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Abstract 
 
   This paper addresses the new control algorithm, by designing the asymptotically stable nonlinear sliding surface with 
investigation of the states. This proposed algorithm leads to solve the problem of unstable systems, by proving the asymptotic 
stability of a class of uncertain discrete-time systems. A particular linear transformation is being defined to transform the 
discrete-time system and asymptotic stability is proved for designed nonlinear sliding surface, which leads to show stability of 
the system. The states of the plant’s will be brought down on a proven asymptotic stable nonlinear sliding surface by the 
proposed control law and they  will be remained on stable nonlinear sliding surface for all future times. This proposed technique 
will be more useful for enhancing the stability of the real world nonlinear systems. The application of proposed algorithm in 
magnetic tape drive-servo motors and avionic systems,  where the parametric uncertainties are occurring frequently.  

 
Keywords: Discrete-time system, linear matrix inequality (LMI), nonlinear system. nonlinear sliding surface, sliding mode 
control. 
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1. Introduction 
 

The implementation of discrete-time system by using computers, which will provide the more accurate response by using the 
microprocessor or microcontroller. The time delay is a source of instability for discrete-time systems. In many applications, time 
delays are introduced in the model of physical systems due to measurement, transmission and transport tags, computational delays 
of unmodeled inertia of system components. The time delays are   quite common in all types of engineering systems such as 
chemical process control, delay in the actuator operation of mechanical systems and economic systems etc. Compared to the 
systems without delay, the presence of the delay makes the system more difficult to achieve its satisfactory performance of the 
systems.  In recent years there is a great interest of the researcher for the processes having the state delays. 
    The author (Milosavljevic, 1985) was first researchers to formally propose that the sampling process in discrete-time systems 
can limit the existence of the sliding mode. Later on, (Sapturk et al., 1987) suggested that a reaching condition should widely be 
used in current DSMC systems. The technique (Bartoszewicz. et al., 1998) proposed a control algorithm that guarantees finite-time 
convergence of the state trajectory to the sliding surface.  There in   reference (Gao. et al., 1995) clarified the concept of discrete-
time sliding mode control by presenting several new sufficient conditions to illustrate the necessity of using the discrete-time 
sliding mode control. 
    The concept of sliding mode control (SMC) in recent years has drawn the attention of researchers. Sliding mode control is a 
robust control method which can handle both linear and nonlinear systems, hampered with parametric uncertainties and 
unexpected disturbances (Slotine et al., 1983, Utkin, 1972).  It has been developed in the continuous time domain to a great extent. 
Sliding mode control is a methodology in which an appropriate input is provided so that the system states are confined to the 
desired sub-manifold of the state space. (Furuta, 1990 ) proposed discrete time sliding mode control laws where the control input 
includes state feedback terms in three different feedback coefficients. The discrete time sliding mode control has been mainly 
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applied to stabilization problems. However in stabilization problems only bounded stability is guaranteed if the uncertainties in the 
system do not vanish at the equilibrium points. In  paper ( Utkin, 1971) deals with the mismatch uncertainties for discrete adaptive 
sliding mode control for the nonlinear system for the output to track a sufficiently smooth desired trajectory. In paper of (Furuta, 
1990) nonlinear sliding surface is created for varying the damping factor for improving the performance of the multi-input and 
multi-output linear systems with matched conditions. Some of the concepts and theoretical advances of continuous time sliding 
mode control are covered in literature (Won et al., 1995, Bandhyopadhyay et al., 2009) and the references there in. Due to 
flexibility of implementation, large classes of continuous systems are controlled by digital signal processors and microprocessors. 
To analyze the sampling time effect, discrete sliding mode control (SMC) is well studied in the literature (Hung et al., 1993, 
Ghezawi et al., 1983, Young et al., 1999, Edward et al., 1998, Gao. et al., 1995, Spurgeon, 1992, Golo et al., 2000,  Furukawa et 
al., 1983, Hu et al., 2009, Janardhanan et al., 2006, Fiagbedzi et al., 1986, Jafarov et al., 2000, Utkin, 1977, Lee et al., 2001 and 
Lan et al., 2010 and Yadav et al., 2011). This  paper has been organized as follows: 
   Section 2, briefly introduces state about the description of the discrete –time plant with state delay and its transformation, section 
3, describes the method for calculating the gain matrix, section 4, illustrates proposed design of nonlinear sliding surface, section 
5, illustrates the control law by proposed algorithm. Section 6, reveals the experimental simulated results analysis and section 7, 
and describes the conclusion. 
 
2.  Problem Statement and Description  
 

  Consider the following nonlinear discrete time system: 
,)),(),(()1( kkukxfkx =+  

        )()()()1( kBukxAAkx ++=+ δ  
         )()()()1( kBukxAAkx ++=+ δ  

                                                                             )()( kCxky =                   (1) 
where nkx ℜ∈)( , are states vector, mku ℜ∈)( is control input vector, pky ℜ∈)( is the output respectively and  )(kf  is the 

nonlinear function. The term A , B  and C are some constant matrices of appropriate dimensions and parameters and k is the 
sampling time. We assume the following assumptions: 

 
2.1 Assumption I : the pair  ),( BA  is controllable and the pair ),( CA  is observable, matrices B and C  have full rank. 
2.2 Assumption II : mp >  and rank mBA =),(   

For analysing the system (1), we will transform it in to its regular form. Lets suppose  [ ]TBBB 21=  and satisfies the det 0)( ≠B , 
there exists a linear non-singular transformation 

                                                                         )(
0

)()( 1
2

1
21 kx

B
BBI

kMxkz nxn
⎥⎦

⎤
⎢⎣

⎡
−

−−
==                                                                     (2) 

 transformation of the system dynamics (1) into its regular form 
))()(()()()1( kfkuGkzFFkz +++=+ δ  

                                                                   )()( kHzky =                                                                                                               (3) 
  transformed  system can be shown without loss of generality. 

)()()()()1( 21212111111 kzFFkzFFkz δδ +++=+  

))()()(()()()()()1( 222222121212 kfkuGIIkzFFkzFFkz m ∂+∂++∂++∂+=+                                                              

                                                           )()( kHzky =                                                     (4) 

where )(
1 )( mnkz −ℜ∈ and mkz ℜ∈)(2 ,  are the state vectors and the matrices  F , 2G  are the constant , with their appropriate 

dimensions and )(kf  is the input uncertainties. The following matrix can be written as follows, after transformation. Regular 
form of the matrix equation can be written as follows: 
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regular form of  delayed state of the system  is as follows: 
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1−= CMH  
  )(

1 )( mnkz −ℜ∈ and  mkz ℜ∈)(2  are the state vectors. 11F , 12F , 21F , 22F , are known constant matrices with appropriate 
dimensions.  mI  is m m×  identity matrix. 
 
3.  Calculation of Optimal Gain Matrix 

  
From the discrete-time delay system, the gain matrix can be calculated as follows: 

)()()()1( kufBAAkx δδ +++=+  
minimized the cost function 

                                                                      )()()()(
2

1
0

kRukukQxkxJ TT +∑=
∞

                                                                      (7) 

to find out the gain with the help of LQR method and the resulting optimal gain matrix is as follows 
1=R  

),,( 321 QQQdiagQ =  
),,,( RQBAdlqrK =  

 
4. Designing of  Nonlinear Sliding Surface 

 
     In this section the designing of the nonlinear sliding surfaces for the general MIMO systems. Without loss of generality, the 
system described by (1) can be transformed in to regular form as follows 

)()()1( 2121111 kzFkzFkz eqeq +=+  

                                                                           )()()1( 2221212 kzFkzFkz eqeq +=+                                    (8) 

where 111111 FFF eq δ+= , 121212 FFF eq δ+= , 212121 FFF eq δ+= , and 222222 FFF eq δ+= , 222 GGG eq δ+=  
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proposed   sliding surface  of  the system in regular form is as follows 
                                                                                  0)()( == kzk Tμσ                                              (10) 
without loss of generality of the system,  sliding condition can be represented as follows: 
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where mxnT ℜ∈μ , )(

1
mnm −ℜ∈μ and mxn

mI ℜ∈ dimensions.  Condition for sliding motion is as follows: 

[ ] 0
)(
)(

0)()(

2

1
1 ==

==

⎥⎦
⎤

⎢⎣
⎡

kz
kz

I

kzk

m

T

μ

μσ
 

0)()( 211 =+ kzkzμ  

                                                                                          )()( 112 kzkz μ−=                                                                                   (12) 

seeing   )(2 kz  as dummy input of subsystem (8) 

)()()1( 2121111 kzFkzFkz eqeq +=+  
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)()()1( 2221212 kzFkzFkz eqeq +=+  

1111 )( EkDF ∏=δ  

2112 )( EkDF ∏=δ  

where Ikk T ≤∏∏ )()( , 211 ,, EED  are known real matrices  of appropriate dimensions and )(k∏  is unknown  matrix function 

with Lebesque-measureable elements and satisfy Ikk T ≤∏∏ )()(  and I is the Identity matrix with mm×  dimensions. 

                                                        [ ] ⎥⎦
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[ ])}()){(( 1211121 KFFPFkyK eqeq
T

eq −−= ρμ  

)())(()()1( 11112121111 kzPFFkyFkzFkz eq
T

eqeqeq ρ+=+  

seeing )(2 kz  as dummy input of the subsystem (9). Substituting (12) into subsystem (9) yields 

)()()1( 11121111 kzFkzFkz eqeq μ−=+  

                                                                            )()()1( 1112111 kzFFkz eqeq μ−=+                                                                         (14) 

 nonlinear sliding surface can be designed by incorporating the nonlinearity ))(( kyρ  in the system dynamics for proven for its 
stability. If the nonlinear surface is stable then the all the states trajectory will be on the stable surface for future all the time. If the 
nonlinear surface is stable then the trajectory will be stable on the surface for future all time. The condition for the stability of the 
nonlinear surface as follows: 
                                                                       0))(())(())((2 1212 ≤+ kyPFFkyky eq

T
eq ρρρ                                                                (15) 

 
4.1 Proof :  The proof for the nonlinear sliding surface is as follows: 
         Consider Lyapunov functional candidate for proving the nonlinear sliding surface as stable 

)()()( 111 kPzkzkV T=  
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                                                       ))())(()( 1111212111 kzPFTFkyFkzF eqeqeqeq ρ+=  

where )( 121111 KFFF eq −=  and  transform state dynamics becomes as follows 

)())(()()1( 11112121111 kzPFFkyFkzFkz eq
T
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                                                   T
meqeq

T
eq kzkzIKFFPFkyKk ])()(][)}()){(([)( 21121112 −−= ρσ  

)}()){(( 1211121 KFFPFkyK eqeq
T

eq −−= ρμ  

                  )()})){(()()1( 111212111 kzPFFkyFkzFkz eq
T

eqeqeq ρ+=+  

for stability condition  of a system  )( 12111 KFFF eqeqeq −=  must have all the eigenvalues inside the unit disc. Now, we have to 
prove that the nonlinear sliding surface is stable by the Lyapunov method for the present state. Therefore all the states will be 
tracking on stable nonlinear sliding surface for all the future time. 
 
4.2 Lemma 1 [Lee. et al., 2001]: Given constant matrices ED,  and  Y  a symmetric constant matrices  of appropriate dimensions, 
the following inequality holds: 

0≤∏+∏+ TTT DEDEY  
where )(k∏  satisfies Nkk T ≤∏∏ )()( , if and only if for some  0>λ . 
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4.3 Theorem 1: If  there exists a symmetric and positive definite matrix P , some other matrix M  and some scalar function ζ  
such that reduced order discrete-time system is asymptotically stable via sliding mode surface (13): 
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where 1−=− PL , 1
1

−= PM μ and * denotes the  transposed elements in the symmetric positions. 
 
4.5 Proof : Consider the Lyapunov  function candidate for discrete-time system 

                                                                         )()()( 11 kPzkzkV T=                                                                     (16) 

where P  and Q  are positive definite symmetrical matrices. The change in Lyapunov   function )(kV  is 
)()1()( kVkVkV −+=∂  
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Therefore sliding mode dynamics (13) is asymptotically stable, if the following inequality holds 
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Apply Schur complements in (14) is equal to 
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 * denotes the transposed elements in the symmetric position. It will be negative definite and the change in Lyapunov function 
will be negative definite ,....2,1,0)(,0)( 1 =≠<∂ kkzkV . and the system will be asymptotically stable.  
 
5.  Designing of  Control Law 

 
The designing of the control law is based upon the stable nonlinear sliding mode control which already proven for its stability. 

)()( kzk Tμσ =  

)1()1( +=+ kzk Tμσ  
The sliding mode condition is as follows: 

0)()1( ==+ kk σσ  

)1()1( +=+ kzTk μσ  

0)]()()[()1( =+∂+=+ kGukzFFkz TT μμ  

0)]()()[( =+∂+ kGukzFFTμ  

)()[(*1)()( kzFFGku TT ∂+−−= μμ  
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                                                                        )]()([*)()( 1 kzFFGku TT ∂+−= − μμ                                                                    (19) 

  At the sampling instant of discrete-time system, the state trajectory will be reaching onto the hyper plane and remain on the 
sliding surface for due course of time.  It is proven, that the control law (19) drives the system trajectory onto the nonlinear sliding 
surface and maintains the trajectory on the sliding surface during subsequent time. This algorithm will be more effective for highly 
unstable systems. 
 
6.  Experimental simulated results  
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Figure 1.  Stable sliding surface  
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           Figure 2.  Stable state of the system   
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Figure 3. Control efforts is stable by proposed technique  

7.  Conclusion  
 

In this paper, the stability analysis has been investigated for the nonlinear discrete-time system. The nonlinear discrete-time 
system has been incorporated with uncertainties and the robust sliding mode controller has been designed for discrete-time system 
with plant uncertainties. The nonlinear systems are highly unstable and the proposed method more effective for avionic unstable 
systems and the proposed algorithm will have more effectiveness for solving the nonlinear systems. The application of this 
proposed technique can be well suited to magnetic tape-drive servo motors to control the current and torque. 
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