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Abstract 
 
   Keeping in view the conflicting tendencies of rotation and Hall currents (magnetic field)  while acting together; combined 
effects of Hall currents and rotation are considered on the hydromagnetic stability of a compressible Walters’ (Model B′) 
elastico-viscous fluid heated and soluted from below saturating a porous medium. Boussinesq approximation is used to simplify 
the complex hydromagnetic equations and the perturbation equations are analyzed in terms of normal modes. A dispersion 
relation governing the effects of visco-elasticity, salinity gradient, rotation, Hall currents and medium permeability is derived. It 
has been found that for stationary convection, Walters’ (Model B′) fluid behaves like an ordinary Newtonian fluid due to the 
vanishing of the visco-elastic parameter. Compressibility, solute gradient, rotation and magnetic field postpone the onset of 
instability as such their effect is to stabilize the system. Hall currents and medium permeability are found to hasten the onset of 
instability for permissible range of values of various parameters. The dispersion relation is analyzed numerically and the effects 
of various parameters for permissible range of values are depicted graphically. The visco-elasticity, solute gradient and Hall 
currents (hence magnetic field) introduce oscillatory modes in the system which were non-existent in their absence. Also the 
case of overstability is discussed and sufficient conditions for the non-existence of overstability are derived. 
 
Keywords: Walters’ (Model B′) fluid, rotation, Hall currents, thermosolutal instability, compressibility, porous medium. 
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1. Introduction 
 
   Chandrasekhar (1981) in his celebrated monograph considered a detailed account of the theoretical and experimental results for 
the onset of thermal instability (Bénard convection) for Newtonian viscous/inviscid fluids under varying assumptions of 
hydrodynamics and hydromagnetics. In the standard Bénard problem instability is driven by density difference caused by a 
temperature difference between upper and the lower planes bounding the fluid. If the fluid additionally has salt dissolved in it then 
there are potentially two destabilizing sources for the density difference, the temperature field and the salt field. The heat and 
solute being two diffusing components, double-diffusive convection/thermosolutal convection is a general term dealing with such 
phenomenon. This double-diffusive phenomenon has been extensively studied recently due to its direct relevance in the field of 
chemical engineering, astrophysics and oceanography.  

The investigation of flow of fluids through porous medium has become an important topic due to the recovery of crude oil from 
the pores of reservoir rocks. A great number of applications of such a flow in geophysics are found in a book by Philips (1991). 
The effect of the earth’s magnetic field on the stability of such a flow is of interest in geophysics particularly in the study of earth’s 
core where the earth’s mantle, which consists of conducting fluids, behaves like a porous medium. When fluid flow is considered 
in a porous medium, some additional complexities arise which are principally due to the interactions between the fluid and the 
porous material.  We will consider those fluids for which Darcy’s law is applicable, which states that the gross effect, as the fluid 
slowly percolates through the pores of rock, is that usual viscous term in the equation of elastico-viscous fluid motion will be 
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replaced by the resistance term 
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 where μ  and μ′  are the coefficients of viscosity and  viscoelasticity , k1  is 

the medium permeability and q is the Darcian (filter) velocity of the fluid.  The stability of flow of a single component fluid 
through porous medium taking into account the Darcy’s resistance has been studied by Lapwood (1948) and Wooding (1960). 
When the fluids are compressible, the equations governing the system become quite complicated. Spiegel and Veronis (1960) 
simplified the set of equations governing the flow of compressible fluids assuming that the depth of the fluid layer is much smaller 
than the scale height, as defined by the author’s, and the motions of infinitesimal amplitude are considered. Sharma and Gupta 
(1993) investigated the effect of porosity on the thermal instability of compressible fluid with Hall currents and suspended 
particles. Thermal instability of compressible, finite Larmor radius Hall plasma has been studied by Sharma and Sunil (1996) in a 
porous medium. The Hall current is important in flows of laboratory plasmas as well as in many geophysical and astrophysical 
situations. Sherman and Sutton (1962) have considered the effect of Hall currents on the efficiency of a magneto-hydro dynamic 
(MHD) generator. Numerous problems on effect of Hall currents under varying assumptions of hydrodynamics and 
hydromagnetics for Newtonian fluids have been attempted by many researchers in the past, e.g. Gupta (1967),  Sharma and Gupta 
(1990), Sharma and Sunil (1995), Chauhan and Agrawal (2011), Guchhait et al.(2011) and Prasad and Kumar (2012)  to name a 
few among several others. In all the above mentioned studies, fluids have been considered to be Newtonian.  

In the last two decades with the advancement of studies for polymeric solutions and other viscoelastic fluids, many scientists and 
researchers focused their attention to study non-Newtonian fluid flow problems. The pioneering and fundamental works are of 
Bhatia and Steiner (1972), Oldroyd’s (1958), Rivlin and Ericksen (1955) and Walters (1960) on various viscoelastic fluids. 
Walters (1962) reported that the mixture of polymethyl methacrylate and pyridine at 250C containing 30.5 g of polymer per liter 
behaves very nearly as the Walters’ (Model B′) fluid. In the last decade, quite a number of authors investigated fluid flow 
problems on these viscoelastic fluids. Some of these are Sunil et al. (2000a), Sharma et al. (2006), Gupta and Sharma (2007, 
2008), Kumar et al. (2004), Gupta and Kumar (2010), Gupta and Aggarwal (2011). But none of the authors have studied the 
combined effect of rotation and Hall currents on thermosolutal instability problem for Walters’ (Model B′) fluid. This combined 
effect in the study of Walters’ (Model B′) fluid is very important and interesting due to the interacting and conflicting effects of 
rotation and Hall currents when applied together. It is worth while to mention here that magnetic field has stabilizing effect where 
as Hall currents and permeability have destabilizing effects in the absence of rotation. But in the presence of rotation the effects of 
magnetic field, Hall currents and permeability are stabilizing / destabilizing depending upon the conditions as derived later in the 
results and discussion section. Therefore keeping in view the conflicting tendencies of Hall currents, and rotation applied together 
and various applications of viscoelastic fluids in chemical technology and paper industry, the present problem of double-diffusive 
convection for compressible Walters’ fluid has been investigated. Some earlier known results have been recovered from the 
present formulation.  
 
2.  Mathematical Formulation of the Problem and Perturbation Equations 
 

We have considered an infinite, horizontal, compressible electrically conducting Walters’ (Model B′) fluid layer of thickness d  
in a homogenous medium of porosityε  and medium permeability k1 which is heated and soluted from below ( 0z = ) so that 
temperature and concentration at bottom is 0T  and 0C  and at the upper layer ( z d= ) is dT  and dC  respectively, as shown in 

Figure 1. A uniform temperature gradient ( / )dT dzβ =  and concentration gradient ( / )dC dzβ ′ =  are maintained. The fluid is 
acted upon by the gravity force (0, 0, )g= −g , uniform vertical magnetic field (0, 0, )H=H  and uniform vertical rotation 

(0, 0,Ω).=Ω  
   Let , , , , , , , , ,T p C g eρ α α η μ′ , , , , ,N e ν ν κ κ′ ′ and ( , , )u v w=q denote, respectively, temperature, pressure, density, 
concentration, thermal coefficient of expansion, solvent coefficient of expansion, gravitational acceleration, resistivity, magnetic 
permeability, electron number density, charge on an electron, kinematic viscosity, kinematic viscoelasticity, thermal diffusivity, 
solute diffusivity and fluid velocity. 
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     The equations expressing conservation of momentum, mass, temperature, solute concentration and equation of state after using 
Boussinesq approximation (see Chandrasekhar, 1981; Walters, 1960 and Joseph, 1976) are 
 

{ } ( )
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1 1 1 1 2
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( ) ( )2. ,q C
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E C
t

κ ∇
∂
′ ′+ ∇ =
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[ ]0 01 ( ) ( ) ,m T T C Cρ ρ α α ′= − − + −                      (5) 

 

where E = ( )( )01 /s s fc cε ε ρ ρ+ − is a constant and E ′  is a constant analogous to E but corresponding to solute rather than heat 

and 0, ,s scρ ρ  and fc denote the density and heat capacity of solid (porous) matrix and fluid matrix, respectively. 
In the present model, we have ignored the non-Newtonian effects of second-order fluids on heat transportation in comparison to 

other terms in heat equation and assume that viscoelastic effects influence the heat transport only through velocity. From 
Maxwell’s equations for a porous medium, we have 
 

2( . ) [( ) ],
4

H
H q H H H

d

dt Ne
η

π

ε
ε = ∇ + ε ∇ − ∇× ∇× ×              (6) 

 
. 0,H∇ =                   (7) 

 

where .
d

q
dt t

∂
= + ∇
∂

 stands for convective derivative. The state variables pressure, density, and temperature are expressed in the 

form [Speigal and Veronis, (1960)] 

    Figure 1.  Geometrical Configuration 
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0( , , , ) ( ) ( , , , ),mf x y z t f f z f x y z t′= + +                          (8) 

mf  stands for constant space distribution of ,f  0f   is the variation in the absence of motion and ( , , , )f x y z t′  is the fluctuation 
resulting from motion. For initial state, we have 
 

( ), ( ), ( ), ( ), (0, 0, 0)p p z z T T z C C zρ ρ= = = = =q  and (0, 0, ),H=H  where 

0
0

( ) ( ) ,
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m mp z p g dzρ ρ= − ∫ +  
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Here mp  and mρ  stand for a constant space distribution of p and ρ  . Linearized stability theory and normal mode analysis 
method is used to study infinitesimal perturbation and depth of fluid layer is assumed to be much less than the scale height as 
defined by Spiegal and Veronis (1960). Using these assumptions and results for compressible fluids, the flow equations are found 
to be the same as those for incompressible fluids except that the static temperature gradient β  is replaced by its excess over the 

adiabatic ( ) .pg Cβ −  In our analysis we have considered  a small perturbation on steady state solution and let 

, , , ,pδ δρ θ γ ( , , )x y zh h h=h  and ( , , )u v w=q  denote the perturbations in pressure, density, temperature, solute concentration, 

magnetic field and velocity respectively. The change in density δρ  is given by 
                                                

( ).mδρ ρ αθ α γ′= − −                            (10) 
 
Then the linearized hydromagnetic perturbation equations are 
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3. Normal Mode Analysis Method and Dispersion Relation 
 
    In the present study, we have used normal mode analysis method and assumed that perturbation quantities are of the form 
 

 x[ , , , , ] [ ( ), ( ), ( ), ( ), ( ), ( )] exp( x ),z yw h W z K z z z Z z X z ik ik y ntθ γ ζ ξ, = Θ Γ × + +
       

(17)   

where xk and yk are the wave numbers along x and  y directions and resultant wave number is given by  ( )1/2
2 2
x ykk k= +  and n  is 

the growth rate. Also,  xv u yζ = ∂ ∂ − ∂ ∂  is the z-component of vorticity and xxyh h yξ = ∂ ∂ − ∂ ∂   is the z-component of 
current density. 

Using expression (17), equations (11) – (16) can be rewritten as 
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where various non-dimensional parameters used are as follows 
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2nd
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Consider the case of two free boundaries which are perfect conductors of both heat and solute concentration. For the case of free 
boundaries the boundary conditions are (see Chandrasekhar, 1981)  

2 0,W D W= =  0,DZ =    0,Θ =     0Γ =  at 0z =  and 1, 0,K =  on perfectly conducting boundaries                                    (24) 
and x , ,y zh h h  are continuous. Since the components of magnetic field are continuous and the tangential components are zero 
outside the fluid, we have 

0,DK = on the boundaries.                             (25) 
Using the boundary conditions (24) and (25), it can be shown that all the even order derivatives of W must vanish for 0z =  and 1. 
Therefore the proper solution of W characterizing the lowest mode is 
  

0 sin ,W W zπ=                                                     (26) 
where 0W  is a constant. After eliminating , , ,X Zθ Γ and K  between equations (18) - (23), we obtain 
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Equation (27) is the dispersion relation including the effects of rotation, Hall currents, compressibility and solute gradient on the 
thermosolutal instability of Walters’ (Model B′) fluid in porous medium.  
 
 4. Results and Discussion 
 

(i) Case of Stationary Convection  
 

Consider the case when instability sets in the form of stationary convection. For stationary convection, 1 0σ = and the dispersion 
relation (27) reduces to 
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1 1
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(28) 

The above equation expresses the modified Rayleigh number 1R  as a function of dimensionless wave number, ,x  and the 

parameters S1,  Q1, G, M and 1T . For stationary convection, the viscoelastic parameter F  vanishes with 1σ  and the Walters’ 
(Model B′) fluid behaves like an ordinary Newtonian fluid. Keeping the non-dimensional number G (accounting for 
compressibility) as fixed, we get  
 

,
1c c

G
R R

G
=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                 (29) 

where cR  and cR  denote, respectively , the critical Rayleigh numbers in the absence and presence of compressibility. Thus, the 
effect of compressibility is to postpone the onset of thermosolutal instability. The cases G < 1 and G =1 correspond to negative and 
infinite values of Rayleigh numbers due to compressibility which are not relevant in the present study. To investigate the effect of 
combined presence of Hall currents and rotation for thermosolutal convection in porous medium, we examine the natures of 

1 1 1 1 1 1 1, , ,dR dS dR dQ dR dM dR dT  and 1dR dP  analytically and numerically. Equation (28) yields  

1

1 1

dR G

dS G
=

−

⎛ ⎞
⎜ ⎟
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,                                                 (30) 

which shows that solute gradient has a stabilizing effect on thermosolutal convection. Numerically, R1 as given in equation (28), is 
plotted against x for 1 1

310, 100, 10, 10G Q M T= = = = and for different values of S1 = 100, 200, 300, 400, 500 in Figure 2. Here 
we would like to mention that the values of R1 are calculated in MS-Excel for different values of other parameters involved.  It is 
clear from the figure that the Rayleigh number increases with an increase in S1 and establishes the stabilizing effect of solute 
gradient. To analyze the effect of magnetic field, expression (28) yields 
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which implies that magnetic field has stabilizing/destabilizing effect depending upon whether 
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This destabilizing effect of magnetic field occurs in the presence of rotation. For T1 = 0,  
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which shows the stabilizing effect of magnetic field. We have plotted R1 against the scaled wavenumber, x, for G = 10, P = 0.001, 
S1 = 100, M = 10, T1=103 and for various values of Q1 = 100, 150, 200, 250 and 300 in Figure 3. It is clear from the figure that R1 
increases with an increase in Q1, confirming the stabilizing effect of magnetic field. Here, it is worthwhile to mention that the 
former condition mentioned above, i.e., 

 
 
 

holds true for the values of various parameters under consideration. The result is in agreement with that of Gupta and Sharma 
(2008) for Rivlin-Ericksen fluids. In Figure 4, R1 is plotted against the scaled wavenumber, x, for T1 = 0. The figure clearly 
exhibits the stabilizing effect of magnetic field. The earlier work of Sunil et al. (2004) is a particular case of the present work in 
the absence of rotation for a non-porous medium. 
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Figure  2.  Variation of Rayleigh number 1R  with wavenumber x for fixed  Figure  3.  Variation of Rayleigh number 1R  with wavenumber  x for  
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of 1 100, 200, 300, 400S =  and 500.     various values of 1 100,150, 200, 250Q = and 300. 
    
In the absence of Hall currents, the above expression for the derivative reduces to 

[ ]{ }
[ ]

1 11

1 1

2 2

2

(1 ) (1 )1
,

1 (1 ) )

x PQ P T xdR G x

dQ G x x PQ

+ + − ++
=

− + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠                               (33) 

which is in agreement with the counterpart presented by Sharma and Bhardwaj (1993), reflecting the stabilizing/destabilizing 
effect of magnetic field in the presence of rotation. Thus, in the absence of Hall currents and presence of rotation, magnetic field 
has stabilizing or destabilizing effect depending on whether  

[ ]2 2
1 1(1 ) ) (1 )x PQ P T x+ + > +      or  [ ]1 1

2 2(1 ) ) (1 ).x PQ P T x+ + < +    
 

( ) 1 1 1
21 (2 2 )x P Q T M P T+ + + >⎡ ⎤⎣ ⎦
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Figure  4.  Variation of Rayleigh number 1R  with wavenumber x for fixed   Figure 5.  Variation of Rayleigh number 1R  with wavenumber x for  

G =10, P = 0.001, 1 100,S =  M =10, T1 = 0 and for various values of  fixed G =10, P = 0.001, 1 100,S =  M = 0, T1 = 1000 and for various   

1 100, 200Q =  and 300.      values of  1 100,150, 200, 250Q =  and 300. 
 
 
But for permissible values of various parameters involved, the already mentioned effect is stabilizing as   

[ ]1 1
2 2(1 ) ) (1 ),x PQ P T x+ + > +   

 
is the only condition which is satisfied. This can also be seen graphically as shown in Figure 5, where R1 is plotted against x for 
different values of Q1 in the absence of Hall currents and presence of rotation. 
 
For analyzing the effect of Hall currents, we obtain the expression  

 

( ){ }{ }1
1 1 1 1 1

121
1 1 / [(1 ) )] ,

1

dR G x
Q x PQ P T M P T M x PQ M

dM G x

−+
= − + + + − + + +

−

⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠                                (34) 

which states that Hall currents have stabilizing/destabilizing effect depending on whether 1 /P T M   > 1 or  1 /P T M   < 1.  
But for the permissible range of values of various parameters under consideration, this effect is destabilizing since  

1 /P T M  < 1 is the only condition which is satisfied. In the absence of rotation, the above expression reduces to 

[ ]
[ ]

11
1

1
2

(1 )1
,

1 (1 ) )

x PQdR G x
Q

dM G x x PQ M

+ ++
= −

− + + +

⎧ ⎫⎪ ⎪⎛ ⎞⎛ ⎞
⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭      

                  
(35) 

establishing the usual destabilizing effect of Hall currents. These results are in agreement with the numerical/graphical results of 
Figures 6 and 7 where R1 is plotted against the scaled wavenumber, x, for G = 10, Q1 = 100, S1 = 100 and for T1 = 103 and T1 = 0, 
respectively, for various values of ( )10, 30, 50 .M =  Expression for observing effect of rotation is obtained as 

[ ]
1 11

1 1

1 /1
,

1 (1 ) )

x M Q M TdR G x
P

dT G x x PQ M

+ + ++
=

− + + +

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞⎛ ⎞ ⎣ ⎦⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭

                                                                                                                 (36) 

which reflects the stabilizing influence of rotation. This is in agreement with the corresponding result for Rivlin-Erickson fluids as 
derived by Gupta and Sharma (2007). In Figure 8, 1R increases with the increase in T1 which confirms the aforementioned result.  
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Figure 6.  Variation of Rayleigh number 1R  with wavenumber x    Figure 7.  Variation of Rayleigh number 1R  with wavenumber x for  

for fixed G =10,  P = 0.001, Q1 = 100, S1 = 100, T1 =1000 and     fixed G =10, P = 0.001, Q1 = 100, S1 = 100, T1 = 0 and for various 
for various values of M = 10, 30 and 50.      values of M = 10, 30 and 50. 
  

 
For analyzing the effect of medium permeability, we obtain  
 

( ){1
1 1 1 1 1

2 2 2
2

1 1
2 1 2 (1 )

1

dR G x
P Q M Q T M x M T M T M x

dP G x P
+

+
= + + + + + +

−

⎛ ⎞⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
       

            
{ } }{ }1 1 1

2 22(1 ) (1 ) (1 ) (1 ) .x P T x x PQ M x PQ M
−

+ + + − + + + + + +⎡ ⎤
⎣ ⎦                        (37) 

 Pondering this equation meticulously, it is seen that permeability has a stabilizing/destabilizing effect depending upon whether   

{ }1 1
22 (1 ) (1 )P T x x PQ M+ > + + +   or    

   { }1 1
22 .(1 ) (1 )P T x x PQ M+ < + + +     
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Figure 8.  Variation of Rayleigh number R1 with wavenumber x for fixed   Figure 9.  Variation of Rayleigh number 1R with wavenumber x for  

G = 10, P = 0.001, Q1 = 100, S1 = 100, M = 10 and for fixed values of   fixed G =10, Q1 = 100, S1=100, M =10, T1 =1000 and for various 
T1 = 100, 1000 and 10000.      values of  P = 0.001, 0.002, 0.003, 0.004, 0.005. 
 

In Figure 9, 1R  is plotted against the scaled wavenumber x for values of P = (0.001, 0.002, 0.003, 0.004, 0.005). One may confirm 
that R1 decreases with the increase in P. This shows the destabilizing influence of medium permeability for the values of 
parameters under consideration (satisfying the latter condition) i.e.  

1
2 (1 )P T x+    <  { }1

2
.(1 )x PQ M+ + +  

In the absence of rotation, the expression reduces to 
 

[ ]{ }
{ }

1 11

1

22 2

22

(1 ) (1 )1 1
,

1 (1 )

P MQ x x PQ MdR G x

dP G x P x PQ M

− + + + ++
=

− + + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

               (38) 

which shows that the permeability has destabilizing/stabilizing effect depending on whether 
 

 [ ]1 1
22 2 (1 ) (1 )P MQ x x PQ M< + + + + or  [ ]1 1

22 2 (1 ) (1 ) .P MQ x x PQ M> + + + +  
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Figure 10.  Variation of Rayleigh number 1R with wavenumber x  for fixed   Figure 11.  Variation of Rayleigh number 1R with wavenumber x for  

G =10, Q1 = 100, S1=100, M =10, T1 = 0 and for various values of     fixed G =10, Q1 = 100, S1=100, M = 0, T1 =1000 and for various 
P = 0.001, 0.002, 0.003, 0.004, 0.005.      values of  P = 0.001, 0.002, 0.003, 0.004, 0.005. 
 
 
 
Figure 10 confirms the destabilizing influence of permeability in the absence of rotation as the later of the two inequalities does 
not hold true for the permissible values of various parameters. This result is identical to that of Gupta and Sharma (2008). Further, 
in the absence of Hall currents, the expression reduces to 
 

[ ]{ }
{ }

1 11

1

222

22

(1 ) (1 )(1 ) 1
,

1 (1 )

P T x x PQdR G x

dP G x P x PQ
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=
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⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

              (39) 

which shows that the permeability has destabilizing/stabilizing effect depending on whether 
 

[ ]1 1
22 (1 ) (1 )P T x x PQ+ < + +   or  [ ]1 1

22 (1 ) (1 ) .P T x x PQ+ > + +  
 

Again Figure 11 confirms the destabilizing influence of medium permeability in the absence of Hall currents as the later of the two 
inequalities does not hold true for the considered values of various parameters. In the absence of both rotation and Hall currents, 
the expression becomes 
  

1
2

2
(1 ) 1

,
1

dR G x

dP G x P

+
= −

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                              (40) 

 
which accounts for the usual destabilizing influence of medium permeability in the absence of rotation and Hall currents. This is in 
agreement with the result of Figure 12, where R1 is plotted against x for various values of P = 0.001, 0.002, 0.003, 0.004, 0.005. 
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Figure 12.  Variation of Rayleigh number 1R with wavenumber  x for fixed 10G = , Q1 = 100, S1=100, M = 0, T1 =0

 
and for various values of  

 P = 0.001, 0.002, 0.003, 0.004, 0.005. 
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(ii)  Stability of the System and Oscillatory Modes 
 

To determine the possibility of oscillatory modes we multiply equation (18) by *,W  the complex conjugate of W and using 
equations (19) - (23) together with the boundary conditions (24) and (25), we obtain 
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(41) 

where 
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0
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where integrals 1 2 10............,I I I  are all positive and definite. Putting r iiσ σ σ= +  and equating real and imaginary parts of 
equation (41), we get 
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It is inferred from equation (42) that rσ  may be positive or negative, which means that the system may be stable or unstable. Also, 

from equation (43), iσ  may be zero or non-zero, signifying that the modes may be non-oscillatory or oscillatory. The oscillatory 
modes appear due to the presence of viscoelasticity, solute gradient and magnetic field (hence Hall currents) which, would not 
exist in the absence of such effects. This result is in agreement with the result from the study of Sunil et al. (2000b) where the 
effect of Hall currents has been investigated on thermal instability of Walters’ (Model B′) fluid. 
 

(iii)  Case of Overstability 
 

Let us now discuss the possibility whether instability may occur as an overstability. Since for overstability, we wish to find 
Rayleigh number for the onset of instability via a state of pure oscillations, it suffices to find conditions for which equation (27) 
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will admit solutions with real values of 1σ . Equating real and imaginary parts of equation (27) and eliminating 1R  between them, 
we obtain 
 

4 1 3 1 2 1 1 1 0
4 3 2 0,A c A c A c A c A+ + + + =                              (44) 

 
where we have set 1 1
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Since 1σ  is real for overstability, the four values of 2
1 1( )c σ=  should be positive. The sum of roots of equation (44) is 3 4/A A−  

and this should be positive if each of the roots is positive. Now, it is clear from expression (45) and (46) that 3A  and 4A  are 
always positive if   

  
2 1F

P

π

ε
< ,   1 2Ep p> ,    1 ' ,Ep E q>   b M> , 1b > ,   ( )

21
2

F
b b M

P

π
− > +

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠  

and     
2

1
13

1
,

Ep F
T

P P

π
> −

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠  

i.e. if   
3 3 2

2 2 2
1 1

min , ,
' 4 ( )

E d
E E

E k k

ν ε
κ η κ

π εν
′<

′Ω −

⎧ ⎫
⎨ ⎬
⎩ ⎭

                                          (47) 

and  
1/2

1

1 1

max ,
4 2( ) 4

kH H
k

Ne d k k Ne d

ε

η εν ε η
>

′− −

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
.                           (48) 

Thus, for conditions (47) and (48), overstability cannot occur and the principle of exchange of stabilities is valid. Hence, these are 

the sufficient conditions for the non-existence of over stability, the violation of which does not necessarily imply the occurrence of 

overstability. The analogous conditions 
3 3 2
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 are derived by Gupta and Sharma (2008) for the case of Rivlin-Erickson elastico-viscous 

fluid. Further, in the absence of rotation, magnetic field (and hence Hall currents) and viscoelasticity, the above conditions, as 

expected, reduce to { }min ,κ η κ ′<  (see Chandrasekhar, 1981 and Veronis, 1965). 
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5. Concluding Remarks  
 
   In the present paper, the combined effect of Hall currents and rotation on the stability of a compressible Walters’ (Model B′)  
elastico-viscous fluid heated and soluted from below in porous medium is considered. The effects of various parameters such as   
magnetic field, compressibility, Hall currents, rotation and medium permeability have been investigated analytically as well as 
numerically. The main results from this paper are as follows: 
1.  The expressions 1 1 1 1 1 1 1 1, , , anddR dS dR dQ dR dM dR dT dR dP  are examined analytically and it has been found that the 

solute gradient (S1) and rotation (T1) have stabilizing effect. Very interestingly, magnetic field which has stabilizing effect for T1 
= 0 has stabilizing/destabilizing influence for T1 ≠ 0, while Hall currents and permeability have destabilizing effect for T1 = 0 and 
also have stabilizing/destabilizing influence for T1 ≠ 0. Various conditions for stabilizing/destabilizing influence of magnetic 
field, Hall currents and permeability are derived.  

2. The effects of the above mentioned parameters are also studied numerically for permissible range of values of various 
parameters through Figures (2) - (12). It is found that magnetic field postpones the onset of instability, while Hall currents and 
permeability hasten the same for the considered allowed range. The reason for stabilizing effects of magnetic field and rotation 
are accounted for by Chandrasekhar (1981) and for solute gradient by Veronis (1965). These are found to be valid for second-
order fluids as well. 

3. The effect of compressibility is to postpone the onset of instability as is clear from equation (29). 
4. The oscillatory modes appear due to the presence of viscoelasticity, solute gradient and Hall currents. In the absence of these 

effects, the principle of exchange of stabilities is found to hold well. 

5. The conditions  
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are 

sufficient for the non-existence of overstability. In the absence of viscoelasticity, rotation, magnetic field (hence Hall currents) 
and permeability, the above conditions, as expected, reduce to { }min ,κ η κ ′< .  

 
Nomenclature  

Cp                         specific heat of the fluid at constant pressure,  
cs heat capacity of solid matrix, 
cf                           heat capacity of the fluid,  
C  concentration, 
C0             concentration at bottom layer,  
Cd            concentration at upper layer,  
d  depth of fluid layer,  
D  derivative with respect to z = (d/dz), 
E constant due to porous medium for heat, 
E′  constant due to porous medium for solute, 
e                           charge of an electron, 
F               factor due to kinematic viscoelasticity,  
f  an arbitrary function of x, y, z, t. 
fm               constant space distribution of f, 
f0  variation of f  in absence of motion, 

C pG
g

β=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 factor due to compressibility, 

(0, 0, )g g= −  acceleration due to gravity,  

x y z( , , )h h h h=    perturbation in magnetic field (0, 0, ),H H=  

(0, 0, )H H=       magnetic field vector having components    
                             (0, 0, ),H   

( )1/22 2
x yk k k= +  wave number of the disturbance,  

x y,k k   wavenumbers in x and y directions  
                             respectively,  

Greek Letters 
 
α           thermal coefficient of expansion,  
α′        solvent coefficient of expansion, 

( )/dT dzβ =     temperature gradient,  

( )/dC dzβ ′ =      concentration gradient, 
∂   curly operator,  
∇   del operator,  
δ   perturbation in the respective physical quantity,  
η   resistivity,  
ε   porosity, 
θ   perturbation in temperature,  
γ   perturbation in solute concentration,  
κ   thermal diffusivity,  
κ ′   solute diffusivity, 
ξ   z-component of current density, 
ζ   z-component of  vorticity, 
μ   viscosity of the fluid,  
μ′                         viscoelasticity of the fluid,  

eμ   magnetic permeability,  
ν   kinematic viscosity,  
ν ′   kinematic visco-elasticity,  
ρ                          density of the fluid,  
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k1  medium permeability, 
M  Hall current parameter,  
n  growth rate of the disturbance,  
N  electron number density,  
P  factor due to permeability, 
p        fluid pressure,  
pm  constant space distribution of p, 
p1  thermal Prandtl number,  
p2  magnetic Prandtl number, 
q  effective thermal conductivity of the pure  
                             fluid,        
Q1  Chandrasekhar number,  
R1  Rayleigh number,  
S1  solute Rayleigh number,  
T1                Taylor number,  
T             temperature,  
T0             temperature at bottom layer,  
Td            temperature at upper layer,  

( , , )q u v w=         fluid velocity vector having components  
                             ( , , ),u v w   
W0  constant, 
(x, y, z)  x, y, z  directions, 
x  wavenumber. 

0ρ                        density of fluid matrix, 

sρ                        density of porous matrix, 

mρ                        constant space distribution of ρ , 
(0, 0,Ω)=Ω  rotation vector having components (0, 0,Ω) . 
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