change for the symmetric mode and the barred

quantities are the displacement potentials and temperature change for the antisymmetric modes of vibration and a is the
geometrical parameter of the bar.
By introducing the dimensionless quantities such

asx=rla,g=ka,Q" = pwzaz/CM Cu = C.1/Cu G = Ci/Cas Cxs = Cs3/Cas ,Cos = Cos/Cas E =B/PBs.
k = (,oc44 )]/z/ﬂg,2 T,aQ2, d= pcch/ﬂj T, and substituting Eq. (5) in Eq. (4), we obtain

cuV? +(Q = 6%) 4, — 1+ Ca )W, = BT, =0 (62)

s(1+cu ), +(V2 +(@? —633g2))Wn —¢T, =0 (6b)

Z’quﬁn —cW, +(H+ ik, V2 — iEng)Tn =0 (6c)
and

(V2+(Q2—g2)/666)l//n=0 ()

where V2 =82/ox? + x 8/ox + x 2 9/ 06°
The Eq. (6) can be written as
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|:611V2 + (Q2 - g2 ):| - (1+613) —E
g(1+613) [Vz + (Q2 —Easgz )} —-< (4,,W,,T,)=0 8)
Vg — [a+iEN2 - iEsg‘z]

Equation (8), on simplification reduces to the following differential equation:

(AV® +BV*+CV?+D) (¢, W, T,)=0

9)
where o
A=icuki (10a)
B =iki ((QZ —Egagz )611 + (Q2 -c? ) +c? (1+613)2 ) +Cu (H— iEsgz )+ ,EZ (10b)
C =6 (0 -he? [ d—c? (Liks) | (@2 -¢?)| (d-iko? ik (0 bt |
+(1+513)2 [gz (a— iE3g2)+Z’g2}+E§2 (1+513)
L B (Qz —Easgz)
(10c)
D=(®? —gz)[(Qz —Caag” )(d - ingz)—gz} (10d)
Factorizing the relation given in Eq.(9) into cubic equation for (Otia)2 ,(i =1, 2,3), the solutions for the symmetric modes are
obtained as
3
¢ = A, (aax)cosnd (11a)
i=1
3
W, =>"d,A,J, (eax)cosnd (11b)
i=1
3
T, =Y &A,J, (ax)cosng (11c)

i=1

The solutions for the antisymmetric modes én W, and T are obtained by replacing COSN@ by Sinnéd in Eq. (11). Since we
are considering solid bar of polygonal cross-section, the Bessel function of the second kind Y, is absent. Here(ozia)2 >0,
(i =12, 3) are the roots of the algebraic equation

A(oza)6 - B(aa)4 +C (Ota)2 +D=0. (12)

The solutions corresponding to the root (Otia)2 =0 is not considered here, since J,, (O) is zero, except forn = 0. The Bessel
function J, is used when the roots (ozia)2 ,(i=1,2,3)are real or complex and the modified Bessel function I, is used when
the roots (Otia)2 ,(i =1, 2,3) are imaginary.

The constants di and €; defined in the Eq. (11) can be calculated from the equations

g(1+613)di +E€i Z—(611(aia)2—Q2+g2) (13a)
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((QZ —Essgz)—(aia)z)di —ce =(aa) (1+513)g (13b)
Solving the Eq. (7), the solution to the symmetric mode is obtained as
v, = AnJd, (,ax)sinnd (14)

where (,a)° = Q% — 2. If (,a)” <0, the Bessel function J,, is replaced by the modified Bessel function 1, . The solution

for the antisymmetric mode Jn is obtained from Eq. (14) by replacing Sin né by cosné.

4. Equations of motion of the fluid
In cylindrical polar coordinatesr, @ and Z the acoustic pressure and radial displacement equation of motion for an invicid
fluid are of the form (Achenbach, 1973):
f f f -1 f f f
p' =-B'(u, +r@u +u),)+u,,) (15)
and
-2, f
szur,tt = A'r (16)
respectively. Where B , is the adiabatic bulk modulus, pf is the density, C; = \/B f/,0f is the acoustic phase velocity in the
fluid, and

A=(uf +rtu +up)+u/,). (17)
Substituting
u' =¢;, U, =r'g, andu, =4, (18)
and seeking the solution of (16) in the form
¢'(r.0,2,t)=) &4, (r)cosnde' . (19)
n=0
The fluid that represents the oscillatory waves propagating away is given as
f 1
¢y = AH, (a5a%) (20)

——f — —1
where (a,a)’ =%/ pB' —¢? inwhich p = p/p' B =B'/c,,, HY is the Hankel function of the first kind.

If (05561)2 < 0, then the Hankel function of first kind is to be replaced by K, where K is the modified Bessel function of the
second kind. By substituting Eq.(19) in Eq. (15) along with Eq.(20), the acoustic pressure for the fluid can be expressed as

p'=> e, A0 pH (azax) cos nge'= ") (21)
n=0

5. Boundary conditions and Frequency equations

In this problem, the free vibration of a transversely isotropic thermoelastic solid bar of polygonal cross-section is considered.
Since the boundary is irregular, the Fourier expansion collocation method is applied on the boundary of the cross-section. Thus,
the boundary conditions obtained are

f _ _ _ f _ _
(O-Pp +p )i a (O_Pq )i o (O-ZP )i o (U U )i o (T )i =0. (22)
where [ is the coordinate normal to the boundary and ¢ is the coordinate in the tangential direction. Here G, is the normal

stress, G, and G,, are the shearing stresses and ( )i is the value at the i —th segment of the boundary. Since the coordinate
p and q are functions of r and &, it is difficult to find transformed expressions for the stresses. Therefore the polygonal

boundary is divided into small segments such that the variations of the stresses are assumed to be constant. Assuming the angle y; ,

between the normal to the segment and the reference axis to be constant, the transformed expressions for the stresses are followed
by Nagaya (1983),
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O = (c11 cos?(6—y,)+C,, sinz(H—yi))u” +rt (cnsinz(é’—;/i)Jrc12 cosz(@—yi))(ur +Uy)

(23a)

+Cyq (r‘1 (up—u, ,)—U,, r)sin 2(0-y)+cuu,, - BT
O g = Ces ((ur,r —r (U, +U,))sin2(0—y;)+(r'(u,, —u,)+U,,)cos 2(49—;/i)) (23b)
Op = Cus ((ur,z + uz,r)cos(e_j/i) - (uH,z + r_luz.e)Sin(e_yi)) : (23c)

Applying the Fourier expansion collocation method along the curved surface of the boundary, the transformed
expressions for the stresses are

(Spp )i +(§pp )i:|ei(§E+QTa) =0 (248.)
_(Spq ), +(§pq)i}e‘(ﬁ*ma) -0 (24b)
:(Szp )I +(§zp )ii|ei(§E+QTa) — 0 (24C)
(s)) +(§r)}e‘(ﬁ*ma) =0 (24d)
_(St)i +(§t)1e“ﬁ*ma) =0 (24d)
where, )
Spp = 05(A10eé + AZOeS + Aaoeg + A50e§)+ Z(Ainei + AZner? + Aaner? + A4ner£11 + ASner?) (25&)
n=1
Spq = 05(A10 1:01 + AZO f02 + ABO f03)4_ Z(Aln fn1 + A2n fn2 + ASn fn3 + A4n fn4) (25b)
n=1
Szp = 05(A10gé + AZOQS + A30g(3))+Z(Ain fnl + A2n fnz + A3n fn3 + A4n fn4) (250)
n=1
Sr = 05(A10hé + 'A‘ZOhO2 + A30h03 + ASOhg)_l_ Z(Ainhi + AZnhr? + A3nhr? + A4nh;1 + Athr?) (25d)
n=1
St = OS(AIOké + A20k02 + A30k3)+ Z(Ainkrll + A2nkr? + Aankr?) (256)
n=1
St = 0.5Aw0es +z(7\ma + Aanen+ Asnes +—A4na:+‘A5nag) (263)
=1
— - T4 &= Tl < 72 = 83— oy,
Spa=0.5A0 T, +Z(A1n £ P Tt an Tt A T ) (26b)
n=1
— - =4 G =1 = —2 —= =3 — —,
Sp = 0.5A4090 +Z(A1n g,+ Azn g,+ Asn g,+ Aung n) (26c)
n=1
S, =0.5A0h, + z(mi + Panlin + Aan s +7\4n53+‘Asﬂﬁg) (260)
n=1
- &= 1 — —2 — =3
St =Z(A1nkn+A2nkn+A3nkn)- (26e)

n=1

The functions e’ —k» used in the boundary conditions of the symmetric and antisymmetric cases are given in Appendix A. The
boundary conditions along the entire range of the boundary cannot be satisfied directly. To satisfy the boundary conditions, the
Fourier expansion collocation method due to Nagaya (1983) is applied along the boundary. Performing the Fourier series
expansion to the transformed expression in Eq. (22) along the boundary, the boundary conditions are expanded in the form of
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double Fourier series for symmetric and antisymmetric modes of vibrations. For the symmetric mode, the equation, which satisfies
the boundary conditions, is obtained in matrix form as follows:

1 2
EOO EOO
1 2
ENO ENO

1 2
FlO FlO
1 2
FNO FNO
1 2
GOO GOO
1 2
GNO GNO
1 2
HOO HOO
1 2
H NO H NO
1 2
KOO KOO
1 2
L KNO KNo
where,

Gl =(2¢,/7)

3
EOO

3
EN 0

3
F].O

3
FN 0

3
GOO

3
GNO

3
HOO

3
HNO

3
KOO

3
I(NO

5
EOO

Exo
0

5
HOO

HYo
0

0

=(2¢,/7) ZI
=(2¢,/7) Zj

Hp, =(25,/7)

L
Ky =(26,/7) Y[ K!(R,.6)cosmdo
!

1
EOl

1
EN 0

1
Fll

1
I:N].

1
GO].

1
GNO

1
HOl

1
HNO

1
KOl

1
KNO

'(R,,60)cosmad

1
EON

1
ENN

1
F].N

1
FNN

1
GON

1
GNN

1
HON

1
HNN

1
KON

1
|<NN

sm medo
ZJ'Q' 9! (R, 0)cosmade
1= "

L
Z.[j h!(R,,8)cosmado
[t

3
EOl

3
ENO
3
Fll

3
FN].

3
GOl

3
GNO

3
HO].

3
HNO

3
KOl

3
KNO

3
EON

3
ENN

3
Fl N

3
FNN

3
G0N

3
GNN

3
HON

3
HNN

3
KON

3
I(NN

Eoy
Exo
Fi
Fi
Gay
Gyio
Hoy
Hyo
0

Eon
Exn
R
Fau
Goy
Gyin
Hon
Hin
0

5
EOl

Exo
0

5
HOl

5
HNO

5
EON

Exn
0

5
HON

5
HNN

As

An

A

1 A

Ao
Ay
Ao

K

(@7)

(28)

Here i=1,2,3 ,4and 5,1 isthe number of segments, R, is the coordinate I at the boundary and N is the number of terms in

the Fourier series.
The boundary conditions for the antisymmetric modes are written in the form of a matrix as given below:
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Eo Eu - Ew En -+ Ew Eu - Ew En - Emw  En - Ew || Aw |
— B — —2 =3 B — —4 =5 —s .
Eno En: -+ Enw Ent -+ Env Ent -+ Ennv Ent -+ Env Ent -+ Emn

Ego Etl ‘e E%)N E(Z)l ‘e ESN Ezl ‘e EiN Egl ‘e EgN o -~ 0 élN

. . . . . . . . . . . Azl
—4 =1 -1 =2 —2 —3 —3  —4 —1 :
Fvo Fni -+ Fww Fnao oo« Fww Fne o+ Fw Fng -« Faw 0 -+ 0 ||
4 _ _ _ _ _ _ _ Azxn
Go Gu - Gw Gu - Gw Gu -+ Gw Gu -+ Gw 0 - 0 |=

) =0

] — =2 —2 =3 . — —4 :
Grno Gnr -+ Gww Gt - Gww Gar - Gw Gar - Gw O - 0 Y
—4  —1 —1 2 B — —3 —a R — —s N
Ho Hwu -+ Hwn Hu -+ Hw Huo -+ Hin Hiu -+ Hinv Hu -+ Huw Ay
—4  —1 —  —2 —2  —3 T — Y — —s || _
Hwo Hwn: -+ Hw Hne - Hw Hwe oo Haw Hiae - Hw Hine oo Hiw || Agy
Rfo Ril RiN Rfl RfN Rfl RfN o - 0 o --- 0 Zsl
_Rfo RINI RlNN Rle Rim R?\u R?\IN o - 0 o - 0 | _ZSN i

The Fourier coefficients E;mErJnnarjnnﬁr:mRrjnn are obtained by replacingCcosmé& by sinmé@ and Sinmé by cosmé

in Eq. (28).For the nontrivial solutions of the systems of equations, given in Egs. (27) and (29), the determinant of the coefficient
matrix must vanish and these determinants give the frequencies of symmetric and antisymmetric modes of vibration respectively.

6. Particular case

For isotropic materials,
Cy=Cy=A+2p,Cpy =4, Cy=4,C, =Cpy and Cyy =Cg :(Cll_ClZ)/Z (30)
Where A and x are Lame’s constant.

Using the values in various relevant relations and equations, along with 3, = 5, =0 and K, = K, =0, the problem is reduced

to free vibration analysis of polygonal cross sectional bar immersed in fluid. Also, the frequency equations obtained in this method
matches well with the frequency equations of Venkatesan and Ponnusamy (2007) which shows the exactness of our method.

A. 6.1 Frequency equation of polygonal cross-sectional plate

Substituting the wave number k = 0 in the corresponding expressions and solutions in the previous sections, the problem is
converted to two-dimensional vibration analysis of polygonal cross-sectional plate immersed in fluid. The boundary conditions for
a polygonal cross-sectional plate immersed in fluid is obtained as follows

(a'pp+pf)i=(a;)q)i:(u—uf)i:0 (31)

Pq
Performing the Fourier series expansion as discussed in the previous sections to Eq. (31) along the boundary, the boundary
conditions along the surfaces are expanded in the form of double Fourier series. For the symmetric mode, the boundary conditions
are expressed as follows.

i gm |:xr110Aw + X;OAZO + Zsj:l(xrlnnAin + xrfmA'Zn + xr?wnASn )j|COS me = 0

' f - - - . .
the stresses o, and o, Uand U have the same meaning as discussed in the previous sections.

i |:Ynl10A10 +Yn?OA’20 + il(Ynlm Ain +Yn$n AZn +Yn?nA3n )j|Sin mg = 0

m=1
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n‘i:O gm |:Zr}10A10 + ZriOAZO + r;i;:l(zrlnn Ain + Zrin AZn + Zr3nn A’sn )j| Cos me = 0 (32)

Similarly, for antisymmetric mode, the boundary conditions are expresses as

Ms

[iiﬂoz\m . (zmﬂ X P+ X o B )},m mo=0
n=1

3
Il
5N

i En |:Vr3noz30 + i (V:rlnnzln +?inﬂ2n +Vi1n2\3n )i| cosmd =0

m=0 n=1

» |3 — © (=1 — -2 — =3 — .

Z|:ZmOA30+Z(ZmnA1n + Zmn Azn +ZmnA3n):|S|nm6=0 (33)

m=1 n=1

Where
L 4 L 4

=(2¢,/7) z.[e @)cosmada , Y.\ =(2¢,/7) ZI f) (R, 0)sinmodo

=l g, =l g,
L 4 L4 _

z) =(2¢,/ ZI 9] (R, 0)cosmadé Xom = (2¢,/7) ] j e 6)sinmodo
I:l(g|1 lzlﬂ 1

—j L % L 4

Ym =(2¢,/7) ZI f )cosmodo , Zm = (2¢,/7) ZI )sinmodo (34)
I:l I:lgI

and where | =1, 2,and 3, | is the number of segments, R, is the coordinate I at the boundary and N is the number of

truncation of the Fourier series. The frequency equations are obtained by truncating the series to N +1terms, and equating the

determinant of the coefficients of the amplitude A, =0 and Z\in =0, for symmetric and antisymmetric modes of vibrations.
Thus, the frequency equation for the symmetric mode is obtained from Eq. (32), by equating the determinant of the coefficient
matrix of A =0. Therefore we have

1 2 1 1 2 2 3 3
Xoo  Xoo  Xor = Xon KXo o Xon o Xor 0 Xon
1 2 1 1 2 2 3 3
Xno Xno Xt - Xaw Xno 0 Xaw Xnn o X
1 2 1 1 2 2 3 3
Yo Yoo Yor 0 Yoo Yo 0 Yono Yo - Yon
. X . . . . . o (35)
1 2 1 1 2 2 3 3
Yvo Ynoo Yoo Yanw Yaro o Yaw Yoo o Y
1 2 1 1 2 2 3 3
Zoo  Zoo  Zot v Zon Za v Zon Lot Zon
1 2 1 1 2 2 3 3
Zno Zno Zht vt Zwe a4 Zae o 4w

Similarly, the frequency equation for antisymmetric mode is obtained from the eq. (33) by equating the determinant of the
coefficient matrix of Ain to zero. therefore, for the antisymmetric mode, the frequency equation obtained as
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-3 i -1 —2 —2 —3 —3
X100 X1z -+ XN X1z -+ XN X121 - Xan
-3 —1 —1 —2 —2 —3 —3
XNo XNi oo+ XNN XN oo+ XNN OXNL e XN
=3 =1 —1 —2 —2 —3 3
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where

e, =2{n(n-1)J, (eax)+(aax)J,, («ax)}cos2(6-y,)cosnd

—x? {(ozia)2 (Z+ 2cos’ (-, ))} J, (aax)cosnd,i=1,2

e =0 p,HY (e ax)cosnd

fl= Z{n(n —1)—(oziax)2 J, (aax)+(egax) Jnﬂ(aiax)}sin 2(6—y;)cosnd
+2n{(gax)J,,; (eax)—(n-1)J, (e;ax)}cos2(0-y,)sinng,i=1,2

£2-0
gy = {nJ, (aax)—(aax)Jd,,, (eax)jcosnd,i=1,2
g’ =—[nH§1)(a3ax)—(a3ax) Hﬁ)l(ae,ax)Jcos né (37)

The barred expressions for the antisymmetric case are obtained by replacing cosné by sinné@ and sinné by cosné in Eq.
(37).

7. Numerical results and discussion

The frequency equations obtained in symmetric and antisymmetric cases given in Egs.(27) and (29) are analyzed numerically for
thermal bars of polygonal (triangular, square, pentagonal and hexagonal) cross-sections immersed in fluid. The material chosen for

the numerical calculation is Zinc, whose elastic constants is given in Sharma and Sharma (2002) areC,, =1.628x10" Nm?2,
C, =0.362x10"Nm~?, ¢, =0.508x10" Nm™~ ¢, = 0.627 x10" Nm~?, C,, = 0.385x10" Nm™ and
density p = 7.14x10°kg m™>. The thermal properties such as thermal expansion coefficients 3, =5.75x10°Nm~ deg™,
B, =5.17x10°Nm~ deg™,

thermal  conductivities K, =1.24x10°Wm™"deg ™, K,=1.24x10°Wm™"deg™,  specific  heat  capacity
c, =3.9x10%°Jkg "deg™" and the reference temperature T, = 296°K , and for fluid the density p' =1000kg/m® and

phase velocity ¢ =1500m/sec are used for the numerical calculations.
The geometric relations for the polygonal cross-sections given by Nagaya (1983)

as R /b=[cos(0-7)]" (38)

where Db is the apothem The relation given in Eqg. (38) is used directly for the numerical calculation. The dimensionless wave
numbers, which are complex in nature, are computed by fixing Q for 0 < Q <1.0 using secant method (applicable for complex
roots, Antia, 2002). The basic independent modes like longitudinal and flexural modes of vibration are analyzed and the
corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional bar in the range @ =0 and@ = 7 is
divided into many segments for convergence of wave number in such a way that the distance between any two segments is
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negligible. The computation of Fourier coefficients given in Eq. (28) is carried out using the five point Gaussian quadrature. The
results of longitudinal and flexural (symmetric and antisymmetric) modes are plotted in the form of dispersion curves. The
notations used in the figures namely, LmTF, FSTF and FaTF respectively denotes the longitudinal mode of vibration for thermal
bar immersed in fluid, the flexural (symmetric and antisymmetric) modes of vibration of thermal bar immersed in fluid. Similarly,
the notations RLmTF, and ILmTF respectively denotes the real and imaginary parts of vibration for longitudinal modes of thermal
bar immersed in fluid. The 1 refer to the first mode and 2 refer the second mode and so on in all the dispersion curves.

7.1 Triangular and Pentagonal cross-sections

The triangular and pentagonal cross-sectional cylinders (Figs.2(c) and 2(d) of Nagaya (1983), the vibration displacements are
symmetrical about the x axis for the longitudinal mode and antisymmetrical about the y axis for the flexural mode since the cross-
section is symmetric about only one axis. Therefore n and m are chosen as 0, 1, 2, 3... in Eq. (27) for the longitudinal mode and n,
m=1, 2, 3 ... in Eq. (29) for the flexural mode.

A graph is drawn for non-dimensional frequency €2 versus dimensionless wave number|g| for longitudinal mode of triangular

cross sectional thermal bar immersed in fluid is shown in Fig.1.
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o6 4 | T Lm'TF3 ,’,,-
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Fig.1 Non dimension frequency €2 versus dimensionless wave number |g| of longitudinal mode of
triangular cross sectional thermal bar immersed in fluid

From the Fig.1, it is observed that, as the non dimensional frequency increases, the dimensionless wave number |g| also
increases. Between €2 =0.5 to Q) = 0.6, the first and second modes of vibrations merges, it indicate, the transport of heat energy
between the modes of vibration. A comparison is made between the non-dimensional frequencies 2 versus real (g) and

imaginary (g) parts of dimensionless wave numbers for the longitudinal modes of triangular thermal bar immersed in fluid is
shown in Fig.2.
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Fig.2 Comparison between non dimensional frequency €2 versus dimensionless real (g) and imagnary (g) parts of wave
number for longitudinal modes triangular cross sectional thermal bar immersed in fluid

From the Fig.2, it is observed that the displacement of heat energy from solid to fluid linearly increases on increasing frequency
for the real part of wave number, where as the imaginary part of wave number decreases, this is the proper physical behaviour of a
bar/cylinder/thermal bar immersed in fluid. It is also observed that, the imaginary part of wave number tends to zero by increasing
its frequency.

The dispersion curve shown in Fig. 3, is drawn between the non dimensional frequency €2 versus dimensionless wave number

|g| for flexural anti symmetric modes of triangular cross sectional thermal bar immersed in fluid. From the Fig. 3, it is observed

that, the transfer of heat energy from solid to fluid medium is not uniformly distributed, shows that, the trend line have many ups
and downs. AtQQ = 0.5, the wave number reaches its peak and then it starts to decrease.

12

o A

——FalFl]  »
8 - ——-FatF2| [ \

Fig. 3 Non dimensional frequency €2 versus dimensionless wave number |g| of flexural antisymmetric
modes of triangular cross section bar immersed in fluid
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Fig.4 Non dimension frequency € versus dimensionless wave number |g| of longitudinal mode of
pentagonal cross sectional thermal bar immersed in fluid

The Fig.4, shows that the non-dimensional frequency €2 versus dimensionless wave number |g| of transversely isotropic
pentagonal cross-sectional thermal bar immersed in fluid for longitudinal modes of vibration. It is observed that as the frequency
increases, the non-dimensional wave number |g| also increases linearly. Between €2 =0.3 and 2 =0.7, the numbers merge

with each other. It shows that the heat energy transferred between the modes of vibrations, beyond that the dispersion behaves
well.

A Comparison is made for a pentagonal cross sectional bar (without thermal and fluid) with the pentagonal cross sectional
thermal bar and pentagonal cross sectional thermal bar immersed in fluid is shown in Fig. 5.
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Fig. 5 Comparison between non dimensional frequency €2 versus dimensionless wave number |g| for a longitudinal mode of
pentagonal cross sectional bar, thermal bar and bar immersed in fluid
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From the Fig.5, it is observed that, the non dimensional wave numbers are increased by increasing its frequency in all the three
types of bars. Among the displacement of energy, the thermal bar leaks more energy from solid to the vacuum, and the bar
immersed in fluid leaks less energy by comparing it with the other two types of bars.

7.2 Square and Hexagonal cross-sections

In case of longitudinal vibration of square and hexagonal cross-sectional bars, the displacements are symmetrical about both
major and minor axes since both the cross-sections are symmetric about both the axes. Therefore the frequency equation is
obtained by choosing both terms of n and m are chosen as 0, 2, 4, 6... in Eq. (27). During flexural motion, the displacements are
antisymmetrical about the major axis and symmetrical about the minor axis. Hence the frequency equation is obtained by choosing
n, m=1, 3, 5,... in Eq. (29).

A graph is drawn between the non dimensional frequency €2 versus dimensionless wave number for longitudinal modes of
vibration and is shown in the Fig. 6.
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Fig.6 Non dimension frequency € versus dimensionless wave number |g| | of flexural (symmetric and antisymmetric) modes of
Square cross sectional thermal bar immersed in fluid

From the Fig. 6, it is observed that, the anti symmetric modes of vibration gets highly dispersive by comparing the flexural
symmetric modes of vibrations. A dispersion curve is drawn between the non dimensional frequency €2 versus dimensionless

wave number |g| of longitudinal modes of hexagonal cross sectional thermal bar immersed in fluid and is shown in Fig. 7.
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Fig. 7 Non dimension frequency €2 versus dimensionless wave number |g| of longitudinal mode of hexagonal
cross sectional thermal bar immersed in fluid

From the Fig. 7, it is observed that, the cross over points between the third and the fourth modes at € =0.3 and the modes 2

and 3at Q=0.4 and the modes 1 and 2 at {2 = 0.5 indicates that there will be exchange of heat energy between the modes of
vibrations.

The non-dimensional frequencies are obtained for the longitudinal modes of polygonal cross-sectional isotropic plates immersed
in fluid are given in the Eq. (32). Using the Eq. (32), the non-dimensional frequencies are obtained using that a graph is drawn to
compare the non-dimensional frequency of longitudinal modes vibration for triangle, square, pentagon and hexagonal cross-
sectional plates immersed in fluid is shown the Fig. 8. From the figure, it is observed that the behavior of triangle and pentagon
cross-sectional plates behave similar, similarly, the square and hexagonal cross-sectional plates behave similar.

7.3 Comparisons of the results of the bar immersed in a fluid and in vacuum
To demonstrate the difference in the results of the polygonal cross sectional thermal bar immersed in a fluid and bar in vacuum,

the difference in the absolute values of wave number |g| are obtained and presented in tables to study the amount of heat energy

leakage from solid into fluid. Tables 1 and 2 respectively show the percentage of difference for longitudinal and flexural mode of
vibrations in case of polygonal cross sections. From the Tables, it is observed that the fluid loaded system radiates energy into the
surrounding fluid medium. The percentage increase in energy transfer from the solid to its surrounding environment is compared
between, the cases of a solid bar in vacuum and solid bar immersed in fluid. It is noted that, the energy transfer is lesser in case,
where the solid bar is immersed in fluid. The trend is similar, both in longitudinal and flexural modes of vibration for all polygonal
geometric bars. That is the eigen modes in this case are referred to as leaky modes. It is clear from these results that frequency
dependence of any such leaky modes is quite complex and appear to be dependent on all the physical and geometric parameters.
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Fig. 8 Comparison between the frequency response of longitudinal modes triangular, square, pentagonal and
hexagonal cross-sectional plates immersed in fluid

Table 1: Comparison of the non-dimensional wave numbers |é’| for the transversely isotropic thermal polygonal (triangular,
square, pentagonal and hexagonal) bar immersed in a fluid and for the bar in vacuum for longitudinal vibration

Geometry (@) | §| Increase in
Percentage
Thermal bar in vacuum Thermal bar immersed in fluid
Triangle 0.1 0.1196 0.0811 3.85
0.3 0.3564 0.2443 11.21
0.5 0.5927 0.4116 18.11
0.7 0.8327 0.5677 26.50
1.0 1.0818 0.8275 25.43
Square 0.1 0.1196 0.0811 3.85
0.3 0.3564 0.2439 11.25
0.5 0.5924 0.4094 18.30
0.7 0.8309 0.5627 26.82
1.0 1.2021 0.8181 38.40
Pentagon 0.1 0.1196 0.0811 3.85
0.3 0.3564 0.2438 11.26
0.5 0.5922 0.4089 18.33
0.7 0.8305 0.5614 26.91
1.0 1.1999 0.8156 38.43
Hexagon 0.1 0.1196 0.0811 3.85
0.3 0.3564 0.2438 11.26
0.5 0.5922 0.4087 18.35
0.7 0.8303 0.5608 26.95

1.0 1.1991 0.8145 38.46
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Table 2 Comparison of the non-dimensional wave numbers |§ | for the transversely isotropic thermal polygonal (triangular,
square, pentagonal and hexagonal) bar immersed in fluid and for the bar in vaccum for flexural vibration.

Geometry (@) | §| Increase in
Percentage
Thermal bar in vacuum Thermal bar immersed in fluid
Triangle 0.1 0.1153 0.0405 7.48
0.3 0.3932 0.1997 19.35
0.5 0.6499 0.3686 28.13
0.7 0.8939 0.9349 4.10
1.0 1.3092 1.4508 14.16
Square 0.1 0.1436 0.0426 10.10
0.3 0.4224 0.1558 26.66
0.5 0.7081 0.3461 36.20
0.7 1.0025 0.8612 14.13
1.0 1.4145 2.3676 95.31
Pentagon 0.1 0.1185 0.0403 7.82
0.3 0.3895 0.1544 23.46
0.5 0.6518 0.3374 31.44
0.7 0.8898 0.4984 39.14
1.0 1.1266 0.2450 88.16
Hexagon 0.1 0.1389 0.0404 9.85
0.3 0.4265 0.1539 27.26
0.5 0.7077 0.3339 37.38
0.7 0.9796 0.4820 49.76
1.0 1.4152 2.5009 108.57

8. Conclusions

In this paper, the wave propagation in a transversely isotropic thermoelastic solid bar of polygonal (triangular, square,
pentagonal and hexagonal) cross-sections immersed in fluid is analyzed by satisfying the boundary conditions on the irregular
boundary using the Fourier expansion collocation method and the frequency equations for the longitudinal and flexural modes of
vibration are obtained. Numerically the frequency equations are analyzed for the Zinc bar of different cross-sections such as
triangular, square, pentagonal and hexagonal. The computed dimensionless wave numbers are plotted as dispersion curves. The
problem can be analyzed for any other cross-section by using the proper geometric relation.
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Appendix:_A
e, = 2Ces[{N(N—-1)J, (eax) +(ax)J,,, (erax)}cos2(0- )
—{(ocia)2 [En cos’ (60— 7/I)+C12 sin®(6-7 ):|+C13gd +ﬂe} - (er@x)]cosng (A1)

+2nCes {(n—1)J, (evax) —(exa) J,., (esax)}sin2(6 -y )sinng, 1=1,2,3
er = 2nCes {(n—1)J, (er,ax) —(e,a)J,., (e,ax)} cos 2(6 - ;) cosné
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e =0 pHY (a,ax)cosnd (A3)
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:[2(0@1)Jm(oziax)—{((ozia)2 —2n(n—1))Jn(aiax)Hsin 2(60—y;)cosnd
+2n{(n-1)J, (ax)+(xa)d, ., («ax)}cos(6—y,)sinng,i=1,2,3
=2n{(n-1)J, (a,ax)—(2,a)
+[{(a4a)2 ~2n(n —l)} J (a4ax)—2(a4a)\]n+l(a4ax)} cos2(8~y,)sinng
f°=0
(c+ d.){ncos(nTIHﬂ/i)Jn(aiax)—(aia)Jn+1(aiax)c052(0—yi)cosné’}, i=12,3

2,a)J,,, (a,ax)}sin2(6 -y, )cosnd

g{n cos(n 119+)/,)Jn (a,ax)—(a,a)d, ., (a,ax)sin(0—y,)sin ne}

2 (aax)—(aa)Jd,,, (aax)}cosnd,i=1,2,3

hy =nJ, (a,ax)cosnd

he = {nHr(]l) (asax)—(asa)H(l) (asax)} cosng

n n+l

ki =e, {n COS(I’ITIH—F}/i)Jn (aiax)—(aia)Jml(aiax)cos(e—yi)cosne}, i=1,2,3
K420, K =0
55:2566[{n(n—1)J (aax)+(eax)d,., (xax)}cos2(0-y)

—{(aia)z[Encos (6- 7/I)+0125|n (60— y,)]+013gd +,Be} » (eax)]sinng
—2nEee{(n—1)J (aax)—(ea)d,, (aax)}sin2(6-y, )cosng, =123

en =2nCss {(n—1)J, (oz4ax)—(054a)\]M(oz4 )}cos2(6 -y, )sinng
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_4 .
ha =nJ, (e,ax)sinng (A25)
=5
hn = {nHr(]l) (asax)—(asa)HY | (asax }Sln no (A26)
kn=e¢, {n cos(n —16?+7/i)J (ax)— (@) J,,, (a@x)cos(6—y;)sin ne} ,i=12,3 (A27)
—4 =5
kn =O,kn =0 (A28)
Notations
A, Ain arbitrary integration constants
AB,C,D algebraic constants
B' adiabatic bulk modulus of the fluid
a geometrical parameter of the cylinder
C specific heat capacity
q 2
d PCCyy /:80 T
d,e integration constants
e, f,g,hl k! coefficients of A,
en ,Tln , Eln, hn : kn coefficients of Ain
C11,C12+Ci3, Cass Co elastic constants
€,.€x: €, normal strain components
era ,erZ ' €y, shear strain components
E) Fo, G;n, JLKE XYz Fourier coefficients for symmetric mode

Emn,an,Gmn,Hmn,Kmn,an,Ymn,Zmn Fourier coefficients for antisymmetric mode

Hr(]l) Hankel function of the first kind

i V-1

J, Bessel function of the first kind

K thermal conductivity

N number of terms in a Fourier series

pf acoustic pressure of the fluid

R coordinate r at the | —th boundary of the surface
Spp1Spq1 1SS, transferred boundary conditions for symmetric mode
gpp , §pq ) §zp ) §r ,§t transferred boundary conditions for antisymmetric mode
t time

T temperature

T, dimensionless time parameter

T, reference temperature

T, (r, 49) temperature potential for symmetric mode

-I_-n (r, 49) temperature potential for antisymmetric mode
r,o,z cylindrical coordinates

u, (r, 0, Z,t) radial displacement of solid



35 Ponnusamy / International Journal of Engineering, Science and Technology, Vol. 3, No. 9, 2011, pp. 16-36

u, (r, 0, Z,t) circumferential displacement of solid
u, (r, o, Z,t) axial displacement of solid
u/ (r,6,2,t) radial displacement of fluid
u; (I’, o, Z,t) circumferential displacement of fluid
uZf (r, 0, Z,t) axial displacement of fluid

Greek symbols

(aja) roots of the algebraic equation

B B thermal stress coefficient

A dilatation of the fluid

£, =1/2 when N=0 or 1 when n>1

@, (I’, 0) , W, (I’, 0) VA (r, 49) displacement potentials for the symmetric mode of the solid
¢f change of variable to define displacements of the fluid

B! (r) displacement potential of fluid in symmetric

ngn( r, 9) , V_Vn (r, (9) , Jn (r, 9) displacement potential for the antisymmetric mode for solid

angle between normal to the segment and the reference axis

Lame’ constants

=

angle between the reference axis and the | —th segment
density of solid

density of fluid
dimensionless density ratios of the fluids with solids

A DIV VDX

o normal stress components

shear stress components

Q
S

non-dimensional wavenumber

non-dimensional frequency
angular frequency

V2= /ox? +x70 oxt X2 6%/ 86 Laplace operator

SEORS
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