INTERNATIONAL

I ional T | of Encineerine. Sci d Technol JOURNAL OF

MultiCraft nternational Journal of Engineering, Science and Technology ENGINEERING,
Vol. 2, No. 6, 2010, pp. 22-46 SCIENCE AND

TECHNOLOGY

www.ijest-ng.com

© 2010 MultiCraft Limited. All rights reserved

Decomposition of elastic constant tensor into orthogonal parts

C. Dinckal'*, Y.C. Akgoz*

Y"Department of Engineering Sciences, Middle East Technical University, Ankara TURKEY
2 Department of Engineering Sciences, Middle East Technical University, Ankara TURKEY
“Corresponding Author: e-mail:cigdemdinckal2004@yahoo.com, Tel +90-505-6709413, Fax.+90-312-2101269

Abstract

In this paper, we have elaborated on the decomposition methods such as irreducible decomposition, orthonormal tensor basis,
harmonic and spectral decomposition for elastic constant tensor. Irreducible decomposition and orthonormal tensor basis
methods are developed by using the results of existing theories in the literature. As examples to each decomposition method, we
give results for the decomposition of elastic constant tensor in triclinic symmetry as well as materials with isotropic and
transversely isotropic symmetry. Numerical examples serve to illustrate and verify each of the four decomposition methods.
These examples are used to compare the decomposition methods explicitly. As a result of comparison process, it is stated that
the spectral method is a non-linear invariant decomposition method that yields non-linear orthogonal parts contrary to the other
three methods which are linear invariant decomposition methods. It is also shown that total scalar (isotropic) part is decomposed
into two physically meaningful orthogonal parts by irreducible decomposition, orthonormal tensor basis and spectral methods.
While in harmonic decomposition method, decomposition of total scalar part is not orthogonal. We propose that it is possible to
make these parts orthogonal to each other.

Keywords: Elastic constant tensor; irreducible decomposition method; orthonormal tensor basis method; harmonic
decomposition method; non-linear invariant decomposition method.

1. Introduction

Most of the elastic materials in engineering are anisotropic; metal crystals, fiber-reinforced composites, polycrystalline textured
materials, biological tissues, rock structures. In order to understand the physical properties of the anisotropic materials, use of
tensors by decomposing them is inevitable. The constitutive relation for linear anisotropic elasticity, defined by using stress and
strain tensors, is the generalized Hooke's law

oij = Cija i - (1)

This formula demonstrates the well known general linear relation between the stress tensor (symmetric second order tensor)
whose components are 0j; and the strain tensor (symmetric second order tensor) whose components are &,,. The coefficients of

linearity, namely CijkI are the components of elastic constant tensor (elasticity tensor) and satisfies three important symmetry

restrictions. These are
CijkI=CjikI CijkI=CijIk CijkI=Cinj! 2

which follow from the symmetry of the stress tensor, the symmetry of the strain tensor and the elastic strain energy. These
restrictions reduce the number of independent elastic constants CijkI from 81 to 21.
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In the literature, orthogonal decomposition methods are mainly distinguished as orthonormal tensor basis, irreducible, harmonic
and spectral decomposition methods for elastic constant tensor. There are also other works for general decomposition of any rank
tensors, these can be summarized as, Spencer (1970) and Jari¢ (2003) employed only elementary algebra and makes no group
theory and gave a method in which a general tensor of any rank n can be expressed in terms of traceless symmetric tensors of rank
n or less. Zou et al. (2001) realized orthogonal decomposition for any n rank tensors.

The purpose of this work is to study and elaborate on each orthogonal decomposition method for elastic constant tensor and
compare these methods. In the present paper, irreducible decomposition, orthonormal tensor basis, harmonic decomposition,
spectral methods and as examples of these methods to triclinic, isotropic and transversely isotropic materials are given in sections
2, 3, 4 and 5 respectively. In section 6, all decomposition methods are compared. Finally, in the last section, the results of
comparisons for orthogonal decomposition methods are discussed and conclusions pertinent to this work are stated.

2. Irreducible Decomposition Method

We have encountered many works done related with irreducible decomposition in the literature. For instance; Jerphagnon et al.
(1978) derived certain results for the irreducible tensors in their natural form. Andrews and Ghoul (1982) followed the technique
of Jerphagnon et al. and gave the reduction of a fourth rank cartesian tensor into irreducible parts under the three-dimensional
rotation group. Walpole (1984) and independently Kunin (1982) realized algebraic decomposition to simplify tensor functions
operating on elastic constant tensor using the irreducible tensor algebra. Surrel (1993) used the group of rotations associated with
elastic symmetry provides an irreducible representation. There are various related ways of considering elastic constant tensor in
terms of rotational group properties of tensors based on complex vectors and tensors. (See also, Mochizuki (1988)) Finally
Radwan (2001) carried out the method to elastic compliance tensor.

We follow the works of Jerphagnon et al. (1978) and Andrews and Ghoul (1982). Any rank-n cartesian tensor can be written as
the direct sum of irreducible tensors in the cartesian representation. The term irreducible indicates sets that cannot be resolved into

subsets with seperate linear transformations. The reduction of a (rank-n) cartesian tensor T(n)generaly results in a sum of

irreducible tensors, with some weights (j) represented more than once. (where 0 < J <N ), it is can be accompolished by the

n Ni» .
(GHC)]

formula: Ty = 2 2 T((nj);q), where @ is called the seniority index of the irreducible tensor T, (irreducible cartesian tensor
j=0 g=1

which is symmetric and traceless) and Nrgj) is the multiplicity of weight j in this reduction, it denotes the number of

independent weight- ] irreducible tensor parts.

an-3k—j-2
: 3)

(D) N[ "
O TSH 1

where 0<k<[(n-)/3} Each irreducible tensor has (2j+1) independent components. So that the total number of components in the

reductionis Y. (2j+1)N{P =3",
j=0

The natural projection of xJ onto the irreducible subspace H JJ of traceless symmetric tensors of order j is denoted by

(0:q)
iyl s KKy K

ED — EIEIL)ZH.k,;h'z»--'r The principal element in the reduction procedure is the mappings of the minimal rank
0:0)

tensor subspace H jJ q onto H ", we have chosen the mappings iy i koK K
: sk

i.q such that they are orthonormal and ¢y will be

reduced to identity matrix, 5” , where gpq is a symmetric matrix which was used and defined in Andrews and Ghoul (1982)

through the relation
(1) (0:p) (0:q)
Opq Eklkz....kj ;IIIZ....Ij=Qi|i2...in;klkz...kj Qi iy sk k “4)

In this work, this relation is reduced to

iy

(1) (0;p) (0:9)
O g Eklkz....kj;Illz....lj=Qi1 ;klkz...kailiz...in;klkz...k]-' (%)
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(p)

The mappings Qk Ky k ii,..i, dual to sy, AT defined by the relation

~ (0;p) (0;p)
Kok o sy = Qi i k. (6)

from the tensor T

iy, 38

The dual mappings extract the natural forms t“ p)s

s, _ 0
ts 1S2-8) Qsls2 ..... sjiliz.“in-l-ili2 ...... i (7)
These tensors can be embedded in the tensor space of order n through the mapping
(ka9 (i:p)
Tilizu.i,, - iliz‘..in;klkz...kjtklkz‘..kjo ®)
or
T.0 q) (0;q) A (0:p)
T . =Q g e KKy ok lekz....kJ ;|l|2....|n-|-|||2....|n . (©)

These results of Andrews and Ghoul (1982) can be developed such as making decomposed parts orthogonal. Since decomposition
of the elastic constant tensor into irreducible parts can be obtainable from Andrews and Ghoul (1982) is different than the
following results presented in eqgs. (11), (12), (13), (14) and (15). Our irreducible parts are orthonormal to each other but theirs are
not. Before giving the results of the reduction of elastic constant tensor, it is illustrated that the orthogonality condition is satisfied
during the decomposition procedure. According to orthogonal process, given in Appendix A and taking into account the elastic
symmetries such as eq. (2), elastic constant tensor is decomposed as

Cij = Ci(jlgl;l) + Cu(n% 24 C.‘,f. D C.ﬂﬁ 2 4 Cl(jr(‘l D, (10)
where
Cia" = 5 164C poag (11
Cl(jl(()I 2 = 90 (3§|k5 +35I51k 2é‘ijé‘kl )(3Cpqpq _Cppqq )! (12)
2
C.‘,E. = (§|ijp|p + 04 C jpip + 91C ko + % Cipio )_E(é‘iké‘jl + 610k )C papq (13)
cl2) = 5 5Cy 00 — 4C L4 (5C, 2 5.0(5C o, —4C; 2 5.(5C,0, —4C;
ijkl u( klpp — kplp )+ kl( ijpp — ijp ) |k( jlpp — jplp ) J|( ikpp — ipkp )
2 2
— 331 (5C juop —4C jpip ) — 15 Sk (5Ciipp = 4Cippp )+ (25]k5| +26y 551 = 56501 )(5C ppgq = 4C papg )»
(14)
I(J|f| = (Cukl + Clklj + CI|Jk )/ 3- [(Cumm + 2Clme )5kl + (Cklmm + 2Ckmlm )
(Cikmm + 2Cimim )51 +(Cjimm + 2C jrum )%k +(Citmm + 2Cium )0 i +(C jm + ijkm )ou1/21+
(C ppmm 2C pmpm )(5ij5k, + 5ik§j| + 5i|5jk )/105, (15)

where CS%D C,ﬁg, ? are scalar parts, Clﬁill) Clﬁa ) are deviators and Cigf:,;l) is the nonor part. As it is given by the group

representation theory for the elastic constant tensor that 2D +2D@ + D(4), where the superscripts denote the weight of the
representation, (See, Heine (1960)). This is the decomposition for triclinic materials which are anisotropic materials with no elastic
symmetries.

2. 1 For Isotropic Materials

The traditional form of decomposition in isotropic media which is well known in the literature as

Cija = 4004 + 1( 0y + 530 ), (16)
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where A and ¢ are invariant elastic constants and they are also called Lame constants. The traditional form of stress-strain relation
for isotropic solids can be defined as

It is also well known that stress tensor is decomposed into spherical and deviatoric parts and it is given as

1 1
Oj zgo-rré‘ij'f'(o-ij_go-rré‘ij )- (18)

For irreducible decomposition method, there are only two irreducible parts for isotropic materials which are the scalar parts:

Ciﬁgfl) and Cig(k);z) mentioned in the previous section. By writing these parts in matrix form, we get

111000 4 -2 =20 0 0
111000 -2 4 -2 00 0
C(0;1)=K111000 c<0;2>=9‘2 -2 4000. )
" 000O0OOO ™ 310 0 0300
000000 0 0 00 30
00000 O] 0 0 0 0 0 3]

If we add those two parts, isotropic elastic constant tensor is obtained by irreducible decomposition method, isotropic elastic
constant tensor can be rewritten instead of eq. (16), as follows

1 1
Ci =Ky +2G(E(5ik5jl +5il5jk)_§5ij5kl)9 (20)

where K =(C,,+2C,,)/3 and G=pu= (C11 - Clz)/Z, where K is the bulk modulus and G is the shear modulus. . In eq.

(20) the decomposed parts are orthogonal to each other whereas the decomposed parts in traditional form given in eq. (16) are not
orthogonal. From egs. (1) and (20), the stress-strain relation, for isotropic materials, can be obtained as

o, = Ke, 6 +2G(g; —%8”5"-). 1)

rrij

This is also different from the traditional form and it is a new form in stress-strain relations in the literature. Equation (21) was also
obtained in Landau and Lifshitz (1959) by a different method which was based on the expansion of the strain energy density

function in powers of &;.

2.2 For Transversely Isotropic Materials

There are five irreducible parts for transversely isotropic materials which are two scalar parts: Ciggl; D , SSI 2 , two deviators:

Céi;l) , Cigil;z) , and a nonor part Ci(jﬁl;l) , mentioned in the previous section. These parts are as follows:

on _ &
Cia =—9%. (22)
9
0:2) _ B
ikl = _(35ik5j| +38,0 ) —26;;0y ): (23)
90
(zn _ 7V
Ciw ' = %(Zé‘iké‘jl +260 —305103 ) — 385030y + 051050 + 53030 )’ (24)
Ci(jkzliz) :%(_4§ik§jl =480 +106;0y —158303;0y — 1585050 + 6331030 + 685,035 + 635550y + 655055 ), (25)
A
C;jﬁ’l) zg(‘sik‘sn +0y0 ) + 00y — 5051030y — 503030 —56503 5y = 503030y =530y j =533;03 0 +3585,03;03 55 ), (26),

where ¢ =2C,, +2C,, +4C,; +C;;, p=7C,,-5C,, +2C,; +12C,, —-4C,,
y =3C,,—-2C,;-2C,, -C,,, n=71C,-C;-C,, -5C;+4C,,

and

A=C, +C,,—2C,, —4C,,.
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If we add those five parts, elastic constant tensor for transversely isotropic material is obtained by irreducible decomposition
method as the same form in eq. (10).

3. Orthonormal Tensor Basis Method

In the literature, orthonormal tensor basis method had been studied in different names such as integrity basis and form-invariant.
First orthonormal tensor basis method was proposed by Gazis et al. (1963), developed by Tu (1968). He used the method “integrity
basis' and treated the strain energy function as a polynomial in the strain components and lead to determination of integrity basis
for invariant functions of the strain components for each one of the 32 crystallographic point groups. Using the integrity basis,
orthonormal tensor basis which spans the space of elastic constants was derived.

In form-invariant method, a physical property of tensor is resolved along the triad V,V,V; denoting the unit vectors along the

crystallographic axes. The process of resolution yields the invariants. Forming invariant is an indispensable step to construct
orthonormal tensor basis elements needed for decomposition process. Srinivasan (1998) proposed form invariant method which
was developed by Ghaith and Akgoz (2005) for second and third rank tensors such as piezoelectric tensors.
In this paper, we have used form-invariant method which is a different one from the integrity basis method (by Tu (1968)). It is
shown that two existing decomposition theories have close relationship since they give the same results for decomposition of
elastic constant tensor under the title of orthonormal tensor basis method. It is first time that we apply form-invariant method in
order to decompose elastic constant tensor for triclinic materials. The form invariant expression for the components of elastic
constant tensor, the elastic stiffness coefficients is

Cijkl =VaiVuiVeVai Apea» (27)
where summation is implied by repeated indices, V,; are the components of the unit vectors v, (@ =1,2,3) along the material
direction axes. Aabcd is invariant in the sense that when the Cartesian system is rotated to a new orientation OXY’Z’, then eq.
(27) takes the following form:

Cli=VaV'tV oV a Papeas (28)
where V,V,,V; form a linearly independent basis in three dimensions but they are not necessarily always orthogonal. Their

relative orientations in the seven crystal systems are well known and given by Nye (1957). The corresponding reciprocal triads
must satisfy the following relation (taken from Srinivasan, Nigam (1969) and Srinivasan (1998)):

VaiVej = 0 (29)

Form-invariant expression of isotropic symmetry is formed by the following two basis elements (see for instance; Fedorov
(1968)):

5i8as 548, + 8,5, (30)
The decomposition of Cijkl for tricilinic system with no elastic symmetries is given in terms of its orthonormalized basis
elements as (see also; Tu (1968) and Srinivasan (1998))

Ciu = 2(C. AL AL (K = 1XXI), 31)
K

where (C, AITH) represents the inner product of Cy and K™ eclements, Ai;<k|, of the basis, where

(C Ajkl) =5 (Cn + sz +C33) + 2(C12 +C13 +C23)]

( A]kl \/_ [2(C11 + C22 + C33) + 6(C44 + CSS + C66) - 2(CIZ + C13 + C23 )]’

(C, Ai;LII \/— [3C;; —(C,, +C, +Cyy)], (G, Amd \/— [3C;; +3C, —2(Cp, +C; +Cyy)l,

(C A]kl 2(Cll + C22 + C33) + 4(C44 + CSS + C66) + 2(CIZ + C13 + C23 )]

ﬁ~
[en)
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€Al)- \f (CutCam2Cul, (CA=bE,~Cal (© A=, -Cu

XIl
(C. A =2[Cu ~Csl. (C.AL)=2V2C,,, (CA})=2C,, (CAY)=2C,,
Il XIV XV
(G, Aijkl )= 2C25 (e Aijkl )= 2\/—C45 (e Aijkl )=2C, (C, Aijkl )=2Cy,
XVII XVl XIX
(C A ) =2C5, (C A )= 2\5056’ (C, Ay )=2C,,, (G, Ajkl )=2Cy,,
XXI
(C, Aijkl )=2C,,.
Here, elastic constants are given in Voigt notation.
3.1 For Isotropic Materials
The elastic constant tensor for isotropic materials is decomposed as same as the form given in eq. (19) and stress-strain relation

is also identical with the expression presented in eqs. (18), (21). So decomposition for isotropic materials give the same
decomposed parts with irreducible decomposition method.

The decomposition of Cijkl for the isotropic system is given in terms of the orthonormalized basis elements as

Cin = Z(C Aijkl)AiJkl (G, AijkI)Aijkl +(C, Aukl)Aukw(K =1,11), (32)

1 1

where (C, AITH) denotes the inner product of Cy and Ai;m =§0{ijkl =—0,04, AJH —2a)-

1
\/g (3,3ijk|

These are orthonormalized basis elements for isotropic system. it is possible to compute inner products for isotropic system, they
are

(C,Ay) = C11 +C,, +Cy; +2C, +2C; +2C,,], (33)

[4C,, —4C,, -4C,; +4C,, +4C,; -4C,, +12C,, +12C,, +12C]. (34)

( Aijkl \/g

Same procedure is valid for other symmetry types but number of basis elements are changing depending on the number of
independent elastic constants of material symmetry. The orthonormalized basis elements for isotropic system are constructed by
performing the several steps given in Appendix B.

3.2 For Transversely Isotropic Materials
The form invariant expression for transversely isotropic materials

Cin = A4 + B + AVin + Al + AsEija» (35)
where Oy :5"5 , ﬂijkl = é‘ikéjl +5iI5jkf Vi =V3iV3iVaVan >
5ijk, V3,V3J§k| +v3kv3|§ and
i = V3iV3k5j| + V3jV3|5ik + V3iV3|5jk + V3jV3k5iI.
A, A, A, A, and A, are invariant elastic constants for transversely isotropic system. (See, Srinivasan and Nigam

(1969))
The decomposition of CijkI for transversely isotropic system is given in terms of the orthonormalized basis elements as

Ciju = (C, AijkI)AiJkI +(C, Aum)Aukl +(C, A}H)Am +(C, Aukl)Aukl +(C, Ai\j/kI)Ai\j/klﬂ (36)

where (C, Aij,d) denotes the inner product of Cijkl and
1
Ai}u :m(lsﬁjm _IBijkI _aijkl)’ Amd == ukl 157ijkl *+ Piju _Saijkl ),

1
Ai\j/kl :Z(zgijkl _é}jkl +37ijk| _ﬂijkl +aijk|)5
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which are orthonormalized basis elements for transversely isotropic system. Since first two orthonormalized basis elements of
transversely isotropic system are same with isotropic symmetry, inner products are also same, the other inner products for
transversely isotropic system are found as

(C A}'k', T -3C,, -3C,, +12C,,-2C,, -2C,, —2C,, —4C,, —4C,, —4C], (37)
(C, A“k, [—3Cll -3C,, -10C,, +8C,; +8C,, +4C,, +4C, +4C ], (38)
(C Ajkl C11 sz + 2C12 + 4C44 + 4055 4C66]' (39)

This method is orthogonal and it is proved by constructing orthonormalized basis elements in Appendix B. The decomposed parts
are different from the expressions given in egs. (22)-(26) obtained by irreducible decomposition method.

4. Harmonic Decomposition Method

In the literature, harmonic decomposition had been studied extensively. Firstly, Backus (1970) proposed a representation of
elastic constant tensor in terms of harmonic tensors. These are based on an isomorphism between the space of homogeneous
harmonic polynomials of degree g and the space of totally symmetric tensors of order ¢. Furthermore according to Sirotin (1975)
elastic constant tensor was decomposed with respect to general linear group and then orthogonal group O(3). Baerheim (1993)
followed Backus (1970) and developed the method.

In harmonic decomposition, the action of SO(3) on a vector space is said to be irreducible when there are no proper invariant
subspaces. It is deduced that there is a decomposition of the space of elastic constant tensors ( E la) into a direct sum of
orthogonal subspaces on which the action of SO(3) is irreducible. An important theorem of group representation theory can be
summarized as: every space on which the group of rotations acts irreducibly is isomorphic through an SO(3) -invariant map

with an appropriate space of harmonic polynomials. In view of isomorphism, there is a decomposition of E la into a direct sum of
spaces of harmonic tensors. (See, for instance; Forte and Vianello (1996))

Besides, there is an SO(3) -invariant isomorphism between E la and the direct sum

R @® R @ Dev @ Dev @ Hrm. We give a brief review for this method as follows: The decomposition of elastic constant
tensor for anisotropic materials possessing triclinic symmetry, we obtain

Cijkl = ukl +[5 Hy +5k|Hij+5ikHj| +5 H.k+5.|H,k+5,kH.|]+ H[55 + 6, 5

1 1
5,30 1+ 63hy + oy hy _Egikhjl __5j|hik 5|th 5jkhil +h(5;0y _Eé}k5j| _56}|5jk)~ (40)
1
Where H = E(C AT (C opaa ~ C papa)»
1 h 2 2
Hij :E Cijkk Cukk5 Cikjk _gcjkjké‘ij > j = g(cijpp _Cipjp)_géij (Crrpp _Crprp )

In this method, we use the notation of Baerheim (1993).
The total scalar (isotropic) part of harmonic decomposition (obtained from eq. (40)) is (denoted as S )

S 55k|

58y + 3,0,
(2C,. —C 4 ida * o Jk)(3c —C o) (41)

ppaq Papq ) 30 Papq

Furthermore the total deviatoric part or second rank traceless tensor is composed of summation of the linear combination of
second order tensors( H j and h-- ) given in eq. (40), which is (denoted as D)

§k|(5Cijp ijp )+ (Scklpp 4Ckp|p )+ §|k(3cjplp lep )+ 5|I(3C1pkp _2Cjkpp )+

10
rprp ZC pprr )

(42)

8,(3C

ipkp

4 2 8
- 2Cikpp) + 76jk (3Ciplp - 2Ci|pp ) + (6ik é‘jl + é‘il é‘jk )(Ecpprr - 7Crprp j + §ij §k| (EC
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From eq. (40), harmonic (nonor) part is obtained as the same expression as Cigﬁ; D given in eq. (15).

Moreover, the results for elastic constant tensor decomposition are given by Onat (1984, 1994) and quoted by Cowin (1989),
Forte and Vianello (1996, 2006), He (2004), Ting and He (2006), Zheng (2007), Annin and Ostrosablin (2008) in which elastic
constant tensor is decomposed into two scalar, two deviatoric and nonor parts. These decompositions are the same as harmonic
decomposition method since scalar, deviatoric and nonor parts are common and they are identical with those obtained from
harmonic decomposition method, only difference here is notations used for scalar, traceless symmetric second rank tensors and
nonor parts.

According to these studies, decomposition of elastic constant tensor for anisotropic materials possessing triclinic symmetry is
expressed as follows:

1 1

Cin = E(zc ooaq — C papg )%5i0u %(3Cpqpq = C o (Ou0y +6,0,) + 6 Ay + Oy A + 6, By + 43)
0By + 0By + 4By + Zi»
From eq. (43), total scalar part is

1 1
E(chpqq _Cpqpq )5i15kl +£(3Cpqpq _Cppqq )(5ik5ﬂ + 5il51'k)' (44)
The total deviatoric part is

5ij Ay + 3y A + O B, + 5j| By + 9y By + 5jk S (45)

The components of deviatoric part are

Aij =( 5Cijkk _lzcikjk - 55iijpkk + 45iijkpk)/21’
B, = (—6C;j +9C +20,C e —36;C )/ 21.

Finally nonor part is the same as Cigﬁfl) given in eq. (15).

ppkk pkpl

Furthermore the decomposition of elastic constant tensor given in Forte and Vianello (1996, 2006) contains misprints in
components of scalar part and total deviatoric part. In eqgs. (44) and (45), these parts are corrected.

4. 1 For Isotropic Materials
Like irreducible decomposition method, there are two irreducible parts constituted total isotropic (scalar) parts which are
found by using eqs. (43) and (44) and these decomposed parts are

1

E(ZC ppag Cpqpq )00y (46)
and

1
_0(3(: papq _Cppqq )(é‘iké‘jl + 5i|5jk) (47)

The sum of eqs. (46) and (47) gives total scalar part which is obtained in eq. (44).

4.2 For Transversely Isotropic Materials
There are five irreducible parts for transversely isotropic materials which are two scalars and two deviators and a nonor
(harmonic) part. The decomposed parts of total scalar part are the same as those given in egs. (46) and (47) and decomposed parts

of total deviatoric part which are Cigil;l) and Cigil;z) found in eqs. (24) and (25) respectively, are obtained by arranging equation
(42) so we get total deviatoric part in harmonic decomposition method.
Nonor part is equal to Ciﬁﬁl;l) given in eq. (26), we obtain harmonic part for transversely isotropic materials in harmonic

decomposition method.

5. Spectral Decomposition Method

The spectral decomposition of C (elastic constant tensor) for triclinic materials which is well known in the literature, given by
Cowin et al. (1991), Sutcliffe (1992) and Rychlewski (2000)

INGORN(S!
C=4(n ®n ) summationoverk, (k=1,...,6.) (48)
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BN(Y)
where A, are the eigenvalues of elastic constant tensor and N are the corresponding eigenvectors of elastic constant tensor.

The symbol &® is the dyadic (tensor) product.
EN(S N3]
N ®Nn =N are the eigentensors (idempotent tensors) and they are orthogonal to each other.

This decomposition method is a non-linear orthogonal method since eigenvalues constituting decomposed parts, are expressed in
terms of elastic constants.
In spectral method; the orthogonality condition is checked by using orthonormalized basis elements. In order to construct
orthonormalized basis, the following properties must be satisfied

ENCO RN S(6)  ,(6)
I=n ®n +...... +n ®n ,
which yields

I=N,+N,+N; +N, +N,+N,

(Where I is the identity matrix.)

N, N,,...N,, N-N=N
NN =0 (if K#L)

So by using this method, decomposed parts of elastic constant tensor is orthogonal to each other.

5.1 For Isotropic Materials
For isotropic symmetry, there are two eigenvalues which are C,, +2C,, (4,) and (C,, —=C,)/2 (A4,). These eigenvalues
< (k)

are found by the formula: |C -4 | =0, the normalized eigenvectors are obtained by the formula: (C—A4, )N =0, where
(k) . .
N are normalized eigenvectors.
The elastic constant tensor for isotropic materials can be written as
6
<) =) <(k) (k)
C=4( ®n )H+4(.n ®n ). (49)
k=2
Recall that 4, =4, = A, =A; = A, and tensors that have the same eigenvalues can be combined and the elastic constant

tensor can be written as two parts, we obtain the same parts in eqs. (19) and (31) given in irreducible decomposition and
orthonormal tensor basis methods for isotropic materials.

5.2 For Transversely Isotropic Materials
For transversely isotropic symmmetry like isotropic symmetry, eigenvalues are found by the formula; |C—ﬂk||=(),

corresponding normalized eigenvectors are obtained by the formula:

(C— AN = 0. From these formulas, cigenvalues are
4 =(C,,+C,, +Cy —4/(C,, +C), —Cy,)* +8C2) /2,
2, =(C,,+Cp, +Cyy +4/(C,, +Cp, —Cy,)* +8C2) /2,
4,=C,-C,, A, =A=2C, A =C,-C,.

The corresponding normalized eigenvectors are
«(1) 1

1 «(2)
n = C.,C.,b,0,0,0f, n :(—)C ,C..,b,,0,0,0] ,
m[ 13 13 1 ]T m[ 13 13 2 ]T

7 =L [1-1,0,0,0,0T, 7Y =[0,0,0,0,L,0F, 7 =[0,0,0,1,0,0],

:ﬁ
~(6)

n =[0,0,0,0,0,1],

where b, = (— C, —C, +Cy; —4/(C,, +C,, —C,,)* +8C2 )/2)/2 and
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bz = (_ C11 —C12 +C33 +\/(C11 +C12 —C33)3 +8C123)/2)/2

By using these eigenvalues and eigenvectors, elastic constant tensor for transversely isotropic material can be decomposed by
spectral method as

6 - -
c=Y 40" ®n") (50)
k=1

Since spectral decomposition is a non-linear method, it gives decomposed parts in terms of eigenvalues which are functions of
elastic constants. The results are different from the other three decomposition methods.

6. Numerical Examples

To support the analytic results of four methods, we give illustrative numerical examples for triclinic, transversely isotropic and
isotropic symmetries. The main purpose of these examples from various symmetry systems to figure out not only the significant
differences but also the critical similarities among all decomposition methods more explicitly.

For triclinic material, let C be an elastic constant tensor of Low Albite (taken from Brown et al. (2006)) which has the matrix
form in GPa,

[ 69.1 34 308 51 —-24 —-09]
34 1835 55 -39 -77 -58
30.8 55 1795 -87 7.1 -9.8

C;= ) (51)

51 -39 —-87 249 -24 -72

-24 =77 7.1 -24 268 05

-09 -58 -98 -72 05 335]

Applying irreducible decomposition method, we use the formulas given in section 2 and we obtain the scalar, deviatoric and nonor

parts respectively. Hence elastic constant tensor for Low Albite can be decomposed as

[63.6333 63.6333 63.6333 0 0 0 54.88 —27.44 —27.44 0 0 0
63.6333 63.6333 63.6333 0 0 0| |-27.44 54.88 —27.44 0 0 0
63.6333 63.6333 63.6333 0 0 0| |-27.44 —2744  54.88 0 0 0
Ci = 0 0 000 0 0 0 0 41.16 0 0"
0 0 00 00 0 0 0 0 41.16 0
i 0 0 000 0f | 0 0 0 0 0 41.16]
[~ 57 .1467 0 0 0 -1 —3.64 |
0 32.8533 0 1.48 0 — 3.64
0 0 24.2933 1.48 -1 0
0 1.48 1.48 14 .2867 ~1.82 —o0s|
-1 0 -1 -1.82 -8.2133 0.74
| - 3.64 — 3.64 0 -0.5 0.74 - 6.0733 |
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0.0419 - 0.4333 0.5381 - 1.3571 0.7371 - 0.1971
-0.4333 -0.2152 -0.1048 -0.2714 3.6857 - 0.1971
0.5381 —0.1048 0.1733 - 0.2714 0.7371 - 0.9857
-1.3571 -0.2714 - 0.2714 0.0419 0.3943 —1.4743 "
0.7371 3.6857 0.7371 0.3943 0.2152 0.5429
| —0.1971  -0.1971 - 0.9857 —1.4743 0.5429 0.1733 |

[ 7.6915 —1.76 —5.9314 6.4571 —2.1371 2.9371 |
~1.76  32.349 —-30.589 -5.1086 -11.386 —1.9629
—~5.9314 -30.589 36.52 -9.9086 7.3629 —8.8143
6.4571 —5.1086 —9.9086 —30.589 —0.9743 —5.2257|
—2.1371 —11.386 7.3629 —0.9743 -5.9315 -0.7829
| 29371 -1.9629 -8.8143 -5.2257 -0.7829 -1.76 |

(52)

Using orthonormal tensor basis method, we apply the formula given in eq. (31). For this reason inner products are

calculated as:

(C,Aj) =190.9, (C,Aj)=184.0731,

(C,Ajy)=43.4376, (C,Aj)=-18.302, (C,A})=-69.8894, (C,Af)=-12.4924,
(C, Al )=-80.893, (C,AW')=253, (C,AX)=-2.687, (C,A¥)=-20.3647,
(C, AL =142, (C,A})=-48, (C A" )=-154, (C A" )=-6.7882,

(C, A ) =-18, (C,A")=-11.6, (C,AY")=-19.6, (C,AL")=1.4142,
(C,A)=-78, (C,AY)=-174, (C,ARx")=102.

The elastic constant tensor for triclinic material, Cijkl , can be represented in the following matrix form:

[63.6333  63.6333 63.6333 0 0 0| | 54.88 —27.44 -27.44 0 0 0]
63.6333 63.6333 63.6333 0 0 0| |—27.44 5488 —27.44 0 0 0
C _|63:6333 63.6333 636333 0 0 0| |-27.44 -2744  54.88 0 0 0,
P 0 0 0000 0 0 0 41.16 0 0
0 0 0000 0 0 0 0 41.16 0
i 0 0 000 0| | 0 0 0 0 0 41.16]
[—17.7333 0 00 0 0] [ 0 10.5667 —-5.2833 0 0 O]
0 -17.7333 0 0 0 O 10.5667 0 —-52833 0 0 O
0 0 354667 0 0 O N —5.2833 —5.2833 0 0 0 O N
0 0 0 0 0 O 0 0 0 0 0 O
0 0 0 0 0 O 0 0 0 0 0 O
i 0 0 000 0] [ 0 0 0 0 0 0]
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0
-2.55

-2.55

0 0 O

0
5.1

0

0

0
0

0

0
0
0

—5.2833
-12.76

-12.76
25.52

25.52
-12.76
-12.76

-12.76

0
0

0
—-12.76

-12.76

25.52
0

-12.76

0

0

0
0
0

0
0
0

0
0
0

-0.95

0 0O
0
0

0 095 0

0
0

0
0

1265 0 0 O
-1265 0 0 O

0
0

-12.65

0
0

12.65

0 00O
0 00O
0 00O
0 00O

0
0
0

-24 0

0000
0 000
0000
0 000
-24 0 0 O

0
0
0
0
0

0

0 0 00O

0
0
0
0
0
0

0
0

0 0 71

0

0
0

0
0

0
0
0

00 710

-0.9

0 00O0O
0 00O0O
00 00O
00 00O
0 00O0O
-09 0 0 0 O

0
0
0

0

0

0
-24 0

0

0

0

0
0

-24

0 00
0 00
0 00

0
0

0
0

000 00O

-57.2

0 572 0 0 0 O

000 0O
000 00O
000 0O
000 0O

0
0
0
0
0 00

0

0

00 -72

0

0
0

0

-72 0

=77 0

0 00

0
0
0

-77 0 0 0

0

0
0
0
0
0

00 00
00 00
00 00
0000
0000

0.5

0

0 0 0 0 05

(53)

0 0 0 51 00

0
0

0

0
51 0 0

ol

0

0
0

-9.8

0
0

0
0
0 00

0

0
0
0

0
0

0
0
-98 0 O

0

0 0

0

0

0
0

0
0

-87 0 O

0
-8.7

0 00

0 0

-5.8

0 0 0 0O
0 0 00O

0 000

0 000

-58 0 0 0

0
0

0

0

0 0 -39 00

0

0 00
0 00

0

-39 0

0

By applying harmonic decomposition method, we use the formulas given in section 4 and we obtain the scalar, deviatoric and

nonor parts respectively. Hence elastic constant tensor for Low Albite can be decomposed as
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[36.19 36.19 36.19 0 0 0] [82.32 0 0 0 0 0
36.19 36.19 36.19 0 0 0 0 8232 0 0 0 0
36.19 36.19 36.19 0 0 0 0 0 8232 0 0 0
B 0 0 000 of 0 0 0 41.16 0 0
0 0 0000 0 0 0 0 41.16 0
|0 0 0000 | O 0 0 0 0 41.16
[—57.1467 0 0 0 -1 —-3.64]
0 32.8533 0 1.48 0 -3.64
0 0 24.2933 1.48 -1 0
0 1.48 1.48 14.2867 —-1.82 -0.5 i
~1 0 -1 -1.82 -8.2133 0.74
| —3.64 -3.64 0 -0.5 0.74 -6.0733
0.0419 -0.4333  0.5381 -1.3571  0.7371 —0.1971]
-0.4333 —0.2152 -0.1048 —0.2714  3.6857 —0.1971
0.5381 —0.1048  0.1733 -0.2714  0.7371 —0.9857
Z13571 —02714 —02714 00419 03943 —14743|
0.7371  3.6857  0.7371  0.3943 —-0.2152  0.5429
| -0.1971 —0.1971 —0.9857 —1.4743 05429  0.1733]
[ 7.6915 —1.76 —59314 6.4571 —2.1371 2.9371 ]
-1.76 32349 -30.589 -5.1086 —11.386 —1.9629
—-5.9314 -30.589 36.52 -9.9086 7.3629 —8.8143
6.4571 —5.1086 —9.9086 —30.589 —0.9743 -5.2257|
-21371 -11.386 7.3629 —0.9743 -5.9315 -0.7829
| 29371 -1.9629 -8.8143 -52257 -0.7829 -1.76 |

(54)

By applying the formula given in eq. (48) and using these eigenvalues and eigenvectors, elastic constant tensor for Low Albite can

be decomposed by spectral method and we obtain six decomposed parts which are

[20.9639
47.5364
39.4175

~2.1899
~0.7517

| —3.9091

47.5364
107.7906
89.3808
—4.9656
—1.7046
—-8.8640

39.4175
89.3808
74.1153
-4.1175
—-1.4135
—-7.3501

-2.1899 -0.7517
-4.9656 —1.7046
-4.1175 -1.4135
0.2288  0.0785
0.0785  0.0270
0.4083  0.1402

~3.9091]

—8.8640

~7.3501
0.4083
0.1402
0.7289 |
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[ 0.0317

-1.5176
1.8074
—-0.0635
0.1638
—-0.0587

[ 46.8766

—11.8390
—-9.9058
12.0941
-4.1776
1.5609

[ 0.4252

0.0124
0.0036
-1.9074
0.4902
3.4427

[ 0.2215
0.0553
—0.1861
~0.0971
2.3357
—0.4139

[ 0.5859
—0.2492
-0.3233
—-2.7413
—0.4595
—1.5244

-1.5176
72.5973
—86.4599
3.0353
—7.8373
2.8088

—11.8390
2.9900
2.5018

—-3.0544
1.0551
-0.3942

0.0124
0.0004
0.0001
—-0.0555
0.0143
0.1001

0.0553
0.0138
—-0.0464
—-0.0242
0.5827
—-0.1032

—-0.2492
0.1060
0.1375
1.1662
0.1955
0.6485

1.8074 —0.0635
~86.4599  3.0353
102.9695 —3.6149
~3.6149  0.1269
9.3339 —0.3277
~33451  0.1174
~9.9058  12.0941
2.5018 —3.0544
2.0933 —2.5557
~2.5557  3.1202
0.8828 —1.0778
~0.3298  0.4027
0.0036  —1.9074
0.0001  —0.0555
0.0000 —0.0161
~0.0161  8.5565
0.0041 —2.1991
0.0291 —15.4437
~0.1861 —0.0971
~0.0464 —0.0242
0.1564  0.0816
0.0816  0.0426
~1.9624 —1.0241
03477  0.1815
~0.3233 —2.7413
0.1375  1.1662
0.1784  1.5128
1.5128  12.8263
02536 2.1499
0.8412  7.1323

0.1638
—7.8373
9.3339
—-0.3277
0.8461
—-0.3032

-4.1776
1.0551
0.8828

—-1.0778
0.3723

-0.1391

0.4902
0.0143
0.0041
-2.1991
0.5652
3.9691

2.3357
0.5827
—-1.9624
—-1.0241
24.6255
-4.3636

—-0.4595
0.1955
0.2536
2.1499
0.3604
1.1955

—0.0587 |
2.8088

—3.3451
0.1174

-0.3032
0.1087 |

1.5609 |
—0.3942
—0.3298

0.4027
-0.1391

0.052 |

3.4427 ]
0.1001
0.0291
—15.4437
3.9691

27.8742 |

—0.4139]

—0.1032
0.3477
0.1815

—-4.3636
0.7732 |

—1.5244]
0.6485
0.8412
7.1323 |
1.1955
3.9661 |

(55)
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For Low Albite, egs. (52), (53), (54) prove that total scalar parts (sum of the first two decomposed parts) are common in

irreducible, orthonormal tensor basis and harmonic decomposition methods whereas eq. (55) illustrates that total scalar part is

different from other decomposition methods.

For transversely isotropic material, let C be an elastic constant tensor of Polystyrene (see, Wright et al., 1971) which has the

matrix form in GPa,

ij 0
0
0

0
0
0

(520 2.75 275 0
275 520 275 0
275 275 570 0

0 1.30
0 0
0 0

1.225

0
0
0
0
0

(56)

Applying irreducible decomposition method, we use the formulas given in section (2.2) and we obtain the scalar, deviatoric and

nonor parts respectively. Hence elastic constant tensor for Polystyrene can be decomposed as

ij 0
0
0

[—0.1533
0

S O o O

[ 0.0171
0.0057
~0.0229
0
0
0

(3.6222 3.6222
3.6222 3.6222
3.6222 3.6222

0
0
0

0
—-0.1533
0

0
0
0

0.0057
0.0171
—-0.0229
0
0
0

36222 0 0 O 1.7178 —0.8589 —0.8589 0 0
36222 0 0 O —-0.8589 1.7178 —0.8589 0 0
36222 0 0 O —-0.8589 —0.8589 1.7178 0 0
0 0 0 O " 0 0 0 1.2883 0
0 0 0 O 0 0 0 0 1.2883
0 0000 | O 0 0 0 0
0 0 0 0 | [-00038 -0.019 0.0095
0 0 0 0 —-0.019 -0.0038 0.0095
0.3067 0 0 0 0.0095 0.0095 0.0076
0 0038 0 o |7 o 0 0
0 0  0.0383 0 0 0 0
0 0 0 -00767| | O 0 0
—-0.0229 0 0 0 |
-0.0229 0 0 0
0.0457 0 0 0
0 ~0.0229 0 0
0 0 -0.0229 0
0 0 0 0.0057 |

S o o O

0
1.2883 |

0

0

0
—-0.0038

0

0

S O O

0
—-0.0038
0

S o O O

0
0.0076 |

(57)

By orthonormal tensor basis method, we apply the formula given in eq. (36). For this reason, inner products must be calculated as

(C,A')=10.8667, (C,A")=5.7616, (C,A")=0.4025 (C,A")=0.05 (C,A")=0.15.

The elastic constant tensor for Polystyrene can be represented in the form



S O O O

1.2883 |

oS O O O

0
0.0042

(58)

S O O
S O O O

0
0.0038 0
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[3.6222 3.6222 3.6222 0 0 O] [ 1.7178 —0.8589 -0.8589 0 0
3.6222 3.6222 3.6222 0 0 O -0.8589 1.7178 —0.8589 0 0
c - 3.6222 3.6222 3.6222 0 0 O N —-0.8589 —-0.8589 1.7178 0 0
! 0 0 0 0 0 0 0 0 0 1.2883 0
0 0 0 0 0 0 0 0 0 0 1.2883
0 0 0 0 0 0j | O 0 0 0 0
[—0.09 -0.03 -0.03 0 0 0 [—0.0125 —0.0208 0.0167 0 0
-0.03 -0.09 -0.03 0 0 0 -0.0208 —-0.0125 0.0167 0 0
-0.03 -0.03 0.36 0 0 0 0.0167  0.0167 0 0 0
0 0 0 —-0.03 0 0 ' 0 0 0 0.0042 0
0 0 0 0 —-0.03 0 0 0 0 0 0.0042
. 0 0 0 0 0 -0.03] | O 0 0 0 0
[-0.0375 0.0375 0 0 0 0 |
0.0375 -0.0375 0 0 0 0
0 0 0 0 0 0
i 0 0 0 0.0375 0 0
0 0 0 0 0.0375 0
0 0 0 0 0 —0.0375 |
Elastic constant tensor of Polystyrene can be represented by harmonic decomposition method as
[2.7633 2.7633 27633 0 0 0] [2.5767 0 0 0 0 0 |
2.7633 2.7633 27633 0 0 O 0 2.5767 0 0 0 0
c o 2.7633 2.7633 27633 0 0 O N 0 0 2.5767 0 0 0 N
! 0 0 0 0 0 O 0 0 0 1.2883 0 0
0 0 0 0 00 0 0 0 0 1.2883 0
.0 0 0 0 0 0] [ O 0 0 0 0 1.2883 |
- 0.1533 0 0 0 0 0 | [-0.0038 -0.019 0.0095 0
0 —0.1533 0 0 0 0 -0.019 -0.0038 0.0095 0
0 0 0.3067 0 0 0 0.0095  0.0095 0.0076 0
0 0 0 0.0383 0 0 " 0 0 0 —-0.0038
0 0 0 0 0.0383 0 0 0 0 0 -
0 0 0 0 0 -0.0767) | 0 0 0 0

0 0.0076
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[ 0.0171  0.0057 —0.0229 0 0 0
0.0057  0.0171 -0.0229 0 0 0
-0.0229 -0.0229 0.0457 0 0 0
0 0 0 -0.0229 0 0 &9
0 0 0 0 —-0.0229 0
0 0 0 0 0 0.0057 |

By using the formula given in eq. (50), elastic constant tensor for Polystyrene can be decomposed by spectral method and we get
following six decomposed parts which are different from those obtained by other three methods:

[3.474 3.474 3.693 0 0 O] [ 0501 0501 —-0.943 0 0 O]

3474 3474 3.693 0 0 0 0.501 0501 -0943 0 0 0

3.693 3.693 3926 0 0 0| |—-0.943 —-0943 1774 0 0 0

Si=l g 0 0 00 ol o 0 0o 00 0

0 0 0 00 0 0 0 0 0 00

0 0 0 00 0] [ O 0 0 0 0 0
1225 -1225 0 0 0 0] [0 0O O O 0 0] [0 0O O 0O [00O0OOO 0 ]
-1225 1225 0 0 0 0O/ |0 OO O O O |0 OO O OO [0 OOOO O
0 0 00O0GO0O [00OO0OO O O 00O O OUO/|[00O0O0OTO0 0
0 0 0000/ o000 0 0000130000000 o0
0 0 00O0O [00O0O0OTI130//000 0 0O [00O0O0TO0 0
0 0 00O0O0/[00O0O O O[00O0 O 0O |00O0O0O0 1.225]
(60)

From eqs. (57), (58), (59) and it is obvious that decomposed parts of total scalar (isotropic) parts are identical in both orthonormal
tensor basis and irreducible decomposition methods besides total scalar parts are the same in all methods except spectral
decomposition illustrated in eq. (60).

For isotropic material , RPV Steel (see, Cheong et al., 1999) is selected as an example,

[277.001 118.715 118.715 0 0 0 |
118.715 277.001 118.715 0 0 0
118.715 118.715 277.001 0 0 0
C;= (61)
0 0 0 79.143 0 0
0 0 0 0 79.143 0
0 0 0 0 0 79.143 |

Using irreducible decomposition method, we apply the formula given in section (2.1). So elastic constant tensor for RPV Steel can
be decomposed as

(171.477 171.477 171477 0 0 0] [105.524 —52.762 —52.762 0 0 0 |
171.477 171477 171477 0 0 0| |-52.762 105524 —-52762 0 0 0
c - 171.477 171.477 171477 0 0 0 s —52.762 —52.762 105.524 0 0 0
I 0 0 0 000 0 0 0 79.143 0 0
0 0 0 000 0 0 0 0 79.143 0

| 0 0 0 000/ | O 0 0 0 0 79.143]

(62)
By orthonormal tensor basis method, we apply the formula given in eq. (32). For this reason
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inner products must be calculated as; (C, A') =514.431, (C,A")=353.94.

The symmetric fourth rank tensor for RPV Steel can be represented in the form

[171.477 171477 171477 0 0 0] [105.524 -52.762 —-52.762 0 0 0 |
171.477 171477 171477 0 0 0| |-52.762 105524 —-52.762 0 0 0
|171.477 171477 171477 0 0 0| |-52.762 —52.762 105.524 0 0 0
Cy = 0 0 0 000/ o 0 0 79.143 0 0
0 0 0 0 00 0 0 0 0 79.143 0

0 0 0 000 [ O 0 0 0 0  79.143]

(63)
Like irreducible decomposition method, there is only scalar part for RPV Steel in harmonic decomposition method and the elastic
constant tensor for it, represented as follows:

[118.715 118.715 118.715 0 0 0] [158.286 0 0 0 |
118.715 118.715 118.715 0 0 0 0 158.286 0 0 0
c - 118.715 118.715 118.715 0 0 0 . 0 0 158286 0 0 0
! 0 0 0 0 0 0 0 0 0 79.143 0 0
0 0 0 0 0 0 0 79.143 0

0 000 | O 0 0 0 0  79.143]

(64)

By applying the formula given in eq. (49) and using these eigenvalues and eigenvectors, elastic constant tensor for RPV Steel can
be decomposed by spectral method. We obtain the same decomposed parts as irreducible decomposition and orthonormal tensor
basis methods.

[171.477 171477 171477 0 0 O] [105.524 —52.762 -52.762 0 0 0 |
171.477 171.477 171477 0 0 0| |-52.762 105524 -52.762 0 0 0
c - 171.477 171.477 171477 0 0 0 N ~52.762 —52.762 105.524 0 0 0
! 0 0 0 00 0 0 0 0 79.143 0 0
0 0 0 00 0 0 0 0 0 79.143 0

0 0 0 000 | O 0 0 0 0  79.143

(65)
From eqgs. (62), (63), (64) and (65), it is seen that harmonic decomposition method yields different decomposed parts for
isotropic materials while these parts are identical in the other three methods. The summation expressed in egs. (62), (63), (64) and
(65) states that total of these decomposed parts for isotropic materials are the same.

7. Comparison of the Decomposition Methods

For comparison purposes, we find out critical relationships between irreducible and harmonic decomposition methods. Not only
these relations but also the comparison of the four decomposition methods are summarized in this section.
In section 4, it is seen that there are many works done harmonic decomposition method in the literature. Like irreducible
decomposition, two scalars, two deviators and the nonor part are obtained in harmonic decomposition method. Hence total scalar,
total deviatoric parts and nonor part are identical in two methods. This is the first relationship between these methods.

In irreducible method, components of total scalar parts; Cr%?;l) and Cr(n?;z) are orthogonal to each other. Contrary to it,
decomposed parts of total scalar part are not orthogonal to each other in harmonic decomposition method due to the expression for

decomposition of elastic constant tensor given in egs. (40) and (43). Since ;0 is not orthogonal to 0, 8, + 5,0 (denoted

as 21y, ). If we replace 5ij 0, and 2l i by the hydrostatic and deviatoric operators
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1
Ii?kl :gé}jé‘kl’ Ii?kl =l — Ii?kl’ (66)

respectively, then we obtain back the matrices in eq. (19) in which decomposed parts of total scalar parts are orthogonal to each
other. So the components of total scalar part in harmonic decomposition method takes the form of Cé%l) and Cr(rﬁ];z). This case

is a significant innovation for both decomposition methods for elastic constant tensor. It is the second relationship between both
decomposition methods.
Besides, in irreducible decomposition method, by using equations (18), (21), we obtain two physically meaningful parts which are

J, =3KI, (67)
and

1 1
(o} _go-rré‘ij)zzG(gij _E‘C"rré‘ij)’ (68)
where ‘]1 =0; and |1 =&, are the first fundamental invariants of stress and strain tensors, respectively.

Equation (67) represents volume-change without distortion under hydrostatic stress and eq. (68) represents shape-change without

volume-change under deviatoric stress.

So irreducible decomposition method gives two isotropic (scalar) parts which have significant physical meanings. On the other
hand, scalar parts obtained from harmonic decomposition method do not have any physical meanings like irreducible
decomposition method. By using eq. (66), we can make scalar parts orthogonal to each other for harmonic decomposition method
and then these parts also have same physical meanings as those in irreducible decomposition method. So orthogonal
decomposition of elastic constant tensor is important.

As a result, components of scalar and deviatoric parts in irreducible method are not equal to those in harmonic decomposition
method, so it proves that there is not a unique decomposition for both deviatoric and scalar parts, in other words total deviatoric
and scalar parts can be decomposed into infinitely many independent components. This case also indicates that total scalar,
deviatoric and nonor parts of elastic constant tensor obtained from irreducible decomposition methods are the same as those of
harmonic decomposition method. (See, Rychlewski (2000))

Furthermore, in order to designate the similarities between the all decomposition methods as well as differences, we compare
them. The following results are found out:

1. Irreducible decomposition, orthonormal tensor basis, harmonic and spectral decomposition methods are suitable for the
orthogonal decomposition of the elastic constant tensor.

2. Orthonormal tensor basis method gives twenty one decomposed parts and spectral decomposition yields only six terms at
most for triclinic system whereas irreducible and harmonic decomposition methods decompose elastic constant tensor into
five parts at most for triclinic materials and these five parts are composed of two scalars, two deviators and one nonor part.

3. Decomposed parts of isotropic material are identical in orthonormal tensor basis, irreducible decomposition and spectral
methods, contrary to these methods, components of isotropic material are different in harmonic decomposition method.

4.  Total scalar (isotropic) parts from irreducible and harmonic decomposition methods are identical with the isotropic parts of
lower symmetry types such as transversely isotropic symmetry obtained from orthonormal tensor basis method.

Following Ryclewski (2000), we can call spectral method ‘non-linear invariant decomposition' and the other three
decomposition methods ‘linear invariant decomposition'.

8. Discussion

Decomposition methods as irreducible decomposition, orthonormal tensor basis, harmonic decomposition and spectral have
many applications in different subjects of physics and engineering (atomic and molecular physics and the physics of condensed
matter). The decomposition methods of elastic constant tensor are applied to different fields of science and engineering. For
instance, Geophysicists have used it in geophysical applications. (See, for instance; Chevrot and Browaeys (2004)) Furhermore for
very valuable materials like diamond or quartz used in mining, it is difficult to measure its elastic constants because of its small
samples. Applying orthonormal tensor basis method, we are able to specify the elastic constants of these types of materials (this
case is proved by Tu (1968)). As an application for harmonic decomposition, it is possible to decide which type of symmetry a
material has when the elastic constants are measured relative to an arbitrary coordinate system. A second rank symmetric tensor
associated to the elastic constant tensor can be used to verify if the coordinate axes are the symmetry axes of the material and
determine a symmetry coordinate system (examples for this case are given in Baerheim (1993)). So comprehending the
decomposition methods is considerable to understand the idea behind these decomposition methods as well as the physical
properties of anisotropic materials.
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9. Conclusions

In conclusion, it is seen that orthonormal tensor basis, irreducible and harmonic decomposition methods give orthogonal and
linear decomposed parts, while spectral method is a non-linear and orthogonal decomposition method since decomposed parts are
expressed in terms of functions of elastic constants. In harmonic decomposition method, we are able to construct the decomposed
parts, obtained from irreducible decomposition method, by making decomposed parts of total scalar part orthogonal. One of the
important contribution of this work is that the sum of the total scalar and deviatoric parts are the same in both irreducible and
harmonic decomposition methods. Finally, we hope this paper prepares interested readers to appreciate a deep understanding of
application the orthonormal tensor basis and irreducible decomposition methods to elastic constant tensor and general review of
harmonic decomposition and spectral methods for elastic constant tensor and for comparison purposes as well as the non-linear
property of spectral method.

Appendix A

For irreducible decomposition method; the orthogonality condition is checked by using orthonormalized basis elements, the
procedure is shown as

For fourth rank tensor N =4 and j =0, ( will take the values 1,2 and 3 .For =1,
0,
Qi(jkll) =a0;0y- (Al)
Applying the normalization condition, eq. (A1) takes the following form:
0D 0.1 _ 2 _
Qi Qi =a70;6,46;0 =1

a= 1, So the first idempotent is
3
1
Qiﬂﬁil) = gé‘ijé‘kl > (A2)
For =2,
ji = (ad%dy +b3y ), (A3)

According to orthogonality condition (we take the inner product of both egs. (A2) and (A3))
0,H)(0,2) _ (0,2)(0,2) _
Qijkl Qijkl =0, Qijkl Qijkl =1

1 1
sofor =2, a=——, b=———= . Thesecond idempotent is
243 243
1 1
0,2) _
Qijkl = 2\/5 5ik5j| - 2\/5 5i|5jk (A4)
By using the same procedure, the last idempotent is found as
1
Qi(j(k)f}) = (3§ik5'l +35i|5'k - 25i'5k|) (AS5)
6\/§ j j j
As an example to how we obtain the irreducible parts from idempotent is demonstrated, Cig(k)l; Vs given
) _ O:HA O o
Cijkl = Qijkl Qijkl Ci’jkl' This gives
(0;1) —15 0,C (A6)
ikl 9 1j kI ™~ ppaq *
This is the first decomposed part of scalar part. Second decomposed part Clﬁgl % s found as
0;2 0;2) N (0:2 L.
Cigkl )= Qigkl )Qi}kl )Ci'jkl' This gives
: 1
(0;2) _
Ci = %(Sé}ké‘jl +36,0 —26;;6,4)3C 140q — Copag)- (A7)

Using same procedure, the other parts can be found.
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Appendix B
For orthonormal tensor basis method; the orthogonality condition is checked by using orthonormalized basis elements, the
procedure is shown as

Any isotropic tensor CijkI can be written as follows

[ I

Ci = ahy, + DA, (BI)
Taking inner products of both sides with A' , eq. (B1) takes the following form:
(C,A" Yy =a(A',A")+b(A", A"). (B2)

In order to satisfy the orthogonality conditions
(A',A'Y=1 and (A",A")=0. Soweget; a=(C,A")

In order to find D, again we can take inner products of both sides with A" , €q. (B1) takes the following form:

(C,A")y=a(A",A")+b(A",A"). (B3)
By using same procedure, b =(C, A"). Then we get the following:
Ci =(C, Al )Ai;kl +(C,A" )Aljlld ) (B4)

I
where Ay, =dayy,
| | 2
(Ajkl , Ajkl) =d i Aiju

1
Then d= E So the first orthonormalized basis element Ai;k' can be found as
1 1
I
A = gaijkl = §5ij Oy

A::d can be obtained by applying the same procedure step by step. Let Alj:d =day, +eByq

Now taking inner product with A:L, and

(Aljlld 5 AIH(I) =(d Ay + eﬂijkl )(daijkl + eﬂijkl ), which gives
1=9d” +12de + 24¢’

X .

(Aj> Aja) = 3 i (dayy +€f), this causes
d €

0= Gyl + a B

where Qi Qg = (é‘ijé‘kl )(é‘ijé‘kl) =9, aijklﬁijkl = (5ij5k| )(5"(511 + 5i|5jk) =6
2

Then d=—-—=, e=——. So, the second orthonormalized basis element for isotropic system N:d can be found as
65 245 ‘

1
ikl _m(:sﬂijkl —2a)-

For transversely isotropic system, the other orthonormalized basis elements for transversely isotropic system are constructed by
performing the following steps:
A transversely isotropic tensor can be written as follows:

A,}Lll = dlaijkl +d, il T d, Yij- By taking inner products of both sides with Ai;u , the above equation takes the form:
(Ai;LII s Ai;:(ll) = [dlaijkl + dz ijkl + d37ijk| ][dlaijkl + d2 ijkl + d37ijk| ]. In order to Satisfy the Orthogonality COIlditiOHS,
(A“I,A”I):l and (A“I,AI):O. SOWCget
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(A", A"y =1= dlzaijklaijkl +dld2aijklﬁijkl +d1d3aijkl7ijkl +d2dl/8ijklaijkl +d22ﬂijklﬁijkl +dzd3ﬂijk|7ijk| +d3d17/ijk|aijk| +
d3d27ijklﬁijkl +d327ijk|

By rearranging the above equation, we obtain

= + + + + + (B5)
1=9d; +12d,d, +4d,d, +2d,d, +24d; +d;
1

Al
(A7,A)=0= gaijkl [d,ayq +d, B + sy 1= 0=d gy + Ay B + A3 Vi »
0=9d,+6d,+d, (B6)
(A"I , A" )=0= \/— [3,3”k| ukl 1[d 1 + d2 i T d37”k|] By rearranging the above equation, we get
d,= —%d3 (B7)
By substituting eq. (B7) into eq. (B6) we get

1

d = _Ed3 (B8)
By putting egs. (B7) and (B8) into eq. (BS), the constants are found as
d—d ———— d =12 (89)

65 65

The third basis element of transversely isotropic system is
1
i
Aijkl = 6\/§ (157ijk| _IBijkI _aijkl) (B10)
For the other element, similar steps are performed then we obtain
Aukl d,a;y +d, By + ds7i +d, 0
By taking inner products of both sides with A% , the above equation takes the form
(Aljk| ’ Aljk| d aljk| + dZﬂljkl + d37uk| + d §Ijk| ][d aljk| + dZﬂljkl + d37uk| + d §Ijk| ]

Orthogonality conditions are
v 2
(Aukl AW ) =1l=day ay +dd,ay Buw + ddia gy v +d,d,75 @ +

d,d S au +d ;B i B + d3d v By + d,d,yu By + ddsa gy By +
ddya g 74w + dydsy4 By + d N i Viw T d3d vy O A 0 @ e
d,d,04 By + did 7y o4 + d s ik 7 il

=1=9d} +6d,d, +d,d, +6d,d, +6d,d, +24d’ +2d.d, +4d,d, +d,d; +2d,d, +2d,d, +d; +
6d,d, +4d.d, +2d,d, +8d;

By rearranging the above equation, we obtain
1=9d’ +12d,d, +2d,d, +12d,d, +24d> +4d,d, +8d,d, +4d,d, +8d; (B11)
Another equation is obtained from the orthogonality condition which is

1
(Aijkn Ai:u m[lsﬂjm _ﬂijkl _aijkl][dlaijkl +d, ijki +d37ijkl +d 5]k|]

By rearranging the above equation, we get
5
d, = —g d, (B12)

In order to find the constant, steps should be continued as follows
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(Aijkl’ Aijkl) 0= \/— 3:3uk| Ijkl 1(d, iy + d, ikl T d37ukl +d 5|Jk|]

From the above equation, we obtain

1
d2 :§d4

1
(Aukl 5 Ai;kl) =0= gaijkl [dlaijkl + dzﬂijkl + d37ijk| + d45ijk| ]

From above equation, we get

5
d1 = —5 d4
By substituting egs. (B14), (B13), (B12) into eq. (B11), we can find the constants as
5 1 15 . . . .
d =T, d2 =—,0;=——, d 4+ = . So the fourth basis element of transversely isotropic system is
12 12 12 2
Aijkl = ukl 157ijkl *+ Pija _Saijkl)

For the other element, similar steps are performed then we get
Voo
Ao =d iy +d, By + sy +d, 65 +dsggy

(Ai\j/kl ’ Ai\j/kl) = [dlaijkl + dz ik T d37ijk| + d4§ijkl + d58ijk| ][dlaijkl + dz i T d37ijk| + d4§ijkl + d58ijk| ]=1

=9d] +12d,d, +2d,d, +12d,d, +24d; +4d,d, +8d,d, +16d,d, +d; +4d.,d, +8d; +8d: =
1
(Auklﬂ Ai:LII \/g[lsyijkl _ﬂijkl _aijkl][dlaijkl +d, i + d37ijkl + d45ijk| + dsgijkl] =0
=12d, +20d, —8d;

(Ajkl’ Aijkl O — 15V + Bija — S)d g +d, By + sy +d,050 +dsg1=0
From the above equatlon two constants are found as

1 3
d,=-=d;, dy=>d;

2 2

1
(Amd ) Aijkl) = m(:;ﬂijkl - Zaijkl )[dlaijkl +d, i T d37ijk| + d45ijk| + dsgijkl 1=

1

= d2 = —Eds

(Aijkw Amd ukl[d Qg + d, ijki +d37ukl +d 5uk| +d 5uk|] 0

) dl :Eds

By putting egs. (B20) , (B19) and (B18) into eq. (B16), we can find the constants as
1 1 3 1

= dl:z’ d2:d4:—z, d3:Z’ dSIE,

Then we can find the last orthonormalized basis element for transversely isotropic system as

1
A\j/kl :Z(zgijkl _é‘ijkl +37’ijk| _ﬂijkl +aijk|)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)
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