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Abstract 
 
   Economic dispatch (ED) has the objective of generation allocation to the power generators in such a manner that the total fuel 
cost is minimized while all operating constraints are satisfied. For the sake of simplicity, ED is generally solved without 
accounting for transmission constraints. However, in deregulated power system environment it is essential to model the ED 
problem for practical multi-area cases with tie line constraints. Most of the conventional gradient based methods are time 
consuming, suffer from dimensionality problem and assume the fuel cost curves of generating units to be piecewise linear, 
monotonically increasing in nature. The resulting dispatch solutions are therefore inaccurate; sometimes producing infeasible 
solutions for modern generating units having non convex cost curves. On the other hand evolutionary methods do not suffer 
from convexity assumptions and achieve fast solutions even for complex non-linear, non-convex, multi-modal optimization 
problems. This paper reviews and compares some evolutionary techniques for multi-area economic dispatch (MAED).   
The paper presents an extensive comparison of the search capability and convergence behavior of i) Classical differential 
evolution (DE) and its various strategies ii) Classical particle swarm optimization (PSO) and iii) An improved PSO with a 
parameter automation strategy having time varying acceleration coefficients (PSO_TVAC) for solving MAED problems for two 
area and three area test power systems with 4, 10 and 40- generating units. The results are found to be superior compared to 
some recently published results.  
 
Keywords: Differential evolution, Multi-area economic dispatch, multiple fuel options, particle swarm optimization, 
transmission capacity constraints. Time varying acceleration coefficients (TVAC), Valve point loading effects. 
 
1. Introduction 
 
   The objective of Economic dispatch (ED) is to allocate power generation among available generators in the most economical 
manner, while satisfying the physical and operational constraints. The cost of power generation, particularly in fossil fuel plants, is 
very high and economic dispatch helps in saving a significant amount of revenue. Conventional methods like lamda iteration, base 
point participation factor, gradient methods etc. rely heavily on the convexity assumption of generator cost curves and hence 
approximate these curves using quadratic or piecewise quadratic, monotonically increasing cost functions (Wood et al., 1984).  In 
actual practice however, this assumption is not valid because the cost functions exhibit higher order non-linearities and 
discontinuities due to prohibited operating zones (POZ), ramp rate limits and valve point loading effects (Walter et al., 1993, 
Orero et al., 1996). In the practical ED, the cost function must be expressed as a piecewise non-linear function in place of a single 
quadratic function. Therefore, ED problem with valve point effects gives rise to a non smooth optimization problem with heavy 
equality and inequality constraints, having complex and nonconvex characteristics with multiple minima, which make the 
challenge of obtaining the global minima very difficult. Most traditional methods fail for this NCED problem except dynamic 
programming (Shoults et al., 1986) in which no restriction is imposed on the shape of cost curves, but this method suffers from the 
problem of dimensionality and excessive evaluation at each stage. 
   Power utilities try to achieve high operating efficiency to produce cheap electricity. Competition exists in the electricity supply 
industry in generation and in the marketing of electricity. The operating cost of a power pool can be reduced if the areas with more 
economic units generate larger power than their load, and export the surplus power to other areas with more expensive units. The 
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benefits thus gained will depend on several factors like the characteristics of a pool, the policies adopted by utilities, types of 
interconnections, tie-line limits and load distribution in different areas. Therefore, transmission capacity constraints in production 
cost analysis are important issues in the operation and planning of electric power systems. 

The economic dispatch problem is frequently solved without considering transmission constraints. Compared to the classical 
ED problem the MAED problem is more complex due to the additional tie-line constraints and area power balance requirements. 
However, some researchers have taken transmission capacity constraints into consideration. A complete formulation of multi-area 
generation scheduling with import/export constraints was presented in a reference (Shoults et al., 1980). Desell et al. (1984) 
proposed an application of linear programming to transmission constrained production cost analysis. Farmer et al. (1990) 
presented a probabilistic method which was applied to the production costing of transmission constrained multi-area power 
systems. Hopfield neural network based approach was proposed to solve the MAED problem (Yalcinoz et al., 1998). Doty and 
McIntyre et al. (1982) solved multi-area economic dispatch problem by using spatial dynamic programming and optimal results 
were reported considering transmission constraint with linear losses. Linear programming application is proposed in Desell et al. 
(1984) to production cost analysis with transmission constraint. Area control error is solved in multi-area economic dispatch 
(Hemick et al., 1985). Wang and Shahidehpour et al. (1992) proposed a decomposition approach for solving multi-area generation 
scheduling with tie-line constraints using expert systems. They presented efficiency of decomposition approach by testing it on a 
four area system with each area consisting of 26 units. The Newton-Rapshon's method is applied to solve multi-area economic 
dispatch problem (Wernerus et al., 1995) by calculating short range margin cost based prices. An incremental network flow 
programming algorithm was proposed for the MAED solution with tie-line constraints (Streifferet et al., 1995). The MAED is 
solved by the direct search method with considering transmission constraint (Chen et al., 2001). Evolutionary programming is 
proposed in Jayabarathi et al. (2000) for multi-area economic dispatch problem. Recently covariance matrix adapted evolutionary 
strategy has been proposed for MAED problems where a Karush Kuhun Tucker (KKT) optimality based stopping criterion is 
applied to guarantee optimal convergence (Manoharan et al., 2009). Determining the most economical fuel to burn poses another 
optimization challenge for generators with multiple fuel options. In such cases the fuel cost curve is represented as a segmented 
piecewise quadratic function similar to the valve point loading effects (Park et al., 1993). The economic dispatch problem with 
multiple areas and multiple fuel options translates into a nonconvex optimization problem with complex constraints. Such 
optimization problems require algorithms which avoid approximation of cost function and still do not require large computational 
time.  The methods found suitable include tabu search, simulating annealing, neural networks (Yalcinoz et al., 1998; Park et al., 
1993), genetic algorithm (Orero et al., 1996) , particle swarm optimization (Chaturvedi et al., 2009), harmony search (Vasebi et 
al., 2007), ant colony optimization (Song et al., 1999), bacterial foraging, (Panigrahi et al., 2009), artificial immune system 
(Vanaja et al., 2008) and differential evolution (DE) (Coelho et al., 2006). Among these techniques, PSO, DE and their variants 
have been extensively popular due to their superior convergence characteristics, consistency and ease of implementation. 

Although these methods do not always guarantee global best solutions, they often achieve a fast and near global optimal 
solution. Researches have constantly observed that all these methods very quickly find a good local solution but get stuck there for 
a number of iterations without further improvement sometimes causing premature convergence. Time varying acceleration 
coefficients (TVAC), (Chaturvedi et al., 2009) are employed countering the effect of premature convergence in PSO. The TVAC 
strategy strikes a proper balance between the cognitive and social component during the initial and latter part of the search and 
hence is found to avoid premature convergence of the swarm. The paper aims to test the potential of all the basic DE variants in 
producing feasible solutions for the MAED problem formulated with many different constraints. The paper also compares the 
solution quality of DE variants with the PSO_TVAC strategy with classical PSO. The results of all three evolutionary strategies 
are found to be feasible and superior to reported results (Yalcinoz et al., 1998; Chen et al., 2001; Manoharan et al., 2009). 
 
 2. Multi-area Economic Dispatch with Multiple fuel Options 
 

The objective of MAED is to determine the generation levels and the power interchange between areas which would minimize 
total fuel costs in all areas while satisfying power balance, generating limit and transmission capacity constraints. If an area with 
excess power is not adjacent to a power deficient area, or the tie-line between the two areas is at the transmission limit, it is 
necessary to find an alternative path between these two areas in order to transmit additional power.                                                                      

The generator cost function is obtained from the data taken during the heat-run tests, in which the input-output data is measured 
to cover the operating region. Large turbine generators usually have a number of fuel admission valves which are opened one by 
one when the unit is called upon to increase production. When a valve is opened, the throttling losses increase rapidly as a result of 
which, the incremental heat rate rises suddenly. The valve-point effects introduce ripples in the heat-rate curves and make the 
objective function discontinuous, nonconvex and with multiple minima. The fuel cost of the ith unit can be calculated as. 

( ) ( )( )iiiiiiiiiii PPfecPbPaPF −××+++= min2 sin                                                                                                                            (1) 

When the generating units are supplied with multiple fuel sources, the cost of each unit is represented with several piecewise 
quadratic functions reflecting the effects of fuel changes; the generator has to identify the most economic fuel to burn from the 
options available. The fuel cost function for such a case is represented as in Lin et al. (1984). 
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where ,mika , mikb and mikc are the fuel-cost coefficients of the  ith  unit, of mth area  and  k = 1, 2,. . ., K  are the available fuels. The 
ED problem is to determine the generated powers Pi of units for a total load of PD so that the total fuel cost for the N number of 
generating units is minimized subject to the power balance constraint and unit upper and lower operating limits. Taking into 
consideration the cost of transmission though each tie-line, the objective function of multi-area economic dispatch is given in Eq. 
(3) as 
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fi is the cost function associated with tie line power flow from area j to area (M-1). 
i)Area Power Balance Constraints 
The power balance constraints for area m neglecting losses can be given as 
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for m=1,2……..M (areas). PDm is the load demand in mth area and Tj represents the tie line flows to the jth area from other areas. 
ii)Generating Limit  Constraints   
The power output of a unit must be allocated within the range bounded by its lower and upper limits of real power generation as 
given by 

NiPPP iii ,...,2,1maxmin =≤≤                                                                                                                                           (5) 
iii)Tie-line Limit  Constraints      
The tie line power flows to area j should be between the maximum and minimum    

MjTTT MjMjMj ,...,2,1max
)1()1(
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)1( =≤≤ −−−

                                                                                                                            (6)  
where Tj  is the power flow through the tie line.  
                                                                       
3. Review of Evolutionary Strategies 
 
    During the last decade different Evolutionary strategies have increasingly been applied by researchers for solving economic 
dispatch problems (Walter et al., 1993; Orero et al., 1996; Jayabarathi et al., 2000; Coelho et al., 2006; Sinha et al., 2003) due to 
their powerful search capability and ability to handle different types of cost functions. Out of the different evolutionary techniques 
proposed PSO and DE have emerged as the most popular, looking at the number of papers published during the past few years. 
The present paper aims to present a brief review and comparison of both the techniques and their different variants using 
performance metrics such as convergence behavior, consistency and solution quality for solving the MAED problem with multiple 
fuel options. 
 
3.1 Classical PSO  
 

A PSO is a population based modern heuristic search method that traces its evolution to the emergent motion of a flock of birds 
searching for food. It scatters random particles i.e. solutions into the problem space. These particles, called swarms, collect 
information from each other through their respective positions. The particles update their positions using their own experience and 
the experience of their neighbors. The update mode is termed as the velocity of particles. The position and velocity vectors of the 
ith particle of a d-dimensional search space can be represented as )...,.........,( 21 idiii xxxX =  and ),........,( 21 idiii vvvV =  
respectively. On the basis of the value of the evaluation function, the previous best position of a particle is recorded and 
represented as )........,( 21 idiii ppppbest =  If the gth particle is the best among all particles in the group so far, it is represented 

as ).,.........,( 21 gdggg pppgbestpbest ==  The particle tries to modify its position using the current velocity and the 
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distance from pbest and gbest and .The modified velocity and position of each particle for fitness evaluation in the next iteration 
are calculated using the following equations: 

( )idid
k
id

k
id xpbestrandcvwCv −××+×=+

11
1 [ ( )]22 idgd xgbestrandc −××+                                                         (7) 
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k
id vxx                                                                                                                                                                               (8) 

   Here w is the inertia weight parameter, C is constriction factor, c1,c2 are cognitive and social coefficients,rand1 and rand2 are 
random numbers between 0 and 1. A large inertia weight helps in good global search while a smaller value facilitates local 
exploration. Therefore, the practice is to use larger inertia weight factor during initial exploration and gradual reduction of its value 
as the search proceeds in further iterations. The time varying inertial weight is given by   

( ) ( )
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max
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minmax w

iter
iteriter

www +
−

×−=                                                                                                                               (9) 

where iter is the current iteration number while  itermax is the maximum number of iterations. Usually, the value of w is varied 
between 0.9 and 0.4. 
 
3.2 PSO with Time-Varying Acceleration Coefficients (PSO_TVAC) 
 
   Though the PSO technique with time varying inertia weight can locate good solution at a significantly fast rate, its ability to fine 
tune the optimum solution is weak, mainly due to the lack of diversity at the end of the search. It has been observed by most 
researchers that in PSO, problem-based tuning of parameters is a key factor to find the optimum solution accurately and 
efficiently. (Kennedy and Eberhart et al., 1995) stated that a relatively higher value of the cognitive component, compared with the 
social component, results in roaming of individuals through a wide search space. On the other hand, a relatively high value of the 
social component leads particles to a local optimum prematurely. In population-based optimization methods, the policy is to 
encourage individuals to roam through the entire search space during the initial part of the search, without clustering around local 
optima. During the latter stages, convergence towards the global optima is encouraged, to find the optimal solution efficiently. The 
idea behind TVAC is to enhance the global search in the early part of the optimization and to encourage the particles to converge 
towards the global optima at the end of the search. This is achieved by changing the acceleration coefficients c1 and c2 with time in 
such a manner that the cognitive component is reduced while the social component is increased as the search proceeds. With a 
large cognitive component and small social component at the beginning, particles are allowed to move around the search space 
instead of moving toward the population best during early stages. On the other hand, a small cognitive component and a large 
social component allow the particles to converge to the global optima in the latter part of the optimization process. The 
acceleration coefficients are expressed as (Ratnaweera et al., 2004): 

( ) iif c
iter

iterccc 1
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111 +−=                                                                                                                                     (10) 

( ) iif c
iter
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222 +−=                                                                                                                                   (11)  

where c1i, c1f , c2i and c2f are initial and final values of cognitive and social acceleration factors respectively. 
 
3.3 Differential evolution 
 
   DE is a population-based stochastic function minimizer (or maximizer) based on evolutionary computation, whose simple yet 
powerful and straightforward features make it very attractive for numerical optimization. DE differs from conventional genetic 
algorithms in its use of perturbing vectors, which are the difference between two randomly chosen parameter vectors, a concept 
borrowed from the operators of Nelder and Mead’s simplex optimization technique. The DE algorithm was first introduced by 
Storn and Price et al. (1995) and was successfully applied in the optimization of some well-known nonlinear, non-differentiable, 
and non-convex functions. DE works on three basic operations, namely mutation, crossover and selection. 
   Mutation is an operation that adds a vector differential to a population vector of individuals according to the chosen variant.  The 
different variants of DE are classified using the notation DE /α/β/δ where α indicates the method for selecting the parent 
chromosome that will form the base of the mutated vector, β indicates the number of difference vectors used to perturb the base 
chromosome, and δ indicates the recombination mechanism used to create the offspring population. Most papers have explored the 
variant DE / rand / 1 / bin (Coelho et al., 2006). The best performing variant is found to be problem specific and needs detailed 
investigation. The donor or mutant vector for each population member is generated for different variants in classic DE as given 
below 
1)   DE/rand/1 

)]()([)()1( 3,2,1, txtxftxtZ ririmrii −+=+  
2)   DE/best/1 

)]()([)()1( 3,2,, txtxftxtZ ririmbestii −+=+  
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3)   DE/rand-to-best/1 
)]()([)]()([)()1( 21, trxtrxfmtxtxftxtZ iiibestimii −+−+=+    

4)   DE/best/2 
)]()([)]()([)()1( 4321, trxtrxfmtrxtxftxtZ iiirimbestii −+−+=+  

5)   DE/rand/2 
    )]()([)]()([)()1( 4321,5 trxtrxfmtrxtxftxtZ iiirimrii −+−+=+                               (12) 
where i = 1, 2 …, R  is the individual’s index of population and j = 1, 2,…,N is the position in n-dimensional individual; t is the 
time (generation); r1 , r2, r3, r4 and r5 are mutually different integers and also different from the running index, i, randomly selected 
with uniform distribution from the population set and fm > 0 is a real parameter called mutation factor, which controls the 
amplification of the difference between two individuals so as to avoid search stagnation and is usually taken from the range [0, 
2].Following the mutation operation, recombination is applied to the population. Recombination is employed to generate a trial 
vector by replacing certain parameters of the target vector with the corresponding parameters of the randomly generated donor 
vector. 
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   In the above rand(j)  is the jth evaluation of a uniform random number generation within range [0, 1], and CR is a crossover or 
recombination rate in the range [0, 1]. The performance of a DE algorithm usually depends on three variables; the population size 
N, the mutation factor fm and the recombination rate CR. Selection is the procedure of producing better offspring. To decide 
whether or not the vector should be a member of the population comprising the next generation, it is compared with the 
corresponding vector. Thus, it denotes the objective function under minimization, and 
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   In this case, the cost of each trial vector Ui(t+1)  is compared with that of its parent target vector xi(t). Here, a detailed study of 
all the basic DE variants is carried out to find the best strategy for a given MAED problem with multiple fuel options. The 
performance is then compared with classical PSO and PSO_TVAC. 
 
4.  Implementation of MAED Problem with Multiple Fuel Option 
 

The paper presents a solution of the MAED problem with multiple fuel options and valve point loading employing PSO and 
DE strategies and critically compares their features for practical power system operation. 

 
Step 1) Parameter setup 
The PSO and DE parameters such as population size, the boundary constraints of optimization variables, cognitive and social 
acceleration coefficients, the mutation factor (fm) ,the crossover rate (CR), and the stopping criterion of maximum number of 
iterations (Gmax), are selected. 
 
Step 2) Initialization of an individual population 
For a population size R, the particles are randomly generated and normalized between the maximum and the minimum operating 
limits of the generators. If there are N units, the ith particle is represented as 

( )MMMM
n

iN
n

i
n

i
n

ii TTTTTTTPPPPP )1(2,...24,231........,.........13,12321 )...............(),(........,, −=                                                                                           (15)                  

The jth Dimension of The ith Particle is normalized as given below to satisfy the generation limit constraint given by (5). Here, r   
[0,1]. 

)( minmaxmin ijijij
n

ij PPrPP −+=                                                                                                                                            (16) 
 
Step 3) Evaluation of the individual population                     
The strength of each individual particle in the swarm is evaluated to judge its merit using a fitness function called evaluation 
function. The evaluation function should be such that cost is minimized while constraints are satisfied. One of the methods for this 
is the popular penalty function method. In this method, the penalty functions composed of squared or absolute violations are 
incorporated in the fitness function, and are set to reduce the fitness of the particle according to the magnitude of the violation. The 
penalty parameters are chosen such that an infeasible solution is awarded lesser fitness than the weakest feasible particle string. 
Since two infeasible particles are not treated equally, the string further away from the feasibility boundary is more heavily 
penalized. The penalty function approach, thus, converts a constrained optimization problem into an unconstrained optimization 
problem. The fitness function values need to be calculated for each particle in order to find its merit. The evaluation function used 
here is given by    
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Here, α is the penalty parameter. The second term imposes a penalty on the particle in terms of increased cost, if power balance 
constraints of all the areas are not satisfied. The first term is calculated using Fi(Pi) from eq. (1) for solution considering the valve 
point effects and eq. (2) for units with multiple fuel options. Transmission losses are neglected here for the sake of simplicity.  

 
Step 4) Iterative Parameter Updation 
 In each iteration the parameters are updated to improve the fitness. In PSO the parameters are updated using eq. (7)-Eq. (11) while 
in DE mutation adds a vector differential to a population vector of individuals; the donor or mutant vector is generated by using eq. 
(12) corresponding to the chosen DE variant.  
 
Step 5) Recombination operation 
Recombination is applied in DE using eq. (13) to generate a trial vector by replacing certain parameters of the target vector with 
the corresponding parameters of the randomly generated donor in step 4.     
                           
  Step 6) Selection operation 
Finally the selection operation produces better offspring. The values of the evaluation function are calculated for the updated 
positions of the particles. In PSO if the new value is better than the previous pbest, the new value is set to  pbest. Similarly, value 
of gbest is also updated as the best of  pbest. In DE the trial vector Ui(t+1)  replaces its parent target vector xi(t) if its cost is found 
to be better otherwise the target vector is allowed to advance to the next generation. 
 
Step 7) Stopping criterion: A stochastic optimization algorithm is stopped either based on the tolerance limit or maximum number 
of iterations. For comparison with other strategies, the number of iterations is adopted as the stopping criterion in this paper.  
 
5.  Results and Discussion 
 
   The additional tie-line constraints and area power balance constraints make the MAED problem much more complex and 
difficult to solve as compared to the classical ED problem. The PSO and DE based evolutionary strategies are tested for the 
proposed practical MAED problem on three test systems having different sizes and nonlinearities. The performance was compared 
with previously published results (Yalcinoz et al., 1998; Chen et al., 2001 and Manoharan et al., 2009) and was found to be better.  
 
5.1  Description of the test systems 
 
i) The first test system consists of a two-area system with four generating units (Yalcinoz et al., 1998; Chen et al., 2001)  as shown 
in Fig. 1. This system is considered here for the purpose of comparison with previous results. The percentage of the total load 
demand in area 1 is 70% and 30% in area 2. The cost coefficients and limits are taken from (Chen et al., 2001). The load demand 
(PD) and tie-line flow limit are set at 1120 MW and 200MW respectively. The global best for this system has been reported at 
$10,605 (Yalcinoz et al.1998,Chen et al.2001) . Reference (Manoharan et al., 2009) has reported $10,574 but the reported results 
are infeasible because though their solutions satisfy the power balance and generating limit constraints, it does not satisfy the area 
power balance constraints.  
 
ii) The second system (Manoharan et al., 2009, Lin et al., 1984) comprises of three areas, 10 generating units, with three fuel 
options. The total system demand is 2700 MW. The 10 generating units are divided into three areas, as shown in Fig. 2. Area 1 
comprises the first four units (P1, P2, P3, P4); area 2 includes three units (P5, P6, P7); and area 3 has the remaining three units (P8, 
P9, P10). Each area has both generation and load and each area is represented as having tie-line connections to each of the other 
areas. The load demand in area 1 is assumed as 50% of the total demand. The load demand in area 2 is assumed as 25% and in area 
3 the load is 25% of the total demand. The tie line flow limit is set at ±100 MW for each tie line. The global best for this system 
has not yet been reported. The minimum cost for this system using covariance matrix adapted evolutionary strategy (CMAES) 
technique (Manoharan et al., 2009 ) is $686.9850 which is infeasible as area power balance constraints are not satisfied in this case 
too.  DE and PSO_TVAC algorithms used in this paper have achieved lower and feasible results for this system. 
 
iii) Test system three was selected for testing the performance of the evolutionary methods for MAED problem of a large system. 
This system has 40-generating units with valve point loading effects taken from (Sinha et al., 2003), randomly distributed into two 
areas such that both areas include half the units. The total system load is 10,500MW (Sinha et al., 2003). The classical PSO is not 
able to find the best solution for this system but DE and PSO_TVAC converge to global best solutions. 
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For the purpose of comparison the cost of tie-line power flow is neglected in all three test cases. In classical PSO both the 
acceleration coefficients are taken equal to 1.5 for all systems. Simulations were carried out using  MATLAB 7.0.1 on a Pentium 
IV processor, 2.8 GHz. with 512 MB RAM.  
 
 

 
Figure 1.Two-area, four unit system. 

 
Figure 2. Three area ten generating unit system. 

 
5.2 Testing Strategies 
 

The MAED problem was solved using the classical PSO, PSO_TVAC and DE and their performance was compared with some 
already reported results (Yalcinoz et al., 1998; Chen et al., 2001; Manoharan et al., 2009). During recent years DE and its hybrid 
variants have been proposed for many power system applications but a detailed comparative study of all its basic variants for 
MAED problem with complex constraints has not been reported yet. The paper  i) Compares different DE variants for the MAED 
problem ii) Compares the best DE variant with its close competitor PSO and its effective variant PSO_TVAC iii) Investigates the 
influence of tie-line power limits on the total fuel cost. Through out this paper DE/rand to best/1 variant of DE is applied for 
comparison with PSO and PSO_TVAC as it was found to be the best among various DE variants defined by eq. (12). 
 
5.3 Effect of tuning parameters 
 
    An attempt has been made here to compare the PSO and DE strategies extensively, to find similarities and differences; merits 
and shortcomings; solution quality and consistency and dependence on tuning parameters. A deeper understanding of these 
strategies can save a lot of time and effort which is otherwise wasted in tuning the different parameters of these algorithms.  The 
mean and standard deviation (S.D.) out of 50 trials for DE algorithm are tabulated in Table 1 for 4-unit system and in Table 2 for 
10-unit system. From both the tables it is evident that better results are available for fm and CR pairs lying in a diagonal. Higher 
fm supports higher CR and best results are obtained for fm=CR=0.9 (and/or 0.8) for both the systems. This behavior was found to 
be consistent for other mathematical benchmark problems too. It can be seen from the two tables that for some combinations of  
fm and CR,  the DE algorithm did not converge. 

Similar to DE and other evolutionary techniques, the performance of PSO algorithm is quite sensitive to the various parameter 
settings. The initial and final values of the acceleration coefficients have a significant effect on the solution. Based on empirical 
studies on a number of mathematical benchmarks, reference (Ratnaweera et al., 2004) has reported the best range of variation as 
2.5-0.5 for c1 and 0.5-2.5 for c2. In reference (Chaturvedi et al., 2008). It is observed that initial value of the cognitive coefficient 
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c1i and final value of social coefficient c2f control the range of the search space. Therefore in PSO_TVAC the values of c1i and c2f 
are varied between 2.5-1.8 keeping c1f and c2i fixed at 0.2 (Chaturvedi et al., 2008). It is seen that a high initial value of the 
cognitive coefficient c1 makes use of full range of the search space while a low social coefficient c2 helps in avoiding premature 
convergence. As the search progresses c1 is reduced to reduce search space and c2 is increased to accelerate the solution towards 
global convergence.  The best parameter combination is found to depend on the nature of the objective function. However all the 
tested functions were found to achieve optimal results in the above variation range of c1 and c2.  

Table 3 and Table 4 present the effect of acceleration coefficients on the MAED solution of 4-unit and 10-unit system by 
PSO_TVAC strategy.  It can be seen that for all combinations of c1i and c2f around 2.0,  the PSO_TVAC strategy converges to near 
global results indicated by a small value of S.D. Best results in this case are found for c1i = c2f =1.8. On comparison of DE with 
PSO_TVAC it can be seen that DE converges to the global solution for fm =CR=0.9 for both the test systems with zero S.D. but for 
other values of fm and CR the S.D. is quite high, sometimes indicating non convergence.  To summarize, it can be said that DE is 
capable of producing guaranteed global best results accurately for fm =CR=0.9 while PSO_TVAC converges to near global values 
for all combinations of tuning parameters; the global best is also achieved in PSO_TVAC for some of the runs but the optimal 
parameter combination for achieving global best is problem specific, based on trial and error. The S.D. of PSO_TVAC is also 
higher than that of DE.  
 

Table 1. Effect of mutation factor and cross over rate on mean and S.D.in DE (4-unit system; 50 Trials) 

 
*the bracketed value indicates the standard deviation 

 
Table 2. Effect of mutation factor and cross over rate on mean and S.D.in DE (10-unit system; 50 Trials) 

 
*the bracketed value indicates the standard deviation 
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Table 3.  Effect of acceleration coefficients on performance of PSO_TVAC (4 unit system ; 50 trials) 

 
 

Table 4.  Effect of acceleration coefficients on performance of PSO_TVAC (10 unit system ; 50 trials) 
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5.4 Effect of population size 
 

In addition to tuning parameters, the population size is another important issue in stochastic search based optimization 
methods. Studies have been carried out on the role of population size and it has been reported that increasing population improved 
the performance of PSO algorithm (Chaturvedi et al., 2008, Alrashidi et al., 2007). The optimal population size depends on the 
problem dimension. Reference (Storn and Price et al., 1997) suggested a population size of 5-10 times that of the problem 
dimension. It was shown that for various ED problems, larger the dimension, larger is the population size required to achieve good 
results, (Noman et al., 2008).  
   In this paper, tests were carried out for different population sizes and results are tabulated in Table 5 and Table 6 for 4-unit and 
10-unit systems for the DE algorithm. In Table 7 and Table 8 the results of the two test systems for PSO_TVAC algorithm are 
presented.  The DE algorithm converges to the global best solution for the 4-unit system for a population size of 20 with a S.D. of 
7.31. However when the population is increased to 25, the S.D. becomes zero. Similar results are found for the 3-area, 10-unit, test 
system with multiple fuels. The system was found to converge with zero S.D. for a population size of 120. For the 40-unit system a 
population size of 1000 was found to be optimum for PSO_TVAC. The DE algorithm converged for a population of 200. 
However, the S.D. was found to increase for DE as well as PSO_TVAC for the larger system. 
 

Table 5. Effect of population size on performance of DE (4 unit system; 50 trials) (F=CR=0.9) 

 
Table 6. Effect of population size on performance of DE (10- unit system ; 50 trials) (F=CR=0.9) 

 
Table 7. Effect of population size on performance of PSO_TVAC (4 unit system ; 50 trials) 

 
Table 8. Effect of population size on performance of PSO_TVAC (10 unit system; 50 trials) 
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5.5 Convergence characteristics 
 

To test the convergence behavior of the evolutionary strategies under study, i.e. DE, PSO and PSO_TVAC  the convergence 
test was carried out employing the same evaluation function and  same initial population for the same number of iterations. The 
results for all three strategies for one trial of 100 iterations are shown in Fig. 3 and Fig. 4 for the 4-unit and 10-unit systems 
respectively. It can be seen that the TVAC strategy provides the PSO algorithm with optimal search capability due to the proper 
tuning of social and cognitive coefficients during the search. When search advances and reaches a certain iteration count, the 
classical PSO characteristic saturates but the PSO_TVAC still continues to improve and thus shows the best convergence 
characteristics. It is seen that DE takes longer to converge than PSO_TVAC. 

 
Figure 3. Convergence characteristics of the three evolutionary strategies. (4-unit system) 

 
Figure 4. Convergence characteristics of the three evolutionary strategies. (10-unit system) 
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5.6 Robustness 
 

The performance of heuristic search based optimization algorithms is not judged by the results of a single trial due to the 
randomness involved in its functioning. Many trials with different initial populations were carried out to test the 
robustness/consistency of the different evolutionary algorithms. The lowest cost for each of the 50 different trials has been plotted 
in Fig. 5 and Fig. 6 from which it can be seen that DE produces lowest cost with zero standard deviation indicating its highest 
consistency. The PSO_TVAC performs much better than classical PSO as it achieved near best results in many trials. 
 

 
Figure 5. Best results of DE, PSO and PSO_TVAC variants (4-unit system); 50 trials 

 

 
Figure 6. Best results of DE, PSO and PSO_TVAC variants (10-unit system); 50 trials 
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5.7 Effect of variation of tie-line power flow 
 

By increasing the power transfer limit between the three areas of the 10-unit system, the operating cost for the same load can 
be reduced as cheaper generators generate more and transfer the surplus power to the deficient area. Table 9 shows using DE that 
the operating cost can be reduced from $637.4111/hr  to $630.9390/hr if the inter area tie line limit is increased uniformly from 
100 MW to 150 MW. The cost drops further to $623.6298 if the limit is raised to 200 MW.   
 

Table 9. Effect of variation of Tie line limits  

 
 

Table 10. Comparison of Classic DE variants with PSO and PSO_TVAC (4-unit system;50 trials) 

 
 

Table 11. Comparison of Classic DE variants with PSO and PSO_TVAC (10-unit system;50 trials) 
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Table 12. Time (cpu seconds) comparison of DE, PSO and PSO_TVAC 

 
 

Table 13. Comparison of best results of evolutionary strategies for 4-unit system 

 
* V1 and V2 are area power balance violations for the two areas 

Table 14. Comparison of best results of evolutionary strategies for 10-unit system with multiple fuel options 

 
 

   
5.8 Comparative analysis 
 

 A detailed study of classic DE variants is carried out to judge their merit for the complex MAED problems. Table 10 and table 
11 show the best results out of 50 trials for these strategies. Observing the minimum cost and standard deviation it can be 
concluded that out of the DE variants, the “DE/rand to best /1” strategy performs the best for all the systems followed by 
DE/rand/1 and DE/rand/2 strategies. The DE/best/1 and DE/best/2 strategies do not converge in most trials. PSO_TVAC strategy 
gives better performance than the classical PSO and unlike DE convergence is achieved for all values of acceleration coefficients. 
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Another significant difference is that DE requires less population but takes larger number of iterations to converge while PSO 
works with larger populations and lesser iterations as reported in Table 12. Table 13 and Table 14 give the comparison of reported 
results with already published results. The superiority of the reported results is evident from their ability to satisfy all constraints 
and produce feasible results. The solution reported in Manoharan et al. (2009) by the CMAES method satisfies the power balance 
constraint but the individual area balance constraints are violated. 
 
5.9 Performance on a large system 
 

 The performance of DE and PSO strategies is also tested on a large system for ED with tie-line constraints and area power 
balance constraints. Fig. 7 shows the cost/MW of generators in the two areas. The overall cost will be heavily influenced by tie-
line limits, area loads and cost curves. The problem is complex as the unit valve point effects are also considered. Cost curves for 
some generators are plotted in Fig. 8 to show the effect of valve point loading effects. The DE and PSO_TVAC strategies could 
handle this complex problem effectively, with full constraint satisfaction, but the S.D. increases for both. The optimal generation 
schedules, the tie line power flow and operating cost for this system are tabulated in Table 15 for different loading conditions. Fig. 
9 shows the best results of 50 different trials for DE, PSO and PSO_TVAC. The DE strategy is most consistent followed by 
PSO_TVAC.  
 

 
Figure 7. Per MW generation cost of 2-area, 40 unit system 

 
Figure 8. Cost characteristics of some generators of the 2-area 40-unit system with valve point loading 
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Figure 9. Best results of DE, PSO and PSO_TVAC variants (40-unit system); 50 trials 
 

Table 15.  DE Results for 2-area, 40-unit system with valve point loading effects 
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6. Conclusions 
 

Evolutionary strategies are increasingly being proposed for solving non-convex, discontinuous, multi-modal ED problems 
with complex constraints. In multi-area ED problem additional tie-line and area balance constraints are introduced which present 
difficulty in obtaining feasible solutions. The paper explores the ability of DE and PSO strategies to produce global best solutions 
for the complex MAED problems. A comparative study of classic DE variants with PSO and its variants is made to find their 
abilities and limitations. Simulations on three systems of different sizes and areas, having different complexity levels clearly reveal 
that 

• The DE/rand to best/1 strategy performs best for all tested systems closely followed by DE/rand/1 and DE/rand/2 
strategies. The other DE variants do not converge for MAED problems. 

• PSO_TVAC and classic PSO converge to near global solutions in all trial runs, for all tested values of tuning parameters 
though global best performance is not guaranteed; but the S.D. is higher than DE.  

• DE converges to the global best solution with zero S.D. in a very narrow range of tuning parameters. For other 
combinations it either diverges or produces low quality solutions; hence very little parameter tuning is required in DE as 
compared to PSO and its variants which work for a very broad range of acceleration coefficients.  

• DE works with lesser population size but require more number of iterations to converge while the PSO and PSO_TVAC 
require larger populations but converge earlier. 

• Due to their speed and efficiency, the evolutionary optimization algorithms prove to be very effective in analyzing the 
effect of tie-line power limits on the cost of operation. 

It is shown through different trials that the DE outperforms other methods, particularly for MAED problems, in terms of 
solution quality, computational efficiency, dynamic convergence, robustness and stability. 
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