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Abstract 
 
 The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the 
materials Sa333 grade 6 carbon steel and SS316 stainless steel. Von Mises’ yield function and Chaboche’s kinematic hardening 
rules have been used. The recall terms of Chaboche’s kinematic hardening rule is calibrated with a memory function. The 
evolution law of the memory function is determined from experimental observations. The material constants are identified and 
derived from experimental results. The FE simulated results are compared with the experimental results from virgin state  to 
saturation state of the materials. 
 
Keywords: cyclic plasticity,  kinematic hardening, low cyclic fatigue, dilatation  

 
1. Introduction 
 
   Inelastic material behavior in closed loading path, repeated number of times is known as cyclic plasticity. The experimental 
observations show a number of related phenomena. Those are  i.) Bauschinger effect, ii.) cyclic hardening/softening, iii.) mean 
stress relaxation and ratcheting . Some  materials also shows S-D ( strength differential) effect  (Spitzig et al, 1975). Above all, 
there is additional hardening due to non proportional loading path. Addressing all these phenomena in constitutive equations 
becomes complicated and difficult to implement numerically. 
   Bauschinger effect can be explained as translation of the centre of yield surface which is known as kinematic hardening 
phenomenon. This is generally modeled by using proper evolution laws of back stress tensor. A simplest choice is a linear 
kinematic hardening law due to Prager [Prager. W, 1956] . Armstrong and Frederick (1966) introduced a nonlinear law with recall 
term. Chaboche  (1986) , Ohno (1982) modified Armstrong –Frederick law to have a better matching with experimental results. In 
general, Armstrong – Frederick law and also its multi segmented version due to Chaboche and Rousselier can not address cyclic 
hardening / softening phenomenon. So it can model only saturated state but not the transition process from virgin state to saturated 
state. Chaboche, Dang Van and Cordier (1979) introduced a strain memory surface which can both translate and expand. Thus, 
controlling isotropic hardening rate cyclic hardening is explained. Ohno and Kachi (1985) modified the concept to achieve a 
realistic model. But this model can not address fading memory as the non hardening surface can expand only. 
   As mentioned by Chaboche and Rousselier (1983), the Armstrong – Frederick law can model cyclic mean stress relaxation 
qualitatively but the rate of relaxation is over estimated. For multi   segmented law of Chaboche – Rousselier the relaxation rate is 
controlled by adjusting recalling terms.  
   In general, Von Mises’ model considers equal flow stress in tension and compression and the effect of hydrostatic stress on flow 
stress is neglected. But the effect of hydrostatic stress on flow stress is observed in some materials after a few cycles (Mahnken 
Rolf. 2001). This produces higher flow stress in compression than that in tension  ( S-D effect ). 
  Lastly, additional hardening is observed in all metals due to nonproportionality in loading path. In order to study the whole range 
of principal strain ratio,  Ellyin and Xia (1989) carried out biaxial tension/compression tests, thereby confirming general trends. 
Under non proportional loading the stabilized response is independent of mean strain as in proportional loading case (Benallal et al 
1989 ).The present model is formulated in the same line as in reference (Haupt  and Kamlah, 1995 ).  
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2. Mathematical Formulation 
 
Yield Function: - The yield function used in the present model is a Von Mises’ yield function. This is as follows  

( )( ) 0
2
3 2

0 =−−−=Φ σijijijij XSXS ,                                                                                         (1) 

=0σ  Yield stress of the material, Sij = deviatoric part of stress tensor, 
 Xij = back stress tensor, also deviatoric in nature, 
 
2.1 The Flow Rule:   
The Plastic strain rate, p

ijε& , follows from the flow rules as 

ij

p
ij σ

λε
∂
Φ∂

=&                                                                                                                                       (2) 

Here, λ is a scalar multiplier.  
  
2.2 Kinematic hardening rule:  
For the evolution law of back stress, we restrict ourselves to the functional structure (Haupt et al, 1987) . 
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Here, the back stress tensor is the integrated value of the linear functional of plastic strain history. The Kernel function, k(z-z′), 
contains the memory properties of the hardening function. 
Here, z is defined as generalized arc length of plastic strain component. In this context, plastic arc length should be defined. The 
plastic arc length is defined as the accumulated scalar plastic strain i.e. 
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The generalized plastic arc length ‘z’ is a functional of plastic arc length, given as 
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Here p(s) is a memory function. 

Let us consider a special case, for which, ( )( ) 1ˆ =spb  and also the kernel functional 
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 , Here, ci and bi are non-negative material constant. Since, sz && = , equation (3) can be written as, 
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                                              kkpkk XsbcX &&& −= ε   , Where εε && p
ijp =                                           (5) 

The above equation can be recognized easily as the hardening rule proposed by Chobache and Rousselier (1983). With, N=1, it 
reduces to classical Armstrong – Frederick equation. 
It is mentioned earlier that although, Armstrong – Frederick equation (or Chobache – Rousselier multi segmented version) can 
simulate Bauschinger effect for saturated state but it cannot model cyclic hardening/softening during transition period. Therefore,  

( )( ) 1ˆ =spb  is not a realistic choice. From equation (4), ( )spbz && ˆ= , gives a kinematic hardening law as, 

                                         ( ) kkpkk XsspbbcX &&& )(ˆ−= ε                                                                       (6) 
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The functional, ( ))(ˆ spb , has the following properties. 

i) ( ) 0)(ˆ ≥spb , for all values of p(s)   ii) ( ) 00ˆ =b  for p(s)=0 and   iii) ( ) 0)(ˆ ≤′ spb  for all possible values of p(s).  One of the 

simplest choices of ( ))(ˆ spb  is given by Benallal et al (1989). That is, 

( )( ) ( )sap
spb

+
=

1
1ˆ     , Here,  ‘a’ is a material constant. This choice of ( )pb̂  gives a kinematic hardening law as  
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The evolution of back stress will be complete with the evolution equation of memory function, p(s).  For that we come down to 
uniaxial tension compression loading. 
 The back stress tensor Xij is considered as deviatoric in nature. Here, X11=X11 , 

X22= (-1/2) X11 , X33 = (-1/2)X11 and  the other components are zero. The norm of the back stress tensor is 112
3 X . We define, 

112
3 X=ξ  and pp

11εε = . Thus, the norm of the back stress tensor is written as ξ
3
2  .  The above hardening equation (7) with 

N=1 reduces to 
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Several research workers [1,12,13] used a functional relation of ‘p’ as follows 
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The above equation culminates from a differential equation 
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In this equation, S0 is the memory range. That is to say that beyond S0 the plastic strain memory is erased. From differential 
equation (10) it is seen that 

                               ( ) 03
2 S

ds
dpsp +=ξ                                                                                                              (11) 

This shows clearly that the back stress depends on current memory p(s) and its history over a plastic arc of length S0. 
 
2.4  Stationary value: 
It is important to see the stationary values to check an asymptotic stable solution i.e. when p = ps   and ξ = ξs.  In equations (8, 10), 
putting 0=p& and 0=ξ&  one gets 
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. Therefore, with this inequality a unique solution can be obtained. The nonnegative constant ‘a’ 

controls the rate of stabilization. Here,ξs and ps are values of ξ and p at stabilization. 
 
 



Shit et al./ International Journal of Engineering, Science and Technology, Vol. 2, No. 4, 2010, pp. 71-84 

 

74

 

3. Material Constants 
 
Elastic Modulus, E and Poisson’s ratio ν are obtained from tensile test. 
Kinematic hardening variables: 
Ck   and bk

s are obtained from saturated cyclic stress- strain hysteresis curve (Jinghong  and  Xianghe ,1991) . 
Here, s

kb  is the value of the coefficient of recall term as obtained from the saturation cycle of the hysteresis loop. In this model Ck, 
bk

s are three sets of coefficients which are derived from three different segments of the saturated loop. 

Next, ( )
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 Here, ps =  saturated value of memory function 
 a=  cyclic hardening rate. If a=0, the effect of memory function on recall terms vanishes. 
 bk=   The coefficient of recall term as obtained from the 1st cycle of the hystersis loop. 
The saturated value of memory function, ps, is obtained from back stress Vs plastic strain curve of a saturated loop. This is as 
follows 

                        ( ) sdpp
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Δ
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Here, ξ is equal to  the back stress of a saturated loop in uniaxial tension compression loading and Δεp is the plastic strain range (i.e 
twice the plastic strain amplitude). 

Since, ‘a’ and ‘bk’ are related by an inequality, 
k

k

c
ba

3
2

< , one has to proceed with a trial and error method. The first trial value 

of ‘a’ is obtained from equation (12). Knowing the values of bk
s and bk and  using the value of ps as given in equation (13) the value 

of ‘a’ can be determined from equation (12).   The value of  ‘a’ obtained from equation (12) is checked with the inequality, 

k

k

c
ba

3
2

< . Further adjustment in the value of ‘a’ may be required to obtain a better cyclic hardening rate. 

The memory range, S0, is obtained as the accumulated plastic strain value of a loading branch in a saturated loop. Thus, 

∫= dtsS .0 & , over a loading branch in a saturated loop. 

 
4. Experiments and numerical calibration of kinematic hardening constants 
 
4.1 Low cycle fatigue tests on tensile specimens: 
    Uni-axial cyclic experiments are performed on 6mm diameter  specimens made of Sa333 Gr-6 carbon steel and SS-316 
(Figure.1) under strain controlled (Figure.2) mode. A 100 kN servo-hydraulic Universal testing machine is used. A 12.5mm gauge 
extensometer is attached to the  specimens to measure the strain during the tests. The strain-controlled tests are performed with the 
specimens for symmetric tension-compression strain cycles with the strain limits Δ∈= ± 0.85%, ±1.0%, ±1.2%, ±1.6%. The 
command for strain amplitude control are given in such a way so that the true strain amplitudes are maitained as mentioned above. 
The frequency of the tests are calculated for each strain amplitudes to maintain a strain rate of .001/s. Load, displacement and 
strains are recorded during the experiment and other parameters are calculated from these data. The stabilized hysteresis plot of σ-
∈p for the strain range ±1.0% is obtained from the test. This plot is used to calculate the Chaboche constants- (C1, bs

1 ), (C2, bs
2 ), 

(C3,bs
3 ) in accordance with the procedure given by Bari and Hassan (2000). Here , bs

k (k=1,2,3) are the saturated values of the 
coefficients of recall term in kinematic hardening law (equation 5). The values of bk (k=1,2,3) are also calculated from the 1st 
cycle of the hysteresis loop. ps (saturated values of the memory function) is calculated from the saturated loop data of back stress 
vs plastic strain,Figure-3. (equation 13). The cyclic hardening rate ‘a’ is obtained from (equation 12). The constants obtained from 
the experiments are used in FE simulation. 
 
5. Finite element implementation of the model 
  
   The FE simulation of the model is implemented on a round bar specimen (Figure.1 ) under strain controlled tension compression 
loading (Figure.2). An elasto plastic Finite Element code is developed in house with the material model discussed above. The 
fatigue specimen is modelled as axisymmetric loading with 8 noded element of mesh size as 0.2 mm X 0.2 mm. 
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   The calculation is done with the Von Mises yield function (equation 1) and Chobache’s kinematic hardening rules modified with 
memory function (equation7). The stress strains are calculated at the center of the bar. The cyclic loading is plastic strain 
controlled. In Figure-4, back stress is plotted with axial plastic strain for saturated loop. In the first part of the diagram, the plastic 
strain amplitude is maintained at ± 0.805% (total strain amplitude is ± 1.0%) with zero mean strain. It shows hardening and then it 
is saturated. The saturated value of back stress in tension and compression are 98.26MPa and 98.11MPa respectively. The response 
is symmetric with zero mean back stress. 
     After saturation, the strain level is extended to 3%. The back stress achieved at this level is 129.95 MPa. Then it is cycled with 
same plastic strain amplitude of ± 0.805%, i.e., between 1.39% to 3% with a mean strain of 2.195%. The 2nd part of Figure-4 
shows this cyclic behaviour. It shows softening and mean stress relaxation. The softening rate is slow. 
Low cycle fatigue loops are simulated with finite element simulation. The first attempt is to simulate the saturated hyteresis loop. 
The saturated values of Chaboche’s kinematic hardening coefficients are used. The material constant ‘a’ and ‘S0’ are set to zero 
value. Thus, the memory function calculation is bypassed and its effect on kinematic hardening is deactivated .  
   The next attempt is to simulate cycle hardening in the transition cycle .This is to simulate the LCF loop from virgin state to 
saturation state. The values of material constants ‘a’ and ‘S0’ are assigned. Thus, the memory function calculations are activated. 
The recall terms of Chaboche’s kinematic hardening rules are calibrated with the memory function. The cyclic hardening is 
achieved.  
   

                                            
 
 
 
 
                                                       Figure 1. Uniaxial fatigue specimen 
 
 
 
 
 
 
 
 
 
 
 
                                                  Figure 2. Loading history during strain controlled LCF test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      
 
                                                  Figure 3. Back stress Vs plastic strain for strain amplitude ±1.0% 
                                                                       Material SA333 –Gr6 carbon steel 
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                                                   Figure 4. Mean stress relaxation for strain range ± 1.0% 
                                                                 Material Sa 333 Gr-6 Carbon steel. 
                                          
 
6. Mechanical Properties of the Material SA333 Carbon Steel 

A. Tensile Properties 
 

σ=K(εp)n Young’s 
Modulus (GPa) 

Poisson’s Ratio σYP (MPa) σUTS (MPa) % Elongation 

K n 

210 0.3 245 502 30 790 0.2432 
 

B. Kinematic Hardening Coefficients ( Saturated values) 
      
         C1=110000 MPa,        C2=14710 MPa,      C3=1609 MPA,          γ1=3184,  γ2=271 ,           γ3=0 

C. Kinematic Hardening Coefficients ( As obtained from 1st  cycle) 
 

        C1=110000 MPa,      C2=14710 MPa,        C3=1609 MPA               γ1=4000.0,        γ2=275 ,      γ3=0 
 

D. Cyclic Hardening Coefficients 
        
         S0 = 0.0548    ,      a= 0.00183585 MPa-1  
 

E. Calibration of Yield Stress with strain amplitude 
 
   

εP(%) (σYP)cyc (MPa) 
1.37 285 
1.177 285 
1.0 258 
0.8 242 
0.6 238 
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                                 Figure 5. Yield stress  from LCF loop at different strain amplitudes 

7. Results & Discussion for Sa 333 

    Figures. 6,7,8,9 show the FE simulated hysteresis loop σ-∈p for the saturated cycles. The results are compared with the 
experimental values. The Chaboche’s constants are determined from the experimental saturated hysteresis loop for the strain 
amplitude ±1.0%. Same values of Chaboche’s constants are used for other strain amplitudes. It is found that the simulated results 
match satisfactorily with the experimental results for the material Sa-333 carbon steel.   
    Figure 10 shows positive peak stress vs. cycles for the strain amplitude ±0.85%. Cyclic hardening is observed in the experiment. 
The cyclic hardening is getting saturated after 15 cycles. Also, the value of cyclic hardening for the material Sa333 is small. The 
first 50 cycles are simulated by FE computation. Although the simulated results do not match for initial 05 cycles the cyclic 
hardening rate matches after a few cycles.  This shows the cyclic hardening rate coefficient ‘a’ ( equation(7)) is not properly 
calibrated with initial loop data. It is calibrated with data obtained after a few cycles. 
    Figure 11 , Figure 12 and Figure-13 show similar results for the strain amplitude ±1.0% , ±1.2%. and 1.6%.The similar 
observations are  observed in those results also. The overall observation for cyclic hardening of the material SA333 is that the 
material shows initial hardening followed by little softening and then follows a steady small hardening rate. The simulated result  
matches with the steady hardening rate 
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Figure 6.  Simulation of saturated loop for strain range 
±0.85%, material Sa 333 Gr-6 carbon steel. 

Figure 7. Simulation of saturated loop for strain range ±1.0%, 
material Sa 333 Gr-6 carbon  steel. 

Figure 8. Simulation of saturated loop for strain range 
±1.2%, material Sa 333 Gr-6 carbon steel. 

Figure 9. Simulation of saturated loop for strain range 
±1.6%, material Sa 333 Gr-6 carbon steel. 
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                Figure 10. Peak Stress Vs Cycles  for  strain range                  Figure 11. Peak stress Vs cycles for strain range 

                         ±0.85% ( Mat- Sa333)                                                                               ±0.85% ( Mat- Sa333) 

 

 

         Figure 12.  Peak Stress Vs Cycles  for strain range ±1.2%              Figure 13.  Peak stress Vs cycles for strainr range ±1.6% 

                                           ( Mat- Sa333)                                                                            ( Mat- Sa333) 

 

8. Yield function of the material SS316 

For SS316,  the yield function used is not a pure incompressible Von mises yield function.  
Experimental results show higher peak stress in the compressive part of the loop than that in tensile part. To take care of this effect 
dilatation is introduced in the yield function. 
Dialatation is introduced in the yield function in the following manner. Thus, 

Φ= 0))((
2
3 2 =−−− fijijijij XSXS σ                                                                                            (14) 
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Here, flow stress, )}(1{
eq

m
cf σ

σ
βσσ −=                                                                                         (15) 

Dilatation coefficient, 
p
eq

p
v

ε

ε
β

&

&
=                                                                                                             (16) 

Here, p
vε&  is the volumetric plastic strain rate and  p

eqε&  is the equivalent plastic strain rate. 

Introduction of β in yield function produces higher flow stress for negative mσ  and reduces its value for positive mσ  and hence 
strength differential effect introduced. The value of β is calibrated to match the experimental LCF data. 
 
9. Mechanical Properties of SS316 

A. Tensile Properties 

σ=K(εp)n Young’s 

Modulus (GPa) 

Poisson’s Ratio σYP (MPa) σUTS (MPa) % Elongation 

K n 

210 0.3 267 637 78 1150 0.286 

 

B. Kinematic Hardening Coefficients (Saturated values) 

      C1=70000 MPa,      C2=30000 MPa,      C3=4000 MPA       γ1=1700,      γ2=557 ,        γ3=0 

C. Kinematic Hardening Coefficients (As obtained from 1st  cycle) 

      C1=70000 MPa,      C2=30000 MPa,      C3=4000 MPA,      γ1=2200,      γ2=800.0 ,     γ3=0 
 
D. Cyclic Hardening Coefficients 

          S0 = 0.04480    , a= 0.003308 MPa-1  

E. Calibration of Yield Stress with strain amplitude 

 
εP(%) (σYP)cyc 

(MPa) 

0.81 215 

0.43 199 

0.33 196 

 

 

10. Results and Discussions for SS316 

Figure 14 shows the comparison of simulated saturated hysteresis loop for a strain range ± 1.0% (plastic strain range ± 0.85%)  
with the experimental one. It is found that β=0.0 gives higher peak stress  in tension and β=0.01 gives higher peak stress in 
compression. For, β=0.005  the matching is satisfactory with respect to peak stresses in tension and compression. 
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             Figure 14.  Saturated loop for strain range ± 1.0%.                                      Figure 15.  Saturate loop for srtain range  ±0.6%    

                                   Material SS316                                                                           .                   Material SS316 

 

 

 

 

 

                            

                        

                  

                               

 

 

 

 

                                             Figure 16.  Saturated loop for strain range ± 0.5%. Material SS316 

 

   The other curves ( Figure-15 and Figure 16) for strain ranges ± 0.6% and ± 0.5% are plotted with the same value of β=0.005. 
Overall, it is to say that the dilatation effect is not predominant for the material SS316 for lower strain range. 
   Figures 17, 18, 19 shows the peak stress Vs cycle curves for the material SS316. The first 20 cycles of the results are compared 
with the experimental values. It is observed that for small strain amplitudes ( Figure15 and Figure 16) like 0.6% and 0.5% the 
effect of β is negligible. For higher strain amplitude (Figure-19) of 1.0% the effect of β is noticeable. 
β=0.01 gives better matching with the experimental results. 
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                                Figure 17.   Peak stress Vs cycles for a strain range ± 0.5%. Material SS316 

 

 

 

 

 

 

 

 

 

 

 

                                  Figure 18.   Peak stress Vs cycles for a strain range ± 0.6%. Material SS316 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Figure 19.   Peak stress Vs cycles for a strain range ± 1.0%. Material SS316 
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11. Conclusion 

From the above results the following conclusions can be drawn. 
1.   The model presented in this article can simulate the transition state of the material Sa333 carbon steel in low cycle fatigue 

with some limitations. The model could not simulate the initial cyclic hardening followed by softening. But, the model 
simulates the steady hardening rate after few cycles. The complex behavior of the material Sa333 at the initial stage is due 
to large dynamic recovery which could not be addressed in this model. 

2. Cyclic hardening rate is nicely simulated for the material SS316 stainless steel. 
3. The dilation effect in the material SS316 is negligible for low strain amplitudes (below 1.0%).The effect is noticeable at 

higher strain amplitudes. 
4. Overall, the saturated LCF loops are simulated satisfactorily for both the materials. 

 
Nomenclature 
a      cyclic hardening rate                    
bk , ck  parameter used in the Chaboche model 
E      Young’s modulus                                
s      accumulated plastic strain 
sij     deviatoric stress tensor                      
.
s     magnitude of incremental plastic strain  
p(s)   memory function                              
σ ij     stress tensor 

S0    memory range                                   

σ c     yield stress 
X      back stress tensor                            
ε ij      total strain tensor 
.
X    incremental back stress tensor        

ε e
ij     elastic strain tensor 

kX
.

 kth component of incremental back stress tensor  
.

ε e
ij     incremental elastic strain tensor     

ε p
ij     plastic strain tensor  
.

ε p
ij     incremental plastic strain tensor      

υ       Poisson’s ratio  
p
vε&   volumetric plastic strain rate         
p
eqε&     equivalent plastic strain rate 

Δε      total strain range                               
λ       plastic multiplier                                                                        
Ф      yield function                                    
β      dilatation coefficient 
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