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Abstract 
 
   The growth of elastic-plastic front under post-elastic conditions in high speed rotating annular disks having exponential and 
parabolic geometry variation is investigated in the present study. The problem is addressed in post-elastic regime through an 
extension of variational method based on von-Mises yield criterion and linear strain hardening material behavior. Assuming a 
series expression of the unknown variable, the solution of the governing equation is obtained using Galerkin’s principle. The 
approximate solution is obtained using an iterative method. The von-Mises stress distribution in the disk is reported in waterfall 
plots at various load steps corresponding to angular speed at the initiation of yielding till the attainment of fully plastic state. 
Effect of geometry parameters on the stress state of the disk is studied and the relevant results are reported in dimensionless 
form. 
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1. Introduction 
 
   Due to its widespread applications in industry, the analysis of rotating disk has been of great interest to many researchers across 
the world. The study has become much more feasible in the past few decades due to the intensified application of numerical 
methods as well as advent of computational machines. It has been observed that thickness variation of disks results in higher 
operating speeds and reduced weight and rotary inertia as compared to those of uniform disks. Further, post-elastic analysis of 
rotating disks leads to efficient utilization the disk material. The present paper investigates the stress and deformation states of 
such annular disks with parabolic and exponential thickness variation. 
  The analysis of admissible angular speed of rotation for annular and solid disks of hyperbolically varying thickness, made of 
incompressible material, using large elastic deformation theory has been reported by Chaudhary and Gupta (1992). Güven (1992) 
investigated the effect of radial density gradient on elastic-plastic stresses and radial displacement of rotating annular disks with 
variable thickness and reported the influence of density gradient on angular velocity and elastic plastic interface radius. Eraslan 
and Argeso (2002) reported the elastic and plastic limit angular speeds for disks of variable thickness in power function. Based on 
von-Mises yield criterion and its flow rule the plastic limit angular speed is calculated for disks under linear as well as non-linear 
strain hardening behaviour. Results indicate increase in limit angular speed with reduction in thickness at the edge of the disk and 
reduction in disk mass due to shape of the profile. In another paper, analytical methods based on laws of equilibrium have been 
developed and reported by Eraslan and Apatay (2003) to study the elastic deformation and establish limit angular speeds of disks 
of parabolic thickness variation. The stresses and deformations of rotating constant and linearly varying thickness solid and 
annular disks under unified yield criterion were studied by Ma et al. (2001). In this criterion, with suitable adjustment of weighing 
coefficients one of Tresca’s, von Mises or Yu criterion could be obtained. A semi analytical solution for an elastic-perfectly plastic 
annular rotating disk and its associated flow rule was presented and the effect of yield criterion on the size of the plastic zone was 
reported by Alexandrova and Alexandrov (2004). In another work, Alexendrova et al. (2004) developed a semi analytical method 
based on von Mises yield criterion and its associated flow rule to determine displacement field and strain distribution in a thin 
annular rotating disk of constant thickness. In a recent work Alexandrova and Villa Real (2007) reported the influences of 
rotational speed and thickness variation on the plastic solution of hyperbolic annular disks in terms of von-Mises yield criterion 
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and its associated flow rule. Bhowmick et al. (2008) proposed a generalized variational method to study the behavior of externally 
loaded rotating solid disks of variable thickness in the elastic regime. Based on deformation theory of plasticity, the method has 
also been used into elasto-plastic domain under the assumption of von-Mises failure criterion with linear strain hardening theory 
(Bhowmick et al., 2006).  
   In the present study, a numerical method based on variational principle for elasto-plastic analysis of rotating annular disks having 
parabolic and exponential thickness variation has been proposed. A solution algorithm using von Mises yield criterion has been 
developed to obtain an approximate solution of the unknown displacement field. The governing set of equations is solved in an 
iterative manner and the validation of the proposed method with ANSYS is also presented. The coordinate functions used to 
approximate the radial displacement field are generated numerically following Gram-schimdt orthogonalization scheme. New 
results indicating the growth of the yield front in annular non-uniform disks have been presented for few different types of 
thickness variation. 
 
2. Mathematical formulation 
 
   The rotational symmetry of the loading, geometry and boundary condition of a disk made of homogeneous and isotropic material 
makes the analysis axisymmetric. In the present study exponential and parabolic disk thickness variation of annular disks is 
considered. The disk subjected to rotational loading experiences radial and tangential strain. At a certain speed, known as elastic 
limit angular speed, the stress field of the disk attains the yield limit value at a certain location thus giving rise to a plastic front. 
The present method proposes a suitable iterative algorithm which can capture the location of plastic front numerically and take up 
the stress-strain analysis in post-elastic regime. Stress-strain relation of the disk is considered linear elastic followed by linear 
strain hardening (Eraslan and Argeso (2002) as shown in Figure 1. In the present paper, von Mises theory is taken as the failure 
criteria and under plane stress condition, the general condition of yielding is given by,  
 

2 2
r r t t yσ σ σ σ σ− + =             (1) 

 
where the left hand side of the equation gives von-Mises stress, vmσ . The advantage in using von Mises criterion lies in the single 
equation based formulation that takes care of the whole plastic region. Whenever the von Mises stress at a particular radial location 
of a rotating disk reaches the uniaxial yield stress value, the plastic front initiates at that location and the corresponding rotational 
speed is termed as elastic limit angular speed ( 1ω ). On further increase in rotational speed, a certain region of the disk attains post-
elastic state and when this region encompasses the entire disk we get plastic limit speed or collapse speed ( 2ω ). It is important to 
note that the initiation of plastic front gives rise to non-homogeneity due to presence of separate regions with different flow 
characteristics depending on elasticity modulus in elastic region and tangent modulus in post-elastic region, however the 
assumption of isotropy remains valid for the entire disk. The limit elastic state followed by the advancement of the yield front till 
limit plastic state is reached is shown in Figure 2 (a-c). At elastic limit speed the von-Mises stress attains uniaxial yield stress value 
at the inner boundary of rotating annular disk (Figure 2 (a)) and as a consequence, the yield front starts propagating towards the 
outer edge with increase in rotational speed (Figure 2 (b)) until it attains a fully plastic state (Figure 2 (c)). The domain of the disk 
beyond elastic limit speed gets divided into two (inner plastic-outer elastic) regions, an inner plastic region (r = a to r = ry) and an 
outer elastic region (r = ry to r = b). However for certain thickness variation based on the selected geometry parameters and 
loading conditions, an annular disk may also start yielding at an intermediate radial location but such cases has not been 
considered for the present study. 
   The variational form of total potential energy states that the extremum of the summation of strain energy (U) and work potential 
(V) is conserved for a system in equilibrium, i.e.,  
 

0(U V )δ + =              (2) 
    
   The total strain energy U consists of outer elastic ( )eU  and inner plastic ( )pU  part and V is the potential of the external forces. 

The strain energy in the disk is obtained by evaluating the integral 1 ( )
2 ij ij dvσ ε∫  and for a plane stress condition this is equivalent 

to computing 1 ( )
2 t t r r

Vol

dvσ ε σ ε+∫ . 

   Expression of the elastic part of strain energy for the outer region (for yr r  = to r b= )  is given by (Bhowmick et al., 2008), 
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Figure 1. Linear strain hardening material behavior. 
 

 
 

Figure 2 Propagation of elastic-plastic interface with increasing angular speed in annular disks: 
(a) initiation at root (b) at intermediate location and (c) collapse at the outer radius 

 
   In arriving at these equations, the following strain-displacement and stress-strain relations have been used,  

 
/r du drε = , /t u rε =   

and  

( ) [ ] ( ) [ ]2 2
,  

1 1r r t t t r
E Eσ ε νε σ ε νε
ν ν

= + = +
− −

. 

 
   Here u is the displacement field in radial direction. Post-elastic part of strain energy, pU  (for r  a = to yr   r= ), is obtained 

from the integral (
vol
∫  area under radial ' - 'σ ε curve + area under tangential ' - 'σ ε  curve) dv,  i.e, pU = ( )r t

vol

dU dU dv+∫ , where, 

rU  and tU are the contributions coming from radial and tangential stresses and strains. To develop the mathematical expression of 
these energies, we note that the strain-displacement and stress-strain relations in the post-elastic region becomes, 

 
0p

r r
du
dr

ε ε= + , 0p
t t

u
r

ε ε= +   

 
and using deformation theory of plasticity and linear strain hardening behaviour the following relations are obtained, 

 

( ) ( )
0 0 0 0 0 0

2 2
,  .

1 1r r t t t r
E Eσ ε νε σ ε νε
ν ν

⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦− −
  

 

( ) ( )
1 1

2 2
, .

1 1
p p p p p p

r r p t t t p r
p p

E Eσ ε ν ε σ ε ν ε
ν ν

⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦− −
                                       

 
   Here, 0 0,r tε ε  and 0 0,r tσ σ  are the strains and stresses in radial and tangential direction in yield condition respectively. With proper 
substitutions the following relations for rdU  and tdU are obtained.  
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
0 0 0 01

2 2

2 20 0 0 0 0 0 0 01 1
2 2

1
2 1 1 1

1 1 1
2 2 21 1 1

1
t p t r t p r2

p p

t p r t t r t p r t2
p p

E Eu du u E u udU = +ν + ε +νε - ε +ν ε
r dr r r r-ν -ν -ν

E EE u du      + ε +ν ε ε ε +νε ε + ν ε - ε .
r dr-ν -ν -ν

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        

  
   Thus the strain energy in the inner post-elastic region is obtained from the expression 
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   The expression for work potential is as follows 

 
2 22    ( )

b

a

V r u h d rπ ρ ω= − ∫                                 (5) 

 
   In the mathematical expressions, the normalization of the energy expressions is carried out with three parameters 1,Δ Δ  and 2Δ  
 

b aΔ = − , 
1 yr aΔ = −  and 

2 yb rΔ = − . 
 
   Accordingly three normalized coordinates 1,ξ ξ  and 2ξ  are obtained as shown below 
 

( )r aξ = − Δ , 1 1( )r aξ = − Δ  and ( )2 2yr rξ = − Δ . 

 
   Substituting the normalized expressions of the energies (Eq. 3, 4 and 5) in Eq. (2), the governing equilibrium equation becomes,  
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   The global displacement field ( )u ξ  in the above equation is approximated by ( ) i iu cξ φ≅ ∑ , where φi is the set of orthogonal 

functions developed by satisfying the relevant boundary conditions ( ( ) 0r aσ =  and ( ) 0r bσ = ) of an annular rotating disk in 

elastic regime. For the purpose of computation, displacement functions in the post-elastic and elastic regions are expressed as 
p

iicu ∑≅ φξ )( 1  and e
iicu ∑≅ φξ )( 2  respectively, where p

iφ  and e
iφ  are portions of the global function iφ  in post-elastic and elastic 

region. Substituting these assumed displacement functions and replacing operator δ  by / jc∂ ∂  the governing equation is obtained 
in matrix form as follows: 
 

1
' ' ' '2 2

2 22 2
1 1 2 2 2 20

( )( )
1 ( ) ( )

e enf nf
i j e e e e e ec

i i j i j i j
j i c

rE c h d
r

φ φ ξν φ φ φ φ φ φ ξ
ν ξ= =

⎧ ⎫Δ +⎪ ⎪+ + + Δ⎨ ⎬− Δ + Δ Δ⎪ ⎪⎩ ⎭
∑ ∑ ∫  

( ) ( ) { }
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   In this equation ( )′  indicates differentiation with respect to normalized coordinates.  
 
2.1 Solution algorithm: The governing equation can be expressed in matrix form as,[ ]{ } { }K c f=  and the required solution of 
unknown coefficients { }c  is obtained numerically by using an iterative scheme involving two loops. The rotational speed is 
incremented through a suitable step size (

1ΔΩ ) in the (first) outer loop and interface radius 
yr  is given a small increment in the 

inner (second) loop. For a particular load step above elastic limit angular speed, the values of 0
rε   and 0

tε  are necessary to 
generate the right hand side of Eq.(7). To this end, it is assumed that the ratio of tangential and radial stress when yielding occurs 
at each point in the plastic region in the present load step is same as the ratio of tangential and radial stress obtained in the 
preceding solved load step. For each load step, the location of plastic front is given a small increment starting from its previous 
location. From this defined limits of elastic and plastic zones the solution of the displacement field is obtained and the stress values 
are computed at the assumed elasto-plastic interface. The value of von Mises stress at the assumed plastic front location is checked 
for the present load step and equality of the value with that of yield stress gives the required solution for that load step. All relevant 
data are stored at this instant and it is followed by a load increment by returning to outer loop till the disk attains a fully plastic 
state. A brief description of the solution algorithm which presupposes solution of limit angular speed Ω1 and yield front location ry 
is provided below. 

1. Two loops are commenced with ry initiated to the value of a.  
2. The rotational speed is incremented through a suitable step size (

1ΔΩ ) in the outer (first) loop.  
3. Inner (second) loop is initiated and ry is given a small increment.  
4. The ratio of 0

rσ and 0
tσ in the elastic region is constant for a particular radial location. That ratio ‘λ’ is stored during 

elastic analysis. Whenever yield front reaches a particular radial location, its von-Mises stress reaches the yield stress. 
Corresponding to this  value of von-Mises stress , the values of 0

rσ and 0
tσ  at any point in the plastic region can be 

obtained from the relation 
 

( )
1

2 21vm tσ σ λ λ= − + ,          (8) 
 

where r

t

σ
λ

σ
=  

 
5. The displacement field is then obtained using the elastic-plastic formulation of Eq. (7). 
6. A check is performed on von Mises stress and if it attains the value of yield stress at the yield front location then current 

position is the exact yield front location. This ensures solution for the current load step, when the relevant results are 
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noted and followed by a load increment by returning to outer loop mentioned in step 2. Otherwise the program returns to 
step 3 so long the plastic region covers whole of the disk. 

 
2.2. Determination of plastic strain: At 1Ω > Ω , radial and tangential strains at each coordinate inside the post-elastic region of the 
disk can be decomposed into elastic and plastic parts as given below.  
           

e p
r r rε ε ε= +                        (9a) 

           
e p

t t tε ε ε= +                                     (9b) 
 
where the superscript ‘e’ and ‘p’ denote the elastic and plastic part of the strains respectively. 
   The relations between stresses and elastic strains can be derived from generalized Hooke’s law. For a state of plane stress 
( 0zσ = ), assuming Hencky’s deformation theory of plasticity, the plastic strain components are given as 
           

( )
2

p
p vm t

r r
vm

ε σε σ
σ

= −                                           (10a) 

           

( )
2

p
p vm r

t t
vm

ε σε σ
σ

= −                                                          (10b) 

 
   In Eq. (10a, b) p

vmε  is the equivalent plastic strain and vmσ is the equivalent or von-Mises stress. Based on linear strain 
hardening material behavior of the disk material, the relation between equivalent plastic strain and von-Mises stress can be 
expressed as   
           

( )vm yp
vm H

σ σ
ε

−
=                                              (11) 

 
where H is the hardening parameter and is given by 
      
     1

1

EEH
E E

=
−

                                     (12) 

 
3. Results and discussions 
 
   The results are presented in terms of the following dimensionless and normalized variables:  angular velocity Ω = / ybω ρ σ , 

stress / yσ σ σ= , displacement / yu u E bσ=  and hardening parameter ( )1 1/H E E E= − . Results for post-elastic behaviour of 

linear strain hardening material have been generated using the values H =0.5, a = 0.2, b = 1.0 m, ρ = 7850 kg/m3, E=210 GPa and 
yσ =350 MPa. The value of Poisson’s ratio ν  is taken as 1/3 and  

pν  is taken as 0.5. The variation in disk geometry is controlled 
through parameters n and k. The disk thickness variation is modeled using parabolic (type D1) and exponential (type D2) relations 
respectively as defined below: 

 
0( ) [1 ]kh h nξ ξ= −   for parabolic variation,                               (13) 

0( ) exp[ ]kh h nξ ξ= −         for exponential disk,                    (14) 
 
where h0 is the disk thickness at the root (r = a) 
    

 
 

Figure 3 Tapered annular disk geometry (n = 0.6, k = 1.0) used for validation 
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   A convergence study on the number of functions on limit elastic (Ω1) and fully plastic (Ω2) angular speed is carried out for an 
annular disk of uniform thickness with geometry parameters, n = 0.0 and is reported in Table 1. Based on these studies it is 
observed that good convergence is achieved with 8 coordinate functions and hence subsequent calculations are carried out at these 
many functions. All the functions are denoted by 24 Gauss points and an increment of 0.0001 radian per second is considered for 
increase in angular speed.  
 

Table 1.Convergence study on number of co-ordinate functions 
S.No. nf Ω1 Ω2 

1 4 1.9064 1.9112 
2 5 1.0964 1.9086 
3 6 1.0964 1.9109 
4 7 1.0964 1.9110 
5 8 1.0965 1.9113 
6 9 1.0965 1.9113 
7 10 1.0965 1.9113 

 
      For validation of the mathematical formulation a linearly tapered disk (refer Figure 3) is considered and comparison of result is 
carried out with ANSYS v11.0. The taper disk profile is obtained by considering geometry parameters n = 0.6 and k = 1.0 in Eq. 
13. In ANSYS the disk of given geometry and identical material properties is modeled as an axisymmetric trapezoidal area and is 
meshed with plane-82 (solid) elements with a mapped mesh density of 6 by 50.  The model is centrifugally loaded by applying 
global angular velocity about the axis of rotation. Firstly the propagation of yield front with increment in angular speed is 
validated and is plotted in dimensionless form in Figure 4. The normalized displacement and stress values are validated at 
different load steps next and are plotted in Figure 5a-e. The first load step selected for validation corresponds to elastic limit 
angular speed i.e. at Ω1 = 1.2414 (Figure 5 a), and the speeds at which it reaches ξ  = 0.25, 0.50 and 0.75 are the subsequent load 
steps chosen for validation. Hence the validation (Figure 5 b-d) is carried out for Ω values of 1.6605, 1.8169 and 1.9731 
respectively.  The final load step for validation is selected corresponding to Ω2 = 2.1175 at which the disk attains fully plastic 
state.  These plots exhibit good agreement establishing validity of the present elasto-plastic analysis method.  
 

 
 

Figure 4 Validation study on propagation of yield front of a taper disk 
 

   The effect of hardening parameter is studied next. The geometry of disk selected is identical to the one used for validation. The 
comparison of yield front propagation with increasing angular speed for four different values of H (0.00, 0.25, 0.50 and 0.75) is 
plotted in dimensionless form in Figure 6 followed by a comparative plot of normalized displacement and von-Mises stress at fully 
plastic state in Figure 7 a-b. 
   Next a parametric study of annular disk in elasto-plastic regime for five different profiles each of parabolic (D1) and exponential 
(D2) geometries are considered. The disk profiles are shown in Figure 8. The yield front propagation of parabolic (D1) disks is 
plotted in dimensionless form in Figure 9 a-e followed by waterfall plots of normalized von-Mises stress in Figure 10 a-e. In these 
figures, dimensionless speed is incremented from 1Ω to 2Ω at equal intervals of step size 0.0025. It is evident from Figure 9 a-e 
that for parabolic disks with increase in n the elastic and fully plastic speed increases where as for a given value of n, if k is 
increased the limit speed tend to reduce. It is also indicative of the fact that with increase in n operating range increases while at a 
given value of n, increase in k reduces the operating range for parabolic disks. Operating range is considered as the difference 
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between fully plastic speed and limit elastic speed The plots of radial and tangential plastic strain at fully plastic speed for the 
respective disk geometries of type D1 is shown in Figure 11 a-b.  

 

 
 

 
 

 
 

Figure 5a-e Normalized displacement and stress values at different angular speeds and their validation 
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Figure 6 Comparative study of yield front propagation with angular speed for different hardening parameters 
 

   
 

Figure 7a-b Comparative plots of normalized displacement and von-Mises stress for different hardening parameters 
 
      Disk type D1    Disk type D2 

 
 

Figure 8 Various thickness profiles with corresponding geometry parameters for annular disks 
 

   Similar plots of yield front propagation and waterfall plots of von-Mises stress are plotted in Figure 12 a-e and Figure 13 a-e for 
exponential (D2) disk geometry. It is observed that for exponential disks increase in n as well as k increases both limit elastic 
speed and fully plastic speed. Furthermore it is also observed that the operating range of disks in post-elastic state increases with 
increase in n as well as k. In Figure 14 a-b, the radial and tangential plastic strains for different disk geometries of disk type D2 are 
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plotted. In general, the difference of fully plastic and limit elastic speed can be used as an index to measure the extent of effective 
utilization of disk material due to its thickness variation. On this basis it is observed that among the selected disk profiles the most 
effective ones are of geometry parameters n = 1.0 and k = 0.2 for disk type D1 and of n = 2.8 and k = 1.0 for disk type D2.  
 

 
 

 
 

 
 

Figure 9a-e Plot of propagation of yield front with increase in angular speed for various parabolic annular disk geometries 
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Figure 10 a-e Waterfall plots of variation of von-Mises stress with angular speed for various parabolic annular disks 
 
 

   
 

Figure 11a-b Plots of radial and tangential plastic strain for different disk geometries of disk type D1 
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Figure 12a-e Plot of propagation of yield front with increase in angular speed for various exponential annular disk geometries 
 

4. Conclusion 
 
   The post-elastic investigation of high-speed variable geometry rotating disks is formulated through a variational method 
assuming linear strain hardening material behavior following von Mises yield criterion and solution is obtained by assuming a 
series solution of the unknown displacement field. The results obtained by the present methodology have been validated and it 
showed a close conformity with the existing results of similar problem. The present formulation provides an easy user interface to 
carry out the parametric study of high speed rotating disks. It is a method based on full-domain study and unlike FEM it does not 
break the domain into finite elements and hence does not require the extensive and repeated pre-processing, solution and post-
processing computations. Hence the present method saves computational effort and time as compared to commercial Finite 
Element codes. Some new results for displacement field and radial, tangential and von-Mises stress field at plastic limit speed for 
parabolic and exponential disks for linear strain hardening material behavior have been furnished and plots showing the 
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advancement of the plastic front with increase in rotational speed have been presented. The limit load factor, obtained from the 
study would be of much help to the design and application engineers. The method of formulation readily gives the kernel for 
dynamic analysis and many other complicating effects. The results are presented graphically so that they become designer friendly. 
The method developed has application potential in various other problems, e.g., shrink fitted rotating disk, pre-stressed rotating 
disk, compound disk made from different materials, etc. 
 

 
 
     

 
 

 
 
 

Figure 13a-e Waterfall plots of variation of von-Mises stress with angular speed for various exponential annular disks 
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Figure 14a-b Plots of radial and tangential plastic strain for different disk geometries of disk type D2 
  
 
Nomenclature  
 
a  Inner radius of annular disk 
b   Outer radius of the disk 
ci  The vector of unknown coefficients 
e, p  Superscripts, correspond to elastic and plastic state 
E, E1    Elasticity modulus and Tangent modulus of the disk material 
{f}  Load vector 
h0 , h    Thickness at the root and thickness at any radius r of the disk 
H          Normalized hardening parameter 
[K]  Stiffness matrix 
n, k      Parameters controlling the thickness variation of disk 
nf  Number of functions used to approximate displacement field 
r, t        Subscripts, correspond to radial and tangential  directions 
ry  Radial location of yield front  
u       Displacement field of the disk 
U     Strain energy of the disk 
Ue , Up   Strain energy in the elastic and plastic part of the disk respectively 
V  Work potential of the disk because of rotation 
δ  Variational operator  
ρ   Density of the disk material 
ν, νp  Poisson’s ratio of the disk material in elastic and post elastic regions 
ω, Ω   Angular speed and dimensionless angular speed of the disk 
Ω1, Ω2    Elastic and fully plastic limit angular speed 

,r tε ε   Strains in radial and tangential direction 
0 0,r tε ε    Strains in radial and tangential direction in yield condition 

,p p
r tε ε      Part of radial and tangential strain above yield strain 

,r tσ σ   Radial and tangential stresses 
0 0,r tσ σ    Stresses in radial and tangential direction in yield condition 

,p p
r tσ σ     Part of radial and tangential stress above yield strain 

vmσ   von Mises stress 

yσ         Yield stress of the disk material 

iφ   The set of orthogonal functions used to approximate displacement field  
ξ    Normalized global radial co-ordinate 

1, 2ξ ξ   Normalized local radial co-ordinate in plastic and elastic region 

1 2, ,Δ Δ Δ   Parameters used to normalize radial coordinate 
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