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Abstract 
 
   Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the 
effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is 
assumed to satisfy the force equilibrium condition at peak load value, thus reducing the problem to an equivalent static case. The 
two beams of the system are solved individually either by a direct substitution method employing successive relaxation 
technique or a multi-dimensional secant method, known as Broyden’s method. An iterative scheme, based on the reaction force 
between the two beams of the system and equality of vibration amplitude at the contact of two beams, is developed to obtain the 
response of the system under external harmonic excitation. The present method is validated through results generated in ANSYS 
11.0. The system response is studied for various loading type and contact location of the beams. The results are presented in 
terms of plots of vibration amplitude of the contact point versus frequency of forcing excitation in dimensional plane. 
 
Keywords: Cross-beam, Forced vibration, Geometric non-linearity, Variational methods, Harmonic excitation 

 
1. Introduction 
 
   A beam is one of the basic structural elements, which is extensively used in many branches of modern civil, mechanical, and 
aerospace engineering separately or in association with other beams or plates to satisfy different structural requirements like 
stiffness enhancement, light weight, low cost, material saving, etc. Therefore, dynamic response, especially nonlinear vibration 
analysis, of single beam and beam systems has always been an area of immense interest to researchers. In structural mechanics 
applications nonlinear system response can occur due to two reasons - material nonlinearity and geometric nonlinearity. In the first 
case the constituent material behaviour, i.e., stress-strain relationship is nonlinear, whereas in geometric nonlinearity the strain-
displacement relationship is nonlinear. Geometric nonlinearity is caused by large amplitude transverse displacement and it induces 
a stretching effect, which provides additional stiffening to the structure. However, due to inclusion of the stretching effect the 
dynamic response becomes a nonlinear function of amplitude of excitation. The study of large displacement dynamic response of 
beams under external excitation has also gained tremendous attention among the modern researchers. 
   Research studies carried out in the field of nonlinear forced vibration analysis of beams have been chronicled in different review 
papers. Sathyamoorthy (1982a) reviewed the works on classical methods of non-linear (geometric, material and other type of non-
linearities) beam analysis and also surveyed the developments on non-linear beam analysis (1982b) under static and dynamic 
conditions using finite elements methods. Marur also (2001) put forward a review work, which reports the non-linear vibration 
formulations of beams through different phases of development. 
   One of the earlier works in this field was by Srinivasan (1966), who employed the Ritz-Galerkin technique to solve the 
governing nonlinear differential equation of dynamic equilibrium for forced vibration of a simply supported beam. Evenson (1968) 
used the perturbation method to extend the study to observe the effects of various boundary conditions. Bennet and Eisley (1970) 
employed a multiple mode Galerkin approach to study the nonlinear forced response of a clamped beam under concentrated 
harmonic force. Mei and Decha-Umphai (1985) used finite element formulation for nonlinear vibration analysis of beams 
subjected to harmonic excitation. Doong and Chen (1988) analysed large amplitude vibration of simply supported beams subjected 
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to initial stress due to a combination of a pure bending and an extension of the neutral axis of the beam on the basis of a higher-
order deformation theory. They considered shear correction factors and used Galerkin method to reduce the governing nonlinear 
partial differential equations to ordinary nonlinear differential equations. Leissa (1989) described an exact method for determining 
the vibratory displacements of an Euler–Bernoulli beam subjected to distributed excitation forces. He obtained a fourth order 
spatially dependent ordinary differential equation, which upon solution and application of the boundary conditions yielded a closed 
form solution. Chen et al (1994) devised a computational method for design sensitivity analysis of a nonlinear mode spectrum for 
forced vibrations of beams. Ma et al. (1995a) estimated the statistical properties of a geometrically nonlinear mode spectrum for 
large amplitude forced vibration systems using finite element method. The same authors (1995b) presented combined mode 
superposition of modal perturbation and matrix perturbation method for large deflection forced vibration of beams subjected to 
periodic loading incorporating both longitudinal displacement and longitudinal inertia in the formulation. Other authors have also 
used the perturbation method to analyze beam related problems. Maccari (1999) adopted an asymptotic perturbation method to the 
study of the vibrations of Euler–Bernoulli beam resting on a nonlinear elastic foundation. Ozkaya (2002) applied the perturbation 
method to search for a nonlinear solution to a beam-mass system made up of a simply supported Euler–Bernoulli beam carrying 
concentrated masses.  
   Fung and Chen (1997) studied the free and forced vibration of cantilever Euler-Bernoulli beam in contact with a rigid cylindrical 
foundation. Governing differential equations were developed through variational calculus and solution algorithm involved Runge-
Kutta method. Fan et al (1998) proposed a method for the forced response analysis of a beam with viscoelastic boundary supports, 
based on complex normal mode analysis. Wang and Chou (1998) carried out nonlinear dynamic analysis of a Timoshenko beam, 
under the coupling effect of external moving force with the self-weight of the beam, employing large deflection theory. Azrar et al 
(1999) developed a semi-analytical method for analysing nonlinear dynamic response of beams using the Hamilton’s principle, 
spectral analysis, Lagrange’s equations and harmonic balance method and studied the single mode analysis for simply-supported 
and clamped beams. The authors (2000) extended the method to a multi mode analysis and carried out an extensive study 
involving various forms of excitations and boundary conditions of beams. Abu-Hilal (2003) used dynamic Green functions in 
determining the dynamic response of prismatic damped Euler-Bernoulli beams subjected to distributed and concentrated loads. 
Geometric nonlinear large amplitude forced vibration of beams was studied by Ribeiro (2004) using shooting, Newton and p-
version, hierarchical finite element methods. Aristizabal-Ochoa (2004) derived undamped natural frequencies and modes of 
vibration of 2D Timoshenko beam-columns under constant axial load with generalized end conditions, including the combined 
effects of bending and shear deformations and also rotational inertia. Wu (2005) established an improved approach for obtaining 
classical closed form solutions for forced vibration of a beam excited by displacement boundary conditions. Das et al (2007) 
presented a study on geometric nonlinear large displacement forced vibration analysis of slender beams under harmonic excitation 
for different loading pattern and boundary conditions using energy methods and variational formulation. Sapountzakis and 
Dourakopoulos (2009a, 2009b) introduced a boundary element method (BEM) for nonlinear dynamic analysis of beams having 
double symmetric constant cross-section under general boundary conditions and subjected to a combination of transverse and axial 
loading. They included the effect of rotary inertia and shear deformation and employed the modified Newton-Raphson method to 
solve the nonlinear coupled system of equations of motion. 
   Forced vibration study of beam systems consisting of more than a single beam has also been a popular area of research. Ewing 
and Mirsafian (1996) put forward an analytical model for forced vibration of a system of two Euler-Bernoulli beams joined with a 
nonlinear rotational torsional spring with linear and cubic stiffness. The authors used harmonic balance method to find an 
approximate solution for beams with simply supported and clamped end conditions. Oniszczuk (2003) applied the classical modal 
expansion method for analysing undamped forced transverse vibrations of an elastically connected complex simply-supported 
double-beam system. The stability and free vibration analyses of a Timoshenko beam-column with generalized end conditions 
subjected to constant axial load, and weakened by a cracked section along its span was presented by Arboleda-Monsalve et al 
(2007). Modeling of the crack as an intermediate flexural connection of zero length produced a system with two-segments having 
rotational discontinuity at the crack location but identical lateral deflection.  
   The present paper undertakes a large displacement geometric nonlinear forced vibration analysis of a two beam system under 
harmonic excitation. The system comprises of two beams perpendicular to each other and placed in contact, one over the other. 
Such cross-beam systems are quite common in civil, mechanical and construction engineering applications. The dynamic system is 
assumed to satisfy the force equilibrium condition at peak excitation amplitude. This assumption reduces the problem to an 
equivalent static analysis, where the geometric non-linearity is taken into account by considering the non-linear strain-
displacement relations and an energy approach is employed to arrive at the appropriate governing equations. The formulation is 
displacement based and the unknown displacement fields are approximated by finite linear combination of admissible orthogonal 
functions. Unlike the FEM, where the physical domain is discretised into smaller finite elements, the present semi-analytical 
formulation is associated with the whole domain i.e. the assumed displacement field is a function of the whole physical domain. 
As a result, the number of algebraic equations to be solved is substantially reduced compared to FEM. A direct substitution method 
with relaxation parameter is used to solve the set of non-linear equations. Also a multidimensional quasi-Newton method known as 
Broyden method is employed for solution purpose. The displacement fields are solved through an iterative procedure which is 
based on the reaction force between the two beams of the system and considers the difference between the displacements of the 
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two beams at their contact point as the convergence criterion. Results are presented in graphical form through frequency-amplitude 
plots in dimensional plane. 
 
2.  Analysis 
 
   The beam system, analyzed in the present paper, consists of two slender beams in contact with their longitudinal axes 
perpendicular to each other so as to form a ‘cross’, as shown in Figure 1. The beams are in surface contact and at no loading 
condition there is no interaction between them. But when some transverse load is applied on the upper beam (Beam-1), it pushes 
down on the lower beam (Beam-2), which in turn provides a resistance to deformation by sharing a portion of the load. It is 
assumed that external transverse harmonic excitation acts on beam-1 only and the purpose of beam-2 is to give the system a 
stiffening effect. It is also implied that the deformation amplitude at the point of contact of the two beams are equal i.e. there is no 
detachment of the contact point at any instant. 
 

 
Figure 1. Cross-beam system 

 
   Figure 2 shows the constituent beams of the system under external loading at a certain time instant with the indications of 
nomenclatures of some system parameters. In this figure, R  represents the unique reaction force generated at the contact between 
two beams. In the present formulation the beam system is modeled as two individual beams, which incorporate the reaction force 
( R ) as an external force describing the effect of the other beam. It is also assumed that the reaction force ( R ) has the same 
frequency (ω ) as the transverse harmonic excitation and there is no lead or lag between the two. Actually, the contact between the 
two beams is over a patch of area where a distributed reaction force would act. In order to simplify the situation it is assumed that 
the contact between the two beams occurs at a point and the connection is such that only vertical forces can be transmitted through 
it. This is an idealization of a general situation where reaction forces can be taken to act in all three directions. 
 

 
Figure 2. Individual beams with external loading and reaction force at the contact point of two beams. 
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     In the present study forced vibration analyses of cross-beams are carried out numerically. The system response is shown in 
displacement amplitude vs. frequency of external harmonic excitation plane, while the amplitude of external excitation is kept 
fixed. A family of displacement amplitude-excitation frequency curves can be generated for different amplitude of external 
excitation. This family of curves for different excitation values indicates functional relationship of the displacement of cross-beam 
with the frequency of excitation and is known as the frequency response of the cross-beam. It is to be mentioned that the present 
study is limited to only the steady state dynamic response of the system under harmonic transverse loading. The mathematical 
formulation is energy based and the set of governing equations is derived using Hamilton’s principle. The solution is approximate 
in nature due to the assumption of the individual dynamic displacement fields as finite linear combinations of orthogonal 
admissible functions and unknown coefficients. The set of non-linear equations for forced vibration problem is solved by applying 
direct substitution technique with successive relaxation scheme. Also Broyden’s method, which is a globally convergent solution 
algorithm, is employed separately as it is found to be successful over a wider range of system parameters.  
   The formulation is generalized in nature to analyze problems for any classical boundary conditions and loading pattern. 
Although the formulation can handle any classical boundary conditions (for example, clamped, simply supported and free), in the 
present paper only clamped boundary conditions at all the ends is considered. However, four different types of loadings namely, 
concentrated load, uniformly distributed load (UDL), triangular load and hat type load are considered. Figure 3(1-4) depicts 
schematic diagrams of loading patterns on beam-1 with clamped end conditions. 
 
2.1 Mathematical formulation 
    In the present study forced vibration analysis is carried out in an indirect way. The external excitation is considered as harmonic 
and the system response is assumed to have the same frequency as that of the external excitation. The basis of this assumption is 
that a harmonic load is going to produce a harmonic response amplitude of the same frequency (Ewing and Mirsafian 1996). To 
determine the frequency response of the cross-beam a frequency sweep is carried out at a particular load level of the external 
excitation. The sweep is started at zero value of the excitation frequency and steadily increased beyond resonance till the response 
amplitude falls to a sufficiently low level. Corresponding to each frequency of that particular load level, the dynamic response is 
made to maintain force equilibrium condition at the peak load level. Thus the dynamic problem is solved as a static one, whose 
response, quite obviously, is a function of the external excitation frequency and amplitude of loading. After the responses of the 
two beams under their respective loadings are obtained, the displacement amplitude at the contact point for the two beams is 
compared. The details of the solution procedure are elaborated in a later section. 
       

 
Figure 3. Types of loading applied on beam-1: 1) Concentrated, 2) Uniformly distributed, 3) Triangular and 4) Hat 

 
   The mathematical formulation of the individual beams is based on the following assumptions –    

1) Beam materials are isotropic, homogeneous and linearly elastic. 
2) Beams follow Euler – Bernoulli hypothesis i.e. the thicknesses of the beams are small compared to their respective 

lengths, such that the effect of shear deformation and rotary inertia may be neglected 
3) Beams have uniform rectangular cross-section. 

   The governing set of equations for the dynamic system is obtained applying the Hamilton’s principle (Mierovitch 1970), which 
is given by,  
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where, T, U and V are the total kinetic energy of the system, total strain energy stored in the system and work function or potential 
of the external forces respectively. L, δ  and τ  represent the Lagrangian, the variational operator and time coordinate respectively. 
The above mentioned energy functionals are determined from the assumed dynamic displacement fields. 
   In case of large displacement analysis of beams, both bending and stretching effects are taken into consideration. Bending action 
is caused by transverse load and contributes to transverse displacement, whereas stretching displacement is caused by in-plane 
restraints to displacement. So, total strain energy stored in beam-1 is given by,  

111 mb UUU +=          (2a)  
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Similarly, the total strain energy stored in beam-2 is given by, 
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where, 21, ww  are transverse dynamic displacements of mid-plane of beam-1 and beam-2 respectively, 21,uu  are in-plane 
dynamic displacements of mid-plane of beam-1 and beam-2 respectively, 21, EE  are elastic modulii of beam-1 and beam-2 
respectively, 21, LL  are lengths of beam-1 and beam-2 respectively, yx, are axial coordinates in two orthogonal directions. 

21, II and 21, AA  are second moment of area and cross sectional area of the two beams respectively. The computations are carried 

out in normalized coordinates ξ  and η  respectively, where 
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=η . In arriving at equation (3) & (4), the following 

properties of beam cross-section have been utilized:  
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   As the frequency of response is considered identical with the excitation frequency, determination of the kinetic energy functional 
becomes straightforward. The expression for total kinetic energy of beam-1 and beam-2 are given by, 
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where, 21,ρρ  are densities of beam-1 and beam-2 materials, respectively.  
   The work potential of the external load for beam-1 and beam-2 are computed corresponding to peak load level and given by, 
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where, P  and p  represent harmonic excitation for concentrated and pressure type loading, whose expressions are given by 
ωτiePP=  and ωτiexpp )(= , where, ω  denotes the frequency of excitation and 1−=i . P  represent the amplitude of 

harmonic excitation for concentrated loading and p  represents the intensity of harmonic excitation per unit length of the beam for 
pressure type loading. It should be mentioned that maxp  is the amplitude of maximum intensity for triangular and hat type 
loadings. The loading is acting on beam-1 and R  is the reaction force generated between the two beams and has the same 
frequency and phase as the external harmonic excitation as mentioned earlier. The expression for the reaction force is given as 

ωτieRR= , where R  denotes the amplitude of the reaction. The coordinate, px  represents the point of application of the external 

concentrated harmonic excitation on beam-1 and rx , ry  denote the location, where the reaction force (R) acts on beam-1 and 
beam-2 respectively. In other words, rx  and ry  describe the contact point between the two beams. These notations have been 
indicated in Figure 2 also. 
   The dynamic displacements ),(),,( 21 τξτξ ww  and ),(),,( 21 τξτξ uu  are assumed to be separable in space and time (Fan et al 
1998; Kadiri et al 2002) and can be approximately represented by sets of orthogonal coordinate functions ii 21 ,φφ  and ii 21 ,αα . 
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where, id1  and id2  represent unknown coefficients and nw  and nu  are number of functions for w  and u  respectively. 
Appropriate start functions for 11,uw  and 22 ,uw  are selected in such a way that they satisfy the necessary geometric boundary 
conditions of the respective beams. The higher order functions are generated from the selected start functions using Gram-Schmidt 
orthogonalisation scheme. 
   Substituting equations (3), (5), (7), (9) and (4), (6), (8), (10) separately in equation (1) gives the governing set of equations for 
beam-1 and beam-2 respectively. For beam-1, the governing set of equations in matrix form is given by, 
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where, [ 1K ], [ 1M ] and { }1f  are stiffness matrix, mass matrix and load vector respectively and are of the following form.  

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 1

22
1
21

1
12

1
111

KK
KKK , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 1

22
1
21

1
12

1
111][

MM
MMM  and { }

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= 1
12

1
11

1 f
ff .  

   The elements of [ 1K ], [ 1M ] and { }1f   are: 
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where, pξ  and rξ  represent the point of application of the external concentrated harmonic excitation and the location, where the 

reaction force (R) acts on beam-1 in the normalized scale. It is seen that some of the terms of stiffness matrix ([ 1
11K ] and [ 1

21K ]) 
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contain the undetermined coefficients ({ id1 }) and hence give rise to nonlinearity. So, these specific terms can be called as 
nonlinear terms. 
Similarly, for beam-2, the governing set of equations in matrix form is given by, 
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where, [ 2K ], [ 2M ] and { }2f  are stiffness matrix, mass matrix and load vector respectively and are of the following form.  
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where, rη is the normalized axial coordinate of the location, where the reaction force (R) acts on beam-2. Similar to the previous 

equation here also nonlinear terms are present in the stiffness sub-matrices [ 2
11K ] and [ 2

21K ]. 
 
2.2 Solution Procedure 
   Equations (11) and (12) represent the governing set of equations for the cross-beam system and are undoubtedly dynamic in 
nature. But solution procedure undertaken in the present scenario reduces the problem to an equivalent static case, where, the 
maximum amplitude of the harmonic excitation and the frequency of excitation are supplied and the corresponding undetermined 
coefficients are calculated. At the maximum load value it is assumed that the system satisfies the force equilibrium condition, i.e., 
the sum of elastic and inertia forces equal the externally applied peak load value. Thus the dynamic problem is solved as a static 
one where the system response becomes dependent on the excitation frequency and the maximum amplitude of the harmonic 
excitation. In the present paper two methods are utilized to obtain the solution. 
   Substitution Method: The set of governing equations (eqn. (11) and (12)) are nonlinear in nature as the stiffness matrices ([ 1K ] 
and [ 2K ]) are a function of the unknown parameters and hence cannot be solved directly. They are solved through an iterative 
procedure utilizing the direct substitution technique with successive relaxation scheme. For the maximum amplitude and certain 
frequency of harmonic excitation the values of the unknown coefficients are assumed and based on that, new values of unknown 
coefficients are calculated by matrix inversion technique from the expressions (13a) and (13b). 

{ } [ ] { }1
1121

1 ][][ fMKd
−

−= ω        (13a) 

{ } [ ] { }2
1222

2 ][][ fMKd
−

−= ω        (13b) 
   Calculated values are compared with the corresponding values in the previous iteration and if the difference is above a 
predefined error limit ( 1ε ), the process is repeated with new values of unknown coefficients, modified with a relaxation parameter, 

until convergence is achieved. It can be said that the matrix [ ii MK 2ω− ], 2,1=i , is an equivalent stiffness matrix, which 
represents the dynamic system stiffness and it depends on the frequency of loading. Thus, from the values of { }1d  and { }2d , the 
amplitude of forced vibration can be determined in the present case instead of the static deflection. It is also important to note that 
with increase in the frequency of excitation, the dynamic stiffness ([ ii MK 2ω− ], 2,1=i ) may change its sign and usually it 
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occurs when 1ωω > , where, 1ω  is the first natural frequency of the corresponding beam. This method is computationally efficient 
and requires less processing time.  
   Broyden’s method: Broyden's method is a multidimensional quasi-Newton method for the numerical solution of a system of 
nonlinear equations. In this method an initial Jacobian of the system is calculated depending on the initial guess value and in the 
successive iterations an updated value of the Jacobian is used. Similar to the substitution scheme, in this method also values of the 
unknown coefficient { }1d  and { }2d  are solved from the governing equations shown in (14a) and (14b).  

[ ]{ } { } 0][][ 11
121 =−− fdMK ω        (14a) 

[ ]{ } { } 0][][ 22
222 =−− fdMK ω        (14b) 

   The load vectors in eqn. (13) and (14) contain magnitude of loading ( P  or p ) and reaction force ( R ) generated. So, the major 
obstacle in implementing the discussed schemes is that the load vectors ({ }1f and{ }2f ) are not completely known as for a 
particular amplitude and certain frequency of harmonic excitation applied to the cross-beam structure the reaction force ( R ) 
generated at the contact between two beams is not known beforehand. To overcome this amplitude the reaction force ( R ) is 
assumed to be a fraction ( )q  of the amplitude of harmonic excitation applied to the structure. At the start, the correct value of q  
( exactq ) is unknown but the minimum and maximum values of q  are known to lie between 0 and 1, i.e., 0min =q and 1max =q . 
Using this assumed value, the load vectors are calculated and the set of unknown coefficients, as well as the forced vibration 
amplitude values of the two beams are solved. Let the vibration amplitude of beam-1 and beam-2 at the point of contact be 1bδ  
and 2bδ , respectively. If ( ) 121 bbb δδδ −  is outside a permitted tolerance limit ( 2ε ), the assumed reaction force is changed by 
modifying the fraction ( )q  and using this new assumed reaction force the process is repeated. The modification of the assumed 
reaction force is carried out as follows:  
   At the end of each iteration step, a part of the solution space can be eliminated depending on whether 1bδ  is greater or lower than 

2bδ , thus changing minq  or maxq . 
   If 21 bb δδ > : q  needs to be increased in order to lower 1bδ  and increase 2bδ . This implies that exactq  cannot be lower than the 
present q  and minq  can be upgraded to this q  value. After the modification of the limit, the new value q  is determined using the 
following expression, ( )minmax1min qqqqq −+= , where 1q  is another load distribution parameter whose value lies between 0 
and 1 ( 10 1 << q  ) . 
   If 21 bb δδ < : q  needs to be decreased in order to increase 1bδ  and lower 2bδ . This implies that exactq  cannot be greater than 
the present q  and maxq can be upgraded to this q  value. After the modification of the limit, the new value q  is determined using 
the following expression, ( )minmax1max qqqqq −−= , where 10 1 << q . 
   When ( ) 121 bbb δδδ −  falls within the predetermined permissible value ( 2ε ), the process is said to have converged. The 
solution procedure for a given set of input values is elaborated in the flow chart shown in Figure 4. 
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Figure 4. Flow chart of the solution algorithm for a given set of input values 

 
3.  Results and Discussion 
 
   The effects of loading pattern, beam geometry and variation in thickness of beam-2 on the forced vibration behaviour of the 
system have been studied. The results are presented through plots of vibration amplitude of the contact point versus frequency of 
forcing excitation in dimensional plane. In the present paper four different loading patterns, concentrated load, uniformly 
distributed load, triangular load and hat load are considered as shown in Figure 3. However, for all these types of loading, flexural 
boundary conditions of the beams have been considered as clamped. In the present study external axial loading (compression and 
tension) is not considered, but axial forces arise due to stretching of the beam. It is assumed that the clamped boundaries are 
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sufficiently rigid to support these axial loads generated in the beams and hence, for membrane boundary conditions the in-plane 
displacements are taken as zero at the boundaries, i.e., ( ) 0,1 =τξu at ξ  = 0, 1 and ( ) 0,2 =τηu at η  = 0, 1. In all the cases, the 
contact point is assumed at the mid-span of beam-2, i.e., 25.0 Lyr = .  
   The start functions for 1 1,w u  and 2 2,w u  are selected to satisfy the flexural and in-plane boundary conditions of the beams. The 
start functions for the beam deflection ( 21 , ww ) come from the flexural boundary conditions and the start functions for the 
stretching of the beam ( 21 ,uu ) come from the membrane boundary conditions. Both sets of start functions are shown in Table 1. 
These selected start functions are used to generate the higher order functions with the help of Gram-Schmidt orthogonalisation 
principle. The number of functions ( nw  and nu ) is taken as 8 and this particular number has been arrived at after carrying out the 
necessary convergence tests.  
 

Table 1. Start functions for 11 ,uw  and 22 ,uw  

)(11 ξφ  ( ){ }21 ξξ −  
Beam-1 

)(11 ξα  ( )ξξ −1  

)(21 ηφ  ( ){ }21 ηη −  
Beam-2 

)(21 ηα  ( )ηη −1  
 
   The solution methodology involves an iterative numerical scheme with successive relaxation and Broyden’s method for solution 
of individual beams and a specially developed iterative procedure, based on the reaction force generated and equality of amplitude 
of vibration at the contact of two beams, to obtain the solution for the system under a particular load level and excitation 
frequency. It is observed that the convergence of the iteration scheme for the system depends on the permissible value ( 2ε ) of the 
error limit. A convergence study is carried out on a cross-beam system having the following specifications and under uniformly 
distributed loading intensity of 100 N/m – Dimensions mtmbmL 01.0,02.0,1 111 ===  and mtmbmL 01.0,02.0,1 222 ===  , 

Material property: GPaEE 21021 == , 3
21 /7850 mkg== ρρ , Contact Locations : 15.0 Lxr =  and 25.0 Lyr = . Figure 5 shows 

the convergence results from the above mentioned study at two values (ω = 0, 15.91 Hz.) of the external excitation frequency and 
indicates that 0.01% can be taken as an acceptable error limit for the study.  
 

 
Figure 5. Convergence results for a cross-beam under uniformly distributed loading ( mNp /100= ) 

 
   Validation of the present method has been carried out with the results generated in the finite element based commercial package 
ANSYS (ver. 11). However, ANSYS carries out the forced vibration analysis as a linear problem, whereas the present study 
incorporates geometric nonlinearity. Two identical beam geometries have been considered with 

mtmbmL 003.0,0247.0,4.0 111 ===  and mtmbmL 003.0,4702.0,4.0 222 ===  and the contact location is at 15.0 Lxr = , 
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25.0 Lyr = . The material properties are assumed as GPaEE 21021 == , 3
21 /7850 mkg== ρρ . All ends of the beams have 

clamped boundary condition and beam-1 is under harmonic excitation of uniformly distributed type. The comparison plot is shown 
in Figure 6(a) for excitation amplitude mNp /10= . The differences between the two sets of results are due to the differences in 
the basic methodologies of problem formulation, as mentioned earlier.  Although ANSYS can not perform nonlinear forced 
vibration analysis, there is provision for inclusion of geometric nonlinearity in its static analysis. The governing equations of the 
system are given by,  { } { } { }ii

i
i

i fdMdK =− ][][ 2ω , =i 1 (Beam-1), 2 (Beam-2) . For ω = 0, the governing equation of the 

system becomes { } { }ii
i fdK =][ , =i 1 (Beam-1), 2 (Beam-2). So, for a special case when ω = 0 Hz. the forced vibration problem 

reduces to a static problem which can be handled by ANSYS with incorporation of geometric nonlinearity. The solid model of 
crossbeam is subjected to large displacement analysis through ANSYS under static loading (i.e. ω = 0) and the results are 
compared in Figure 6(b). It is seen that the matching between the two sets of results is excellent. 
 

 
      (a)                                                                                         (b) 

Figure 6. (a) Validation plot for a cross-beam under uniformly distributed loading ( p = 10 N/m) and (b) Validation plot for a 
cross-beam with ω = 0 Hz. under uniformly distributed loading 

 
   The algorithm behind the solution methodology is already discussed in the previous section and is now depicted through Figure 
7, which shows the intermediate results of each iteration step for a cross-beam under concentrated loading with amplitude ( P ) of 
100 N. This particular set of results are generated for an excitation frequency of 0 Hz., which signifies an equivalent static 
deflection scenario. The dimensions of the system are mtmbmL 01.0,02.0,1 111 ===  and mtmbmL 01.0,02.0,1 222 ===  and 

contact location is 15.0 Lxr = , 25.0 Lyr = . The material properties are assumed as GPaEE 21021 == , 3
21 /7850 mkg== ρρ . 

Figure 7(a) plots the fraction ( )q  of excitation amplitude against iteration number. This fraction ( )q  is the controlling parameter of 
the iterative procedure and depending on the value of q  the vibration amplitudes of the two beams are calculated. These values are 
shown and compared in Figure 7(b). Finally, Figure 7(c) furnishes the error in each iteration signifying the difference between the 
amplitudes of the two beams. At the start of the iteration (Iteration no. 1) calculations are based on a guess value of q , which in 
this case is far from the exact value and hence the error is maximum. At this stage it is seen that the amplitude value of beam-1 is 
greater than beam-2 and according to the algorithm minq is upgraded to this q  value. After the modification of the limit, the new 
value q  is determined using the following expression, ( )minmax1min qqqqq −+= . The second step of the iteration starts with this 
newly determined value of q and the same calculations are carried out. The process proceeds the same way until the error value 
comes down below the acceptable error limit ( 2ε ). For this particular frequency 17 iterations are required to achieve the desired 
convergence. 
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(a)                                                                                    (b) 

 

 
     (c) 

Figure 7. Plots of (a) fraction ( q ) of total excitation amplitude, (b) amplitudes of beam vibration and (c) error (= 
abs ( ){ }121 bbb δδδ − ) against iteration number for a cross-beam under concentrated harmonic excitation ( NP 100= ) at zero 

frequency 
 
   The frequency response curves in dimensional amplitude-frequency plane are presented for contact location 15.0 Lxr = , 

25.0 Lyr =  in Figure 8(a)-(d) for concentrated load, uniformly distributed load, triangular load and hat type load respectively. In 
each of these plots, response curves are presented for three different values (low, medium and high) of excitation amplitudes. 
Results are generated using the following geometric and material parameter values: Dimensions: mtmbmL 01.0,02.0,1 111 ===  

and mtmbmL 01.0,02.0,1 222 ===  , Material property: GPaEE 21021 == , 3
21 /7850 mkg== ρρ . It must be noted that the 

response curves are presented only for the first mode of vibration and correspond to primary resonance condition where the 
external excitation frequency becomes equal to the lowest fundamental frequency of the system.  
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      (a)                                                         (b)  

 

 
       (c)                                                       (d)  

Figure 8. Frequency response curves of cross-beam with contact location 15.0 Lxr = , 25.0 Lyr =  under different types of 
loading: (a) Concentrated, (b) UDL, (c) Triangular and (d) Hat. 

 
   From the set of figures it is clear that the system exhibits hardening type nonlinearity, which means the free vibration frequency 
increases with increase in vibration amplitude. Although a separate free vibration analysis of the system is not carried out in course 
of the present analysis, the nature of backbone curve can be surmised from the forced vibration frequency response curves, as these 
curves envelope the backbone curve. As the amplitude of excitation is reduced the nonlinear response of the system tends to attain 
the shape of backbone curve. For all the different cases of loading each response curve shows two distinct regions. At low values 
of the excitation frequency the system response is unique and the vibration amplitude increases monotonically with increase in 
excitation frequency. But after a certain excitation frequency two response amplitudes are obtained and there exists two branches 
of response amplitude over a certain frequency range. The amplitude of the initial branch continues to increase with excitation 
frequency from the single valued region, whereas the later branch shows a reverse trend as the vibration amplitude decreases with 
increase in frequency. The static response of the system can also be determined from the location where the response curve 
intersects the vertical axis, which signifies zero excitation frequency. This point denotes the static deflection of the cross-beam 
under loading corresponding to the excitation amplitude. It is known that nonlinear systems may exhibit super-harmonic and sub-
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harmonic responses, but for the given set of system parameters and loading conditions these nonlinear phenomena are not 
manifested.     
   It is noted in course of solution that if direct substitution method with successive relaxation scheme is used then for ascending 
sweep of excitation frequency only a part of the initial higher branch of the response amplitude is captured. However, this 
technique is able to capture the next lower branch of the response completely. On the other hand Broyden’s method captures the 
higher branch completely when excitation frequency is swept up and the lower branch is obtained by sweeping the frequency from 
higher to lower values.  
   Theoretically the response curve for a harmonic excitation is made up of three regions, of which two are stable and 
experimentally obtainable. Actually, in the multi-valued interval of the response there are three states of solution for a given 
excitation frequency. But the middle region upto the saddle point corresponds to an unstable response and cannot be captured 
experimentally. The present analysis captures the two stable regions but could not capture the unstable region. In these two stable 
zones the system response increases with increase in excitation amplitude. This fact also differentiates the two stable regions from 
the unstable one as in that zone the response reduces with increase in excitation amplitude.  
    

 
      (a)                                                      (b) 

 

 
       (c)                                                          (d) 

Figure 9. Frequency response curves of cross-beam with contact location 1333.0 Lxr = , 25.0 Lyr =  under different types of 
loading: (a) Concentrated, (b) UDL, (c) Triangular and (d) Hat. 



Mitra et al./ International Journal of Engineering, Science and Technology, Vol. 2, No. 4, 2010, pp. 113-133 

 

127

 

 

 
       (a)                                                        (b) 

 

 
       (c)                                                        (d) 

Figure 10. Frequency response curves of cross-beam with contact location 125.0 Lxr = , 25.0 Lyr =  under different types of 
loading: (a) Concentrated, (b) UDL, (c) Triangular and (d) Hat. 

 
   Frequency-amplitude response curves of the cross-beam system under different harmonic loading patterns for two different 
contact locations, 1333.0 Lxr = , 25.0 Lyr =  and 125.0 Lxr = , 25.0 Lyr =  are presented in Figure 9 and 10 respectively. These 
figures also depict similar characteristics as those discussed in relation to Figure 8. It should be noted that the amplitude of 
vibration presented as the ordinate of the response curves correspond to the contact point of the two beams. Comparison of figures 
8, 9 and 10 reveals that the response amplitude of the contact point decreases as the position of the lower beam shifts away from 
the center. This is more clearly demonstrated in Figure 11, which shows the response plots for variation in contact location for 
various types of loading. It should also be mentioned that the contact point of the beams may not necessarily be the point of 
maximum defection amplitude. In particular, asymmetry in loading (e.g., triangular) and geometry (e.g., 125.0 Lxr = ) may cause 
the point of maximum deflection to shift away from the center of the beam. For example, when a concentrated type excitation is 
applied over the contact point of two beams, irrespective of the geometry the maximum deflection of the system occurs at that 
point. But for symmetrically distributed excitation (UDL and Hat load) the geometry of the cross-beam becomes important in 
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determining the point of maximum deflection. For concentrated excitation applied at locations other than the contact point, the 
maximum deflection is likely to occur away from the contact point of the beams. 
   From Figure 11 it is observed that for concentrated loading at low excitation frequency response corresponding to 15.0 Lxr =  is 
highest and that due to 125.0 Lxr =  is lowest. It is also seen that the response curves exhibit a small difference between 
themselves. For UDL also response is higher due to 15.0 Lxr = , but the gap between the three curves has diminished. Finally, for 
triangular and hat type loading the gap between the response curves is so small that they cannot be distinguished visually. At 
higher excitation frequencies the higher branches of the responses are clearly distinguishable and throughout all type of loadings 
the highest response occurs for the symmetric geometry i.e. 15.0 Lxr = , 25.0 Lyr = . The lower branches of the amplitude 
response are very close together for all the cases. 
 

 
      (a)                                                        (b) 

 

 
      (c)                                                         (d) 

Figure 11. Frequency response curves of cross-beam for variation of contact location under different types of loading: (a) 
Concentrated, (b) UDL, (c) Triangular and (d) Hat. 
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   A study on the effect of variation of thickness of beam-2 on the system response is also carried out. Figure 12 presents the effect 
of variation of beam-2 thickness for concentrated loading and contact location of 15.0 Lxr = , 25.0 Lyr =  at three different load 
levels. From the figure it is clear that whenever beam-2 thickness is not equal to beam-1 thickness, there exists a discontinuity on 
the increasing branch of the response. It is noted that the discontinuity occurs around the natural frequency of the thinner beam. 
Physically it signifies that near its natural frequency the response of the thinner beam increases rapidly, but the thicker beam not 
yet near its natural frequency can not replicate the behaviour of the other beam.  
 

 
         (a)                                                                                     (b) 

 

 
         (c) 

Figure 12. Frequency response curves of cross-beam with contact location 15.0 Lxr = , 25.0 Lyr =  under concentrated loading for 
variation of beam-2 thickness: (a) mt 005.02 =  (b) mt 010.02 = and (c) mt 015.02 = . 
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   It is also important to note that with increase in the frequency of excitation, the magnitude of the dynamic system stiffness 
([ ii MK 2ω− ], 2,1=i ) may become negative when the excitation frequency becomes greater than the natural frequency of the 
beam. Under such situations the phase of the load vector is reversed and mode of vibration is also reversed. Hence, for a cross-
beam with two beams of different thickness at a certain excitation frequency (greater than natural frequency of thinner beam but 
lower than the natural frequency of the thicker beam) the two beams may vibrate out of phase and thus give rise to the 
discontinuous response. Beyond the natural frequency of the thicker beam the two beams again vibrate in phase as the mode of 
vibration of the second beam is also reversed. Interestingly, beyond this frequency the response curves presented in Figure 12 do 
not show any discontinuity. 
 
4. Conclusions  

   In the present paper large displacement forced vibration analysis of a cross-beam system is presented using an energy method 
and variational formulation. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is 
assumed to satisfy the force equilibrium condition at maximum load value, thus reducing the problem to an equivalent static case. 
The two beams of the system are solved individually either by a direct substitution method employing successive relaxation 
technique or a multi-dimensional secant method, known as Broyden’s method. An iterative scheme, based on the reaction force 
between the two beams of the system and equality of vibration amplitude at the contact of two beams, is developed to obtain the 
response of the system under external harmonic excitation. The present method is validated through results generated in ANSYS 
11.0. Results are provided to establish the working methodology of the iterative procedure. The system response is studied for 
variation of loading type and contact location of the beams, achieved by changing the position of the lower beam. The results are 
presented in terms of plots of vibration amplitude of the contact point between the two beams versus frequency of forcing 
excitation in dimensional plane. The system responses indicate a hardening type nonlinearity and two stable zones of the response 
curve is obtained. It is seen that an increase in excitation amplitude corresponds to increase in response amplitude. Results also 
indicate that the vibration amplitude of the contact point decreases as the contact shifts away from the center. The system response 
is studied for variation in thickness of the lower beam and it is observed that the response curves show a discontinuity around the 
natural frequency of the thinner beam. An effort is made to explain the discontinuous nature of the responses. 
 
 
Nomenclature 

21, AA    Cross-sectional area of beam-1 and beam-2 
 b1, b2   Width of beam-1 and beam-2 
{d1}, {d2} Vector of unknown coefficients 

21, EE    Young’s modulus of the beam material  

21, II   Second Moment of area  
{ }1f ,{ }2f  Load vectors 

][],[ 21 KK  Stiffness matrix 

][],[ 21
bb KK  Stiffness matrix due to bending 

][],[ 21
mm KK  Stiffness matrix due to stretching 

L   Lagrangian 
21, LL    Length of the beams 

][],[ 21 MM  Mass Matrix 
nw         Number of functions for w1, w2 
nu           Number of functions for u1, u2 
P   Harmonically varying transverse concentrated loading on beam-1 
P   Amplitude of harmonic excitation for concentrated loading 
p    Harmonically varying transverse pressure type loading on beam-1 
p   Amplitude of harmonic excitation for pressure type loading 
q   Ratio of reaction force between the two beams and total load on beam-1 

1q   Load distribution factor 
R   Reaction force generated between the two beams 
R   Amplitude of the reaction 

21,TT   Kinetic energy of beam-1 and beam-2 
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21,tt    Thickness of the beams 

21,uu    Dynamic displacement along axial direction of the beams 

21,UU   Strain energy of beam-1 and beam-2 

21 , bb UU  Strain energy due to bending of beam-1 and beam-2 

21 , mm UU  Strain energy due to stretching of beam-1 and beam-2 

21,VV   Work potential for external load of beam-1 and beam-2 

21, ww   Dynamic transverse displacement  

px   Point of application of concentrated loading on beam-1 

rx   Location on beam-1 where the reaction force is acting  
ry   Location on beam-2 where the reaction force is acting 

ii 21 ,αα         Set of functions defining approximate displacement field u1, u2 

1bδ , 2bδ  Transverse displacement amplitude of beam-1 and beam-2 at the contact point 
δ   Variational operator 

b
xε   Axial strain of beam due to bending 
s
xε   Axial strain of beam due to stretching 

ii 21 ,φφ           Set of functions defining approximate displacement field w1, w2 

rη   Normalized location on beam-2 where the reaction force is acting 
π   Total energy of the system 

21,ρρ   Density of the beam materials 
τ   Time coordinate 
ω   Frequency of excitation 

1ω   First linear natural frequency of vibration 

pξ  Normalized axial coordinate of point of application of concentrated loading on beam-1  

rξ  Normalized location on beam-1 where the reaction force is acting 
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