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Abstract 
 
   Combined free and forced convection flow of a viscous incompressible electrically conducting fluid in a rotating channel is 
studied. Analytical solution for the velocity and induced magnetic field is obtained in closed form. Asymptotic behavior of the 
solution for the velocity and induced magnetic field is analyzed for large values of magnetic parameter M2 and rotation 
parameter K2 to gain some physical insight into the flow pattern. The expressions for the shear stress and critical Grashof 
number at both the plates and mass flow rates are also derived. Numerical values of rate of heat transfer at both the plates are 
obtained with the help of MATLAB software. The numerical values of velocity and induced magnetic field are displayed 
graphically whereas that of shear stress at the upper plate, mass flow rate, critical Grashof number and rate of heat transfer at 
both the plates are presented in tabular form for various values of flow parameters. 
 
Keywords: Wall conductance, free and forced convection, magnetic field, rotation, Ekman-Hartmann boundary layer, modified 
Ekman boundary layer. 
 
1. Introduction 
 
   The study of hydromagnetic flow of a viscous incompressible electrically conducting fluid in a rotating medium is of 
considerable importance due to occurrence of various natural phenomena and for its application in various technological situations 
which are directly governed by the action of Coriolis and magnetic forces. In order to increase basic understanding of such fluid 
flows, several researchers including Hide and Roberts (1960), Nanda and Mohanty (1971), Soundalgekar and Pop (1973), 
Soundalgekar and Gupta (1975), Debnath (1974,1975), Acheson (1975), Mazumder (1977), Datta and Jana (1977), Seth et al 
(1982, 2009, 2010), Raptis and Singh (1986), Singh et al (1994), Ghosh (1993), Nagy and Demendy (1995), Seth and Banerjee 
(1996), Ghosh and Bhattacharjee (2000), Singh (2000), Ghosh and Pop (2003, 2004), Hayat et al. (2004a, 2004b, 2004c) Seth and 
Singh (2008), Seth and Ansari (2009), Das et al (2009),  Guria et al. (2009) investigated the problems of hydromagnetic flow in 
rotating medium under different conditions and configurations. Mazumder (1977) studied steady flow of a viscous incompressible 
electrically conducting fluid in a rotating channel with arbitrary conducting walls. Mazumder (1977) also investigated the heat 
transfer characteristics of the flow due to forced convection taking viscous and Joule dissipations into account. It is well known 
that the fluids with low Prandtl number are electrically conducting apart from being more sensitive to the gravitational field than 
fluids with high Prandtl number. Hence the interplay of buoyancy force with the electromagnetic force determines the ultimate 
behaviour of an electrically conducting fluid with low Prandtl number under a transverse magnetic field. Keeping in view this fact, 
Seth and Banerjee (1996), Ghosh and Bhattacharjee (2000), Seth and Singh (2008) and Seth and Ansari (2009) studied combined 
free and forced convection flow of a viscous incompressible electrically conducting fluid in a rotating channel considering 
different aspects of the problem. In all these investigations the walls of the channel are considered either non-conducting or 
perfectly conducting. 
   The purpose of the present paper is to study combined free and forced convection flow of a viscous incompressible electrically 
conducting fluid in a rotating channel with arbitrary conducting walls, in the presence of a transverse magnetic field, under the 
action of a uniform pressure gradient. Analytical solution for the velocity and induced magnetic field is obtained in closed form. 
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The solution for the velocity and induced magnetic field, in dimensionless form, contains four pertinent flow parameters, namely, 
M2 (square of Hartmann number), K2 (rotation parameter which is the reciprocal of Ekman number), G (Grashof number) and 1φ  
and 2φ  (wall conductance ratios). The asymptotic behavior of the solution is analyzed for large values of M2 and K2 to gain some 
physical insight into the flow pattern. The expressions for the shear stress at both the plates due to the primary and secondary 
flows, mass flow rates and Critical Grashof number at both the plates due to the primary as well as secondary flows are obtained. 
Heat transfer characteristics of the flow is considered taking viscous and Joule dissipations into account when the plates of the 
channel are heated or cooled due to uniform temperature gradient. The numerical values of the rate of heat transfer at both the 
plates are obtained with the help of MATLAB software.  
   To study the effects of magnetic field, rotation, free convection and wall conductance profiles of velocity are drawn versus 
channel width variable η  for various values of 2 2

1 2, ,  and M K G φ φ φ= +  while the numerical values of induced magnetic field 

are depicted graphically versus η  for different values of  2 2
1 2, , ,  and M K G φ φ . The numerical values of the primary and 

secondary shear stress components at the upper plate 1η =  and rate of heat transfer at both the plates are presented in tabular form 

for various values of 2 2, ,  and M K G φ  whereas that of mass flow rates and critical Grashof number are given in tables for 

different values of 2 2,  and M K φ . 
 
2.  Formulation of the problem and its solution 
 
   Consider combined free and forced convection flow of a viscous incompressible electrically conducting fluid between two 
horizontal parallel finitely thick arbitrary conducting plates z L= ±  in the presence of a uniform transverse magnetic field Ho 
applied parallel to z-axis. The fluid and channel rotate in unison with a uniform angular velocity Ω  about z- axis and fluid flow 
within the channel is induced due to uniform pressure gradient applied in x-direction. The plates of the channel are cooled or 
heated by uniform temperature gradient acting along x-direction so that temperature varies linearly along the plates. Since plates 
are infinite along x- and y- directions and flow is assumed to be steady and fully developed, all physical quantities, except pressure 
and temperature, depend on z only. Geometry of the problem is presented in Fig. 1. 
The fluid velocity qr  and induced magnetic field H

r
are assumed as  

( , ,0),q u v′ ′=
r       ( , , ).x y oH H H H′ ′=

r
                                                                    (1) 

This assumption is compatible with the fundamental equations of magnetohydrodynamics in a rotating medium. 
 

 
 

Under the above assumptions equation of motion and induction equation for the magnetic field reduce to 
212 ,2

H dHp d ue o xv x dz dz
μ υρ ρ

′ ′∂
′− Ω = − + +∂                                                       (2) 

     
2

02 ,2
dHH d vyeu

dz dz

μ υ
ρ

′ ′
′Ω = +                                                                           (3) 
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( )10 1 ,
dHp ydHe xg T T H Ho x yz dz dz

μβρ ρ

⎛ ⎞
⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟
⎝ ⎠

′∂ ′′ ′ ′ ′= − − − − − +∂                                   (4) 

 
2

,2
d H dux He o dzdz

σμ
′ ′

− =                                                                                   (5) 

2

2 ,
d H dvy He o dzdz

σμ
′ ′

− =                                                                                         (6) 

where p, 0T , , , , ,eρ υ μ σ β ′  and g are, respectively, modified hydromagnetic pressure including centrifugal force, temperature in 
reference state, density, kinematic coefficient of viscosity, magnetic permeability, electrical conductivity, coefficient of thermal 
expansion and acceleration due to gravity.  
   Since plates of the channel are cooled or heated by uniform temperature gradient acting along x-direction so the fluid 
temperature is considered as 

       ( )1 1T T A x zo θ′ − = + ,                                                                                           (7) 
where T ′ , A1 and θ1(z) are, respectively, fluid temperature, uniform temperature gradient acting along x- direction and arbitrary 
function of z.                       
 Eqn. (4), after integration, is given by 

( ) ( )2 2 2
12

p egz H H H g T T dz K xx y o o
μ

β
ρ ρ

′ ′ ′ ′= − − + + + − +∫ ,                          (8) 

where K1 is the uniform pressure gradient acting along x-direction with which fluid flow is generated within the channel. 
Eqn. (2), with the help of (7) and (8), reduces to 

2

1 1 22 .e o xH dH d uv g A z K
dz dz

μ
β υ

ρ
′

′− Ω = − − + +                                                    (9) 

The boundary conditions for the velocity field are 
 0u v′ ′= =           at .z L= ±                                                                                        (10) 
It is assumed that the plates of the channel are of finite thickness and of arbitrary electrical conductivity, the boundary conditions 
for the magnetic field (Mazumder (1977)) are  

1 1 1 1

2 2 2 2

0;  0 at ,

0;  0 at ,

y yx x

y yx x

dH HdH H
z L

dz h dz h

dH HdH H
z L

dz h dz h

σσ
σ σ

σσ
σ σ

⎫′ ′′ ′
⎪+ = + = =
⎪
⎬

′ ′′ ′ ⎪
− = − = = − ⎪

⎭

                                        (11)                

where σ1, h1 and σ2, h2 are, respectively, electrical conductivity and thickness of the upper and lower plates.  
Introducing non-dimensional variables 
 
 ,  ,  ,   and ,x x e o y y e oz L u u L v v L H H H H H Hη υ υ σμ υ σμ υ′ ′′ ′= = = = =                                     (12)   
 
the eqns. (3), (5), (6) and (9), in dimensionless form, are given by  

  
2

2 2
2 2 ,xdHd u M K v G R

dd
η

ηη
+ + = +                                                                                                                               (13) 

    
2

2 2
2 2 0 ,yd Hd v M K u

dd ηη
+ − =                                                                                                                 (14) 

    
2

2 ,xd H d u
dd ηη

− =                                                                                                                                      (15) 

     
2

2 ,yd H dv
dd ηη

− =                                                                                                                                         (16) 
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where ( )2 2 2 2M H Le oμ σ ρυ=  is magnetic parameter which is square of  Hartmann number, 2 2K L υ= Ω  is rotation 

parameter which is the reciprocal of Ekman number, 4 2
1G g A Lβ υ′=  is Grashof number and 3 2

1R L K υ= is  non-dimensional 
pressure gradient. 
It is noticed from equation (7) that positive or negative value of A1 corresponds to heating or cooling of channel walls along x-
direction. Therefore, it follows from the definition of G that G >0 or G < 0 according as the channel walls are heated or cooled in 
axial direction. 
 
The boundary conditions (10) and (11), in dimensionless form, become 
     0u v= =   at  1,η = ±                                                                                              (17) 
 

1 1

2 2

0;  0     1,

0;  0    1,

y yx x

y yx x

dH HdH H
at

d d
dH HdH H

at
d d

η
η φ η φ

η
η φ η φ

⎫
+ = + = = ⎪

⎪
⎬
⎪− = − = = − ⎪⎭

                                                               (18)        

 
where  1 1 1h Lφ σ σ=   and   2 2 2h Lφ σ σ=  are dimensionless wall conductance ratios for the upper and lower plates respectively. 
 
 
 
The eqns. (13) to (16) are presented in compact form as               

2
2 2

2 2 ,d F dHM iK F G R
dd

η
ηη

+ − = +     (19) 

2

2 0,d H dF
dd ηη

+ =                                                                                    (20) 

  
where F u iv= +  and x yH H iH= + . 
 
The boundary conditions (17) and (18) become 
            
     F = 0   at  1,η = ±                                                                                               (21) 
 

  
1

0dH H
dη φ

+ =   at  η = 1,    
2

0dH H
dη φ

− =   at  η = -1.                           (22) 

 
The solution of eqns. (19) and (20) subject to the boundary conditions (21) and (22) are given by 
 

2
cosh sinh( ) 1 ,
cosh sinh

GF C λη ληη η
λ λλ

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                   (23) 

 
2

1 22
sinh 1 cosh( ) ,
sinh 2 sinh

GH C C Cλη ληη η η η
λ λ λλ

⎛ ⎞ ⎛ ⎞= − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                            (24) 

 
where    ,iλ α β= +                                                                                               (25a) 
 

            
( )

( ) ( )2 3

2
,

2 tanh 2

R
C

M

λ φ

λ λ φ λ

+
=
⎡ ⎤− − +⎣ ⎦

                                                               (25b) 

          
            1 2 ,φ φ φ= +                                                                                            (25c) 
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( )

( ) ( )1 2 3

2 tanh
,

2 tanh 2

R
C

M

λ λ

λ λ φ λ

−
=

− + +
                                                                    (25d) 

 

        2 1 1 2 3
1 ( ) ( 2coth ),
2 2

GC C φ φ λ λ
λ

= − − −                                                     (25e) 

         

1
1 2

4 4 221, ( 4 ) .
2

M K Mα β
⎡ ⎤
⎢ ⎥= + ±
⎢ ⎥⎣ ⎦

                                                        (25f) 

 
2.1 Shear stress at the upper and lower plates 
 
   The non-dimensional shear stress components xτ  and yτ  at the upper and lower plates, due to the primary and secondary flows 
respectively, are given by 
 

   ( ) 21

sinh( ) cosh( ) 1 .
cosh( ) sinh( )x y

C Gi
η

λ λη λ λητ τ
λ λλ=±

⎛ ⎞
+ = + −⎜ ⎟

⎝ ⎠
m                                 (26) 

 
2.2 Critical Grashof number 
 
The Critical Grashof numbers Gcx and Gcy, for which shear stress at the plates due to the primary and secondary flows respectively 
vanishes, are given by 
 

( ) [ ]
3 2

1

sinh ( ) .
cosh( ) cosh( ) sinh( )cx cy

CG iG
η

λ λ
λ λ λ λ=±

+ = ±
−

                                    (27)   

 
2.3 Mass flow rate 
        
 The non-dimensional mass flow rates Qx/ρυ and Qy/ρυ, in the primary and secondary flow directions respectively, are given by 
 

  
21 (1 2 cosh( ) ( ) ) .

2 cos( )
x yQ iQ C e e

e

λ λ

λ
λ λ

ρυ λ λ

+⎛ ⎞ + −
=⎜ ⎟⎜ ⎟

⎝ ⎠
                                                       (28) 

 
  3. Asymptotic Solutions 
 
  Now asymptotic behavior of the solution given by (23) and (24) is to be discussed to gain some physical insight into the flow 
pattern. 
 
Case I:  M2 >> 1 and K2 >> 1 
  
   When both M2 and K2 are large, boundary layer type flow is expected. For the boundary layer flow adjacent to the upper plate 

1η = , introducing boundary layer coordinate 1ξ η= − , the asymptotic solution for the velocity and induced magnetic field are 
obtained from (23) and (24) which are presented as  

2 2 2 2
2 2 2

1 1 cos 2 sin ,( )u G R G R e αξα β ξ α β βξ αβ βξα β
⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

−= − − − + + − −
+

             (29)                   

( ){ } ( ) ( ){ }2 2
2 2 2

1 2 1 sin 2 cos ,
( )

v R G G R e αξαβ ξ α β βξ αβ βξ
α β

−⎡ ⎤= − − − + − +⎢ ⎥⎣ ⎦+
      (30) 

( ) ( ) ( ) ( )3 2 2
2 1 [( ) cos

2x
G eH R G R

αξ

ξ ξ ξ φ δ αδ βγ βξ
α β

−⎧ ⎫= − − + − − − + + +⎨ ⎬
+⎩ ⎭
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           ( ) ( ) ( )( )32 2

1sin ] ,G Rβδ αγ βξ αδ βγ φ
α β

+ − + + +
+

                                 (31) 

( ) ( ) ( )
( )3 2 2

2 1 [( )sin
2y

G RGH R e αξξ ξ ξ φ γ αδ βγ βξ
α β

−+⎧ ⎫= − − + − − − + +⎨ ⎬
⎩ ⎭ +

 

           ( ) ( ) ( )( )32 2

1cos ] ,G Rβδ αγ βξ αγ βδ φ
α β

+ − + − +
+

                               (32) 

where  

                    
( )
( ) ( )

( ) ( )
( )

2 2
2 1

32 22 2 2 2

2 12, , .
2

α β ξ φ φαβδ γ φ
φα β α β

− − + −
= = − =

++ +
             (33) 

   It is evident from the expressions (29) to (32) that flow is divided into two regions, namely, boundary layer region and central 
core region. The boundary layer region is confined to the boundary layer of thickness O(1/α) which arises adjacent to the upper 
plate of the channel. This layer may be recognized as modified Ekman-Hartmann boundary layer and can be viewed as either a 
classical Ekman boundary layer modified by magnetic field or a classical Hartmann boundary layer modified by rotation.  
   For M2 >> K2 this boundary layer reduces to the Hartmann boundary layer and for M2 << K2  it becomes Ekman boundary layer. 
A similar type of boundary layer appears near the lower plate.  The exponential terms in (29) to (32) damp out quickly as ξ  
increases. When 1/ξ α≥ , i.e. in the central core  region, (29) to (32) reduce to 

( )
( ) ( ){ }2 2

22 2

1 1 ,u G Rα β ξ
α β

⎡ ⎤≈ − − −
⎣ ⎦

+
    

( )
( )22 2

2 1 ,v R Gαβ ξ
α β

⎡ ⎤≈ − −⎣ ⎦
+

       (34) 

( ) ( ) ( )( )
( )

3
3 2 2

2 1 ,
2x

G RGH R
αδ βγ φ

ξ ξ ξ φ δ
α β

+ +⎧ ⎫≈ − − + − − +⎨ ⎬
⎩ ⎭ +

                        (35) 

( ) ( ) ( )( )
( )

3
3 2 2

2 1 .
2y

G RGH R
αγ βδ φ

ξ ξ ξ φ γ
α β

− +⎧ ⎫≈ − − + − − +⎨ ⎬
⎩ ⎭ +

                        (36) 

Expressions (34) to (36) reveal that, in central core region, fluid flows in both the primary as well as secondary flow directions and 
has considerable effects of rotation and magnetic field. The effect of free convection on the velocity become insignificant near the 
central line of the channel (i.e. 0η = ). The fluid velocity varies linearly with η in both the directions. The induced magnetic field 
components Hx and Hy have considerable effects of rotation, magnetic field, wall conductance and free convection. Also Hx and Hy 
vary with η but the variation is non- linear due to the presence of free convection. In the absence of free convection fluid flow is 
uniform in the central core region while induced magnetic field varies linearly with η. 
 
Case II: K2 >> 1 and M2~ O(1) 
 
          In this case also fluid flow becomes boundary layer type. For the boundary layer flow near the upper plate, the expressions 
for the velocity and induced magnetic field, derived from (23) and (24), are given by 

( )
1

12 sin ,
2

R G
u e

K
α ξ β ξ−+

= −     (37) 

( )( )1
12

1 1 cos ,
2

v R G e G
K

α ξ β ξ ξ−⎡ ⎤= + − −⎣ ⎦     (38) 

( ) ( ) 1
3 13

1 2 cos ,
44xH R G R G e

K
α ξ πφ β ξ−⎡ ⎤⎛ ⎞= − + − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (39) 

{ } { ( ) 1
3 3 12

1 12 (1 ) (2 ) ( ) 2 sin
44yH R G R G R G e

kK
α ξ πφ ξ ξ ξ φ β ξ− ⎤⎫⎡ ⎛ ⎞= − + − − − + + + + × − ⎥⎬⎜ ⎟⎢⎣ ⎝ ⎠ ⎥⎭⎦

,                                 (40) 

where 

                  
2 2

1 12 21 , 1 .
4 4
M MK K
K K

α β
⎡ ⎤ ⎡ ⎤

= + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                          (41) 
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The expressions (37) to (40) show that the fluid flow is divided into two regions viz. boundary layer region and central core region. 
The boundary layer region is confined to the boundary layer of thickness O(1/α1) which appears near the upper plate. This 
boundary layer may be identified as modified hydromagnetic Ekman boundary layer and can be viewed as a classical Ekman 
boundary layer modified by magnetic field. A similar type of boundary layer appears near the lower plate. The thickness of the 
boundary layer decreases with the increase in either K2 or M2. In the central core region, the expressions (37) to (40) reduce to  

( )2
10, ,

2
u v R G

K
η≈ ≈ +                                                               (42) 

( )33
1 ,

4xH R G
K

φ≈ − +                                           (43) 

( ) ( ){ } ( )2
3 32

1 12 1
4yH R G R G

KK
φ η η φ⎡ ⎤≈ − + − − + +⎢ ⎥⎣ ⎦

                                                                                           (44)       

   It is evident from the expressions (42) to (44) that, in the central core region, fluid flows in a direction normal to the directions of 
applied pressure gradient and axis of rotation. Fluid velocity is unaffected by the magnetic field and varies linearly with η. The 
effect of free convection on fluid flow is insignificant near central line of the channel. The induced magnetic field persists in both 
the directions due to free convection and wall conductance in this region and has considerable effects of rotation, wall conductance 
and free convection. Induced magnetic field Hx varies linearly with η whereas variation in induced magnetic field Hy is non-linear 
with η due to the presence of free convection. 
 
Case III: M2 >> 1 and K2 ~ O(1) 
 
   In this case also boundary layer type flow is expected. For the boundary layer flow near the upper plate, the expressions for the 
velocity and induced magnetic field, obtained from (23) and (24), are given by 

( ) { }22 2cos 1 ,MR G Gu e
M M

ξ ξβ ξ−+
= − +                                                                        (45) 

( )
22 sin ,MR G

v e
M

ξ β ξ−+
=                                                                                                                                                           (46) 

( ){ }( ) ( )3 22
1 1 2 22 1 1 2 1 1 cos ,

2
M

xH R G R G R G e
M M MM

ξφ ξ ξ β ξ−⎡ ⎤⎛ ⎞ ⎛ ⎞= − − + − − + − − + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

                                   (47)

                                                                                                                                            
( )

23 sin ,M
y

R G
H e

M
ξ β ξ−+

=                                                                                                                                                              (48) 

where 
                       2

2 .K Mβ =                                                                                                                                                           (49) 
   It is evident from the expressions (45) to (48) that fluid flow is divided into two regions, namely, boundary layer region and 
central core region. The boundary layer region is confined to Hartmann boundary layer of thickness O(1/M) which arises near the 
upper plate of the channel. A similar type of boundary layer appears adjacent to the lower plate. In the central core region, the 
expressions (45) to (48) reduce to 

( )2
1 ,   0,u G R v

M
η≈ − + ≈                                                                                                                                                              (50) 

( )32
1 1 22 1 1 2 ,

2xH R G R G
M MM

φ η η
⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − − + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 .                                                                                           (51) 

 
0.yH ≈                                                                                                                                                                             (52) 

 
   The expressions (50) to (52) reveal that, in the central core region, the velocity and induced magnetic field vanish away in the 
secondary flow direction while it persist in the primary flow direction and are unaffected by rotation. The primary velocity u varies 
linearly with η and the effect of free convection on it is insignificant near the central line of the channel. The variation in induced 
magnetic field Hx is non-linear with η due to the presence of free convection and it has considerable effects of magnetic field, wall 
conductance and free convection. 
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4. Heat Transfer Characteristics 
 
Energy equation for steady fully developed flow of a viscous incompressible electrically conducting fluid taking viscous and Joule 
dissipations into account is 

( ) ( )
222 22

0
2

1 ,yo x

p p p

dHT T T T dHk du dvu
x c c dz dz c dz dzz

υ
ρ σρ

⎡ ⎤⎛ ⎞⎛ ⎞ ′⎡ ⎤′ ′ ′∂ − ∂ − ′ ′⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟′ = + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

                                            (53)                    

where k  and pc  are, respectively, thermal conductivity and specific heat at constant pressure. 
 
Since  plates z L= ±  are cooled or heated by a uniform temperature gradient A1 along x - direction, therefore,  boundary 
conditions for  fluid temperature are assumed as 

1

2

1 1

1 1

  at ;

  at ,
o w

o w

T T A x z L

T T A x z L

θ

θ

′ = + + = ⎫⎪
⎬′ = + + = − ⎪⎭

                                                                                                                   (54)  

where 
11wθ  and 

21wθ  are constants. 
Energy equation (53), in dimensionless form with the help of  (7) and (12), becomes 

  
22 2 22

2
2 ,yx

r r r
dHdHd T du dvGP u P E M

d d d dd η η η ηη

⎡ ⎤⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥= − + + + ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

                                                 (55) 

where ( )1

3 2
1 1wT g Lβ θ θ υ′= −  is dimensionless fluid temperature. r pP c kρυ=  is  Prandtl number and r pE g L cβ ′=  is 

Eckert number. 
 
Boundary conditions (54), in dimensionless form, become 
 T = 0 at 1η = ,  ( )2 1

3 2
1 1 0w wT g Lβ θ θ υ θ′= − =  (say)  at 1η = − .                                                                                    (56) 

For solving eqn. (55), the eqn. (55) is combined with the following equation 

                                              
2

2r
dGP v
d
ψ
η

= ,                                                                                                                         (57) 

with boundary conditions  
                                                   0ψ =  at 1,η = ±                                                                                                            (58) 
where T iψΔ = + .  
The resulting equation is presented as 
 

     
2

2
2 ,r r r

d dF dF dH dHGP F P E M
d d dd η η η ηη

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
                                                                                                       (59) 

where F and H  are complex conjugates of F and H respectively. 
Boundary conditions (56) and (58), in combined form, become 

0Δ =  at η = 1,   0θΔ =  at 1η = − .                                                                                      (60)            
The numerical solution of energy equation (59) subject to the boundary conditions (60) can be obtained by MATLAB software. 
The numerical values of rate of heat transfer at both the plates are obtained with the help of MATLAB software. 
 
5. Results and Discussion 

 
To study the effects of buoyancy force, rotation, magnetic field and wall conductance on the fluid velocity and induced magnetic 
field profiles of the velocity and induced magnetic field are drawn versus channel width variable η  in Figs. 2 to 10 for various 
values of 2 2

1 2, , ,  and G K M φ φ  taking 1R = − . It is evident from Figs. 2 to 10 that profiles of the velocity and induced magnetic 
field are asymmetric and there arises reverse flow in the primary and secondary flow directions due to the presence of free 
convection ( )0G ≠ . It is evident from Fig. 2 that free convection tends to accelerate fluid flow in the primary flow directions 
whereas it accelerates secondary flow in the lower half of the channel and its characteristics are changed in the upper half of the 
channel. Fig. 3 reveals that free convection has tendency to increase primary as well as secondary induced magnetic fields xH  and 
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yH  throughout the channel. Fig. 4 shows that rotation retards fluid flow in both the directions in the region away from the upper 
plate whereas, in the region near the upper plate, its characteristics are changed due to flow reversal.  
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Fig. 2. Profiles of primary and secondary velocities 

when K2=5, M2=4 and 1 2 1.φ φ= =  
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Fig. 5. Profiles of primary and secondary induced magnetic fields 

when G=4, M2=4 and 1 2 1.φ φ= =
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when G=4, K2=5 and 1 2 1.φ φ= =  
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Fig. 7. Profiles of primary and secondary induced magnetic 

fields when G=4, K2=5 and 1 2 1.φ φ= =
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Fig. 9. Profiles of primary and secondary induced magnetic fields 

when G=4, K2=5, M2=4 and 2 1.φ =

 
It is noticed from Fig. 5 that rotation reduces primary induced magnetic field xH  whereas it tends to increase secondary induced 
magnetic field yH . However, characteristics of xH  near the upper plate and of yH  near the lower plate are changed due to 
rotation. Fig. 6 shows that magnetic field retards fluid flow in both the directions. Fig. 7 reveals that magnetic field reduces 
primary and secondary induced magnetic fields. However, characteristics of xH  is changed near the upper plate and that of yH  is 
changed near the lower plate of the channel. It is evident from Fig. 8 that, with the increase in 1 2φ φ φ= + , primary velocity u 
increases whereas secondary velocity v decreases. This implies that wall conductance tends to accelerates fluid flow in the primary 
flow direction and has tendency to retard fluid flow in secondary flow direction. It is also noticed from Fig. 8 that primary velocity 
u is minimum when channel walls are non-conducting ( )i.e. 0φ =  and it is maximum when the channel walls are perfectly 

conducting ( )i.e. φ = ∞ . Secondary velocity v is maximum for non-conducting walls and it is minimum for perfectly conducting 

walls. Figs. 9 and 10 show that both the primary and secondary induced magnetic fields increase with the increase in 1φ  whereas it 
decrease with the increase in 2φ . This implies that wall conductance of lower plate increases both the induced magnetic fields 
whereas wall conductance of the upper plate reduces both the induced magnetic fields. 
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Fig. 10. Profiles of primary and secondary induced magnetic fields when G=4, K2=5 

M2=4 and 1 1.φ =  
 
   The numerical values of primary and secondary shear stress components at the upper plate are presented in tabular form in 
Tables 1 and 2 for various values of 2 2, ,  and M K G φ  taking 1R = −  whereas that of critical Grashof  numbers cxG  and cyG  for 
which separation takes place at the upper plate in the primary and secondary flow directions respectively and mass flow rates 

xQ ρυ  and yQ ρυ  in the primary and secondary flow directions respectively are provided in Tables 3 to 6 for various values of 
2 2,  and M K φ . It is evident from the Tables 1 and 2 that the primary shear stress xτ  at the upper plate increases with the increase 
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in G whereas secondary shear stress yτ  at the upper plate decreases, attains a minimum and then increases in magnitude with G  
which implies that there exists flow separation at the upper plate due to free convection in the secondary flow direction. Primary 
shear stress xτ  increases, attains a maximum and then decreases with the increase in 2K  when 2G =  whereas it decreases on 

increasing 2K  when 4G = and 6,. On increasing 2K , secondary shear stress yτ decreases when G = 2 and it increases in 
magnitude when  

 
Table 1. Primary and secondary shear stress components at the upper plate η = 1 when M2 = 4 and φ =1. 

 
 
 
 
 
 
 

 
 

Table 2. Primary and secondary shear stress components at the upper plate η = 1 when K2 = 5 and G=4. 
 
 
 
 
 
 
 
 

G = 6. Also yτ  decreases, attains a minimum and then increases in magnitude with the increase in 2K  when G = 4. xτ  and yτ  

decrease on increasing 2.M  xτ  decreases with the increase in φ  when 2 2M =  and 4 and it decreases, attains a minimum and 

then increases with the increase in φ  when 2M = 6. yτ  increases on increasing φ . It is found from Tables 3 and 4 that critical 

Grashof number cxG , for which separation takes place at the upper plate in the primary flow direction, and critical Grashof number 

cyG , for which separation takes place at the upper plate in the secondary flow direction, decrease on increasing either 2K  or φ  
which implies that rotation and wall conductance induce flow separation at the upper plate in both the primary and secondary flow 
directions. cxG  and cyG  are minimum when φ = ∞ (i.e. perfectly conducting walls) and these are maximum when  0φ = (i.e. 
non-conducting walls). This implies that separation takes place early at the upper plate in both the directions for perfectly 
conducting walls. cxG  and cyG  increase with the increase in 2M  which implies that magnetic field prohibits flow separation at the 
upper plate in both the directions i.e. it suppresses any turbulence present in the fluid flow to maintain laminar flow characteristics 
of the fluid. It is observed  from the Tables 5 and 6 that mass flow rate xQ ρυ  in the primary flow direction increases with the 
increase in either 2M  or φ  and it decreases with the increase in 2K . Mass flow rate yQ ρυ  in the secondary flow direction 

decreases with the increase in either 2M  or 2K  or φ . 
 

Table 3. Critical Grashof numbers at the upper plate η = 1 when M2 = 4. 
 
 

 

 

 

 

 

 

                             τx                        τy                      

G↓  2K →  3 5 7 3 5 7 

2 0.1367 0.1905 0.1860 0.1675 0.0723 0.0165 
4 0.6266 0.6239 0.5679 0.0454 -0.0922 -0.1650 
6 1.1165 1.0573 0.9498 -0.0767 -0.2566 -0.3465 

                   τx          -τy                    

φ↓   2M →  2 4 6 2 4 6 

0 0.6695 0.6395 0.6049 0.1408 0.0586 0.0093 
1 0.6611 0.6239 0.5835 0.1567 0.0922 0.0433 
3 0.6558 0.6168 0.5778 0.1695 0.1186 0.0829 
∞  0.6500 0.6134 0.5823 0.1885 0.1555 0.1333 

                   Gcx          -Gcy                 

φ↓   2K →  3 5 7 3 5 7 

0 1.6538 1.3306 1.2297 1.0778 0.7425 0.5536 

1 1.6350 1.3423 1.2388 0.7749 0.5832 0.4481 

3 1.5762 1.3306 1.2350 0.5770 0.4655 0.3672 

∞  1.4553 1.2878 1.2139 0.3525 0.3116 0.2555 
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Table 4. Critical Grashof numbers at the upper plate η = 1 when φ =1. 
 
 
 
 
 
 
 
 
 

 
Table 5. Mass flow rates in the primary and secondary flow directions when M2 = 4. 

 
 
 
 
 
 
 
 
 
 

 

Table 6. Mass flow rates in the primary and secondary flow directions when φ =1. 
 
 
 
 
 
 
 
 
 
 

   The numerical values of rate of heat transfer at the upper and lower plates i.e. ( ) 1
dT d

η
η

=
 and ( ) 1

dT d
η

η
=−

, respectively, are  

presented in Tables 7 and 8 for various values of 2 2, ,  and M K G φ  taking 1, 0.025rR P= − = and 2rE = . It is evident from Tables 
7 and 8 that rate of heat transfer at the upper plate ( ) 1

dT d
η

η
=

 increases with the increase in G and decreases with the increase in 

either 2K  or φ . ( ) 1
dT d

η
η

=
 increases with the increase in 2M  when φ ≠ ∞  and it decreases on increasing 2M  when φ = ∞ . 

Rate of heat transfer at the lower plate i.e. ( ) 1
dT d

η
η

=−
 decreases with the increase in G and increases with the increase in either 

2K  or φ . ( ) 1
dT d

η
η

=−
 decreases with the increase in 2M  when 0φ = and increases with the increase in 2M  when 0φ ≠ . Thus 

we conclude that free convection tends to increase rate of heat transfer at the upper plate whereas it has reverse effects on the rate 
of heat transfer at the lower plate. Rotation and wall conductance have tendency to reduce rate of heat transfer at the upper plate 
whereas it has reverse effects on the rate of heat transfer at the lower plate. Magnetic field tends to increase rate of heat transfer at 
the upper plate when both the plates are either non-conducting or finitely conducting and it has tendency to reduce rate of heat 
transfer at the lower plate when both the plates are either finitely conducting or perfectly conducting. 

 

                   Gcx          -Gcy                 
2M ↓

2K →  3 5 7 3 5 7 

2 1.4816 1.2559 1.1902 0.7315 0.5021 0.3723 

4 1.6350 1.3423 1.2388 0.7749 0.5832 0.4481 

6 1.7717 1.4313 1.2927 0.7916 0.6477 0.5153 

                                Qx/ρυ          -Qy/ρυ              

φ↓    2K →  3 5 7 3 5 7 

0 0.0608 0.0270 0.0155 0.1101 0.0773 0.0582 

1 0.0688 0.0332 0.0194 0.0925 0.0713 0.0556 

3 0.0714 0.0369 0.0221 0.0796 0.0661 0.0532 

∞  0.0714 0.0407 0.0254 0.0634 0.0584 0.0493 

                       Qx/ρυ          - Qy/ρυ             
2M ↓

2K →
 3 5 7 3 5 7 

2 0.0624 0.0285 0.0166 0.1048 0.0750 0.0570 

4 0.0688 0.0332 0.0194 0.0925 0.0713 0.0556 

6 0.0721 0.0370 0.0220 0.0809 0.0671 0.0539 
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Table 7. Rate of heat transfer at the upper and lower plates when M2 = 4 and 2φ = . 
 
 
 
 
 
 
 
 
 

 
Table 8. Rate of heat transfer at the upper and lower plates when K2 = 5 and  G=4. 

 

 

 

 

 

 

 

 
 
6. Conclusions  
 
   Combined free and forced convection flow of a viscous incompressible electrically conducting fluid in a rotating channel is 
investigated. Asymptotic behavior of the solution for the velocity and induced magnetic field is analyzed for large values of  M2 
and K2 to gain some physical insight into the flow pattern. Free convection causes reverse flow in the primary and secondary flow 
directions and tends to accelerate primary flow and has tendency to accelerate secondary flow in the lower half of the channel. 
Free convection tends to increase primary and secondary induced magnetic fields throughout the channel. Magnetic field retards 
fluid flow in both the directions. Wall conductance accelerates fluid flow in the primary flow direction and it retards fluid flow in 
the secondary flow direction. There exists flow separation at the upper plate due to free convection in the secondary flow direction. 
Free convection tends to increase rate of heat transfer at the upper plate whereas it has reverse effects on the rate of heat transfer at 
the lower plate. Rotation and wall conductance tend to reduce rate of heat transfer at the upper plate and have reverse effects on the 
rate of heat transfer at the lower plate. 
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