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Abstract 
 
   In this paper, we have elaborated on the decomposition methods such as irreducible decomposition, orthonormal tensor basis, 
harmonic and spectral decomposition for elastic constant tensor. Irreducible decomposition and orthonormal tensor basis 
methods are developed by using the results of existing theories in the literature. As examples to each decomposition method, we 
give results for the decomposition of elastic constant tensor in triclinic symmetry as well as materials with isotropic and 
transversely isotropic symmetry. Numerical examples serve to illustrate and verify each of the four decomposition methods. 
These examples are used to compare the decomposition methods explicitly. As a result of comparison process, it is stated that 
the spectral method is a non-linear invariant decomposition method that yields non-linear orthogonal parts contrary to the other 
three methods which are linear invariant decomposition methods. It is also shown that total scalar (isotropic) part is decomposed 
into two physically meaningful orthogonal parts by irreducible decomposition, orthonormal tensor basis and spectral methods. 
While in harmonic decomposition method, decomposition of total scalar part is not orthogonal. We propose that it is possible to 
make these parts orthogonal to each other. 
 
Keywords: Elastic constant tensor; irreducible decomposition method; orthonormal tensor basis method; harmonic 
decomposition method; non-linear invariant decomposition method. 

 
1. Introduction 
 
   Most of the elastic materials in engineering are anisotropic; metal crystals, fiber-reinforced composites, polycrystalline textured 
materials, biological tissues, rock structures. In order to understand the physical properties of the anisotropic materials, use of 
tensors by decomposing them is inevitable. The constitutive relation for linear anisotropic elasticity, defined by using stress and 
strain tensors, is the generalized Hooke's law 
 

.C klijklij εσ =                                                                                        (1) 
 

This formula demonstrates the well known general linear relation between the stress tensor (symmetric second order tensor)  
whose components are ijσ  and the strain tensor (symmetric second order tensor) whose components are .klε  The coefficients of  

linearity, namely ijklC  are the components of elastic constant tensor (elasticity tensor) and satisfies three important symmetry 
restrictions. These are 
 

,CCCCCC klijijklijlkijkljiklijkl ===                                                                                        (2) 
 
which follow from the symmetry of the stress tensor, the symmetry of the strain tensor and the elastic strain energy. These 
restrictions reduce the number of independent elastic constants ijklC  from 81 to 21. 
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 In the literature, orthogonal decomposition methods are mainly distinguished as orthonormal tensor basis, irreducible, harmonic 
and spectral decomposition methods for elastic constant tensor. There are also other works for general decomposition of any rank 
tensors, these can be summarized as, Spencer (1970) and Jarić (2003) employed only elementary algebra and makes no group 
theory and gave a method in which a general tensor of any rank n can be expressed in terms of traceless symmetric tensors of rank 
n or less. Zou et al. (2001) realized orthogonal decomposition for any n rank tensors. 
   The purpose of this work is to study and elaborate on each orthogonal decomposition method for elastic constant tensor and 
compare these methods. In the present paper, irreducible decomposition, orthonormal tensor basis, harmonic decomposition, 
spectral methods and as examples of these methods to triclinic, isotropic and transversely isotropic materials are given in sections 
2, 3, 4 and 5 respectively. In section 6, all decomposition methods are compared. Finally, in the last section, the results of 
comparisons for orthogonal decomposition methods are discussed and conclusions pertinent to this work are stated. 
 
2.  Irreducible Decomposition Method 
 
   We have encountered many works done related with irreducible decomposition in the literature. For instance; Jerphagnon et al. 
(1978) derived certain results for the irreducible tensors in their natural form. Andrews and Ghoul (1982) followed the technique 
of Jerphagnon et al. and gave the reduction of a fourth rank cartesian tensor into irreducible parts under the three-dimensional 
rotation group. Walpole (1984) and independently Kunin (1982) realized algebraic decomposition to simplify tensor functions 
operating on elastic constant tensor using the irreducible tensor algebra. Surrel (1993) used the group of rotations associated with 
elastic symmetry provides an irreducible representation. There are various related ways of considering elastic constant tensor in 
terms of rotational group properties of tensors based on complex vectors and tensors. (See also, Mochizuki (1988)) Finally 
Radwan (2001) carried out the method to elastic compliance tensor. 
   We follow the works of Jerphagnon et al. (1978) and Andrews and Ghoul (1982). Any rank-n cartesian tensor can be written as 
the direct sum of irreducible tensors in the cartesian representation. The term irreducible indicates sets that cannot be resolved into 
subsets with seperate linear transformations. The reduction of a (rank-n) cartesian tensor )(nT generaly results in a  sum of 

irreducible tensors, with some weights (j) represented more than once.  (where  nj ≤≤0  ), it is can be accompolished by the 

formula: ,);(
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where [ ]./)jn(k 30 −≤≤  Each irreducible tensor has  (2j+1) independent components. So that the total number of components in the 

reduction is   .3)12( )(
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   The natural projection of  x j  onto the irreducible subspace j
jH  of traceless symmetric tensors of order j is denoted by 
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tensor subspace  j
qjH ,  onto ,,

n
qjH  we have chosen the mappings  );0(

2121 ...;...
q

jn kkkiiiQ  such that they are orthonormal and  gpq will be 

reduced to identity matrix, ijδ , where gpq is a symmetric matrix which was used and defined in Andrews and Ghoul (1982) 
through the relation 
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In this work, this relation is reduced to 
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The mappings );0(
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The dual mappings extract the natural forms  );(
...21

pj
sss j

t  from the tensor  
niiiT ...21

 as 

                .~
..............

);(
... 21212121 nnjj iiiiiisss
pj

sss TQt =                                                                                                              (7) 

These tensors can be embedded in the tensor space of order n through the mapping  
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These results of Andrews and Ghoul (1982) can be developed such as making decomposed parts orthogonal. Since decomposition 
of the elastic constant tensor into irreducible parts can be obtainable from Andrews and Ghoul (1982) is different than the 
following results presented in eqs. (11), (12), (13), (14) and (15). Our irreducible parts are orthonormal to each other but theirs are 
not. Before giving the results of the reduction of elastic constant tensor, it is illustrated that the orthogonality condition is satisfied 
during the decomposition procedure. According to orthogonal process, given in Appendix A and taking into account the elastic 
symmetries such as eq. (2), elastic constant tensor is decomposed as 
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,105/))(2( jkiljlikklijpmpmppmm CC δδδδδδ +++                  (15) 
                                   
where ,)1;0(

ijklC )2;0(
ijklC  are scalar parts, ,)1;2(

ijklC )2;2(
ijklC  are deviators and )1;4(

ijklC  is the nonor part. As it is given by the group 

representation theory for the elastic constant tensor that )4()2()0( 22 DDD ++ , where the superscripts denote the weight of the 
representation, (See, Heine (1960)). This is the decomposition for triclinic materials which are anisotropic materials with no elastic 
symmetries. 
 
2. 1 For Isotropic Materials 
 
   The traditional form of decomposition in isotropic media which is well known in the literature as  

),(C jkiljlikklijijkl δδδδμδλδ ++=                                                         (16) 
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whereλ  andμ are invariant elastic constants and they are also called Lame constants. The traditional form of stress-strain relation 
for isotropic solids can be defined as  

ijijrrij μεδλεσ 2+=                                                                        (17) 
It is also well known that stress tensor is decomposed into spherical and deviatoric parts and it is given as 

).( ijrrijijrrij δσσδσσ
3
1

3
1

−+=                                                (18) 

For irreducible decomposition method, there are only two irreducible parts for isotropic materials which are the scalar parts: 
)1;0(

ijklC and )2;0(
ijklC  mentioned in the previous section. By writing these parts in matrix form, we get  
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If we add those two parts, isotropic elastic constant tensor is obtained by irreducible decomposition method, isotropic elastic 
constant tensor can be rewritten instead of eq. (16), as follows  

),
3
1)(

2
1(2 klijjkiljlikklijijkl GKC δδδδδδδδ −++=                                                         (20)  

where 3/)2( 1211 CCK +=  and ( ) ,2/1211 CCG −== μ  where K is the bulk modulus and G is the shear modulus. . In eq. 
(20) the decomposed parts are orthogonal to each other whereas the decomposed parts in traditional form given in eq. (16) are not 
orthogonal. From eqs. (1) and (20), the stress-strain relation, for isotropic materials, can be obtained as 

).
3
1(2 ijrrijijrrij GK δεεδεσ −+=                                                                   (21) 

This is also different from the traditional form and it is a new form in stress-strain relations in the literature. Equation (21) was also 
obtained in Landau and Lifshitz (1959) by a different method which was based on the expansion of the strain energy density 
function in powers of  .ijε  
 
2. 2  For Transversely Isotropic Materials 
   There are five irreducible parts for transversely isotropic materials which are two scalar parts: )1;0(

ijklC , ,)2;0(
ijklC  two deviators: 

)1;2(
ijklC , ,)2;2(

ijklC  and a nonor part )1;4(
ijklC , mentioned in the previous section. These parts are as follows: 
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where ,412257,422 134433121133131211 CCCCCCCCC −++−=+++= βα  

441311331212443311 457,223 CCCCCCCCC +−−−=−−−= ηγ  
and  

.42 44133311 CCCC −−+=λ  
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   If we add those five parts, elastic constant tensor for transversely isotropic material is obtained by irreducible decomposition 
method as the same form in eq. (10). 
 
3. Orthonormal Tensor Basis Method 
 
   In the literature, orthonormal tensor basis method had been studied in different names such as integrity basis and form-invariant. 
First orthonormal tensor basis method was proposed by Gazis et al. (1963), developed by Tu (1968). He used the method `integrity 
basis' and treated the strain energy function as a polynomial in the strain components and lead to determination of integrity basis 
for invariant functions of the strain components for each one of the 32 crystallographic point groups. Using the integrity basis, 
orthonormal tensor basis which spans the space of elastic constants was derived.  
   In form-invariant method, a physical property of tensor is resolved along the triad  3,21, vvv   denoting the unit vectors along the 
crystallographic axes. The process of resolution yields the invariants. Forming invariant is an indispensable step to construct 
orthonormal tensor basis elements needed for decomposition process. Srinivasan (1998) proposed form invariant method which 
was developed by Ghaith and Akgöz (2005) for second and third rank tensors such as piezoelectric tensors.  
In this paper, we have used form-invariant method which is a different one from the integrity basis method (by Tu (1968)). It is 
shown that two existing decomposition theories have close relationship since they give the same results for decomposition of 
elastic constant tensor under the title of orthonormal tensor basis method. It is first time that we apply form-invariant method in 
order to decompose elastic constant tensor for triclinic materials. The form invariant expression for the components of elastic 
constant tensor, the elastic stiffness coefficients is 
 
                               ,abcddlckbjaiijkl AC νννν=                                                                                                                              (27) 

where summation is implied by repeated indices, aiν  are the components of the unit vectors  aν ( 3,2,1=a ) along the material 

direction axes.  abcdA  is invariant in the sense that when the Cartesian system is rotated to a new orientation ,́´´ zyOx  then eq. 
(27) takes the following form: 
                            ,´´´´´ abcddlckbjaiijkl AC νννν=                                                                                            (28)                   

where  321 ,, ννν   form a linearly independent basis in three dimensions but they are not necessarily always orthogonal. Their 
relative orientations in the seven crystal systems are well known and given by Nye (1957). The corresponding reciprocal triads 
must satisfy the following relation (taken from Srinivasan, Nigam (1969) and Srinivasan (1998)): 

     ijajai δνν =                                                                                             (29) 
Form-invariant expression of isotropic symmetry is formed by the following two basis elements (see for instance; Fedorov 
(1968)): 

jkiljlikklij δδδδδδ +,                                                                                                                             (30)                  

The decomposition of  ijklC   for tricilinic system with no elastic symmetries is given in terms of its orthonormalized basis 
elements as (see also; Tu (1968) and Srinivasan (1998)) 
 

),...(,),( XXIIKAAC K
ijkl

K
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K
ijkl ==∑ C                                                                                                                              (31) 

where  ),( K
ijklAC   represents the inner product of  ijklC   and  thK   elements,  ,K

ijklA   of the basis, where 
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 ],2[
3
2),( 665544 CCCAVI

ijkl −+=C    ],[
2
1),( 2211 CCAVII

ijkl −=C    ],[),( 2313 CCAVIII
ijkl −=C   

 ],[2),( 5544 CCAIX
ijkl −=C    ,22),( 46CAX

ijkl =C    ,2),( 35CAXI
ijkl =C    ,2),( 15CAXII

ijkl =C   

 ,2),( 25CAXIII
ijkl =C    ,22),( 45CAXIV

ijkl =C    ,2),( 16CAXV
ijkl =C    ,2),( 26CAXVI

ijkl =C   

 ,2),( 36CAXVII
ijkl =C    ,22),( 56CAXVIII

ijkl =C    ,2),( 24CAXIX
ijkl =C    ,2),( 34CAXX

ijkl =C   

 .2),( 14CAXXI
ijkl =C   

Here, elastic constants are given in Voigt notation. 
 
3. 1  For Isotropic Materials 
      The elastic constant tensor for isotropic materials is decomposed as same as the form given in eq. (19) and stress-strain relation 
is also identical with the expression presented in eqs. (18), (21). So decomposition for isotropic materials give the same 
decomposed parts with irreducible decomposition method. 
The decomposition of  ijklC   for the isotropic system is given in terms of the orthonormalized basis elements as 

),,(,),(),(),( IIIKAAAAAAC II
ijkl

II
ijkl

I
ijkl

I
ijkl

K
ijkl

K
ijkl

K
ijkl =+==∑ CCC                                                                             (32) 

where  ),( K
ijklAC   denotes the inner product of  ijklC   and  ,

3
1

3
1

klijijkl
I
ijklA δδα ==  ).23(

56
1

ijklijkl
II
ijklA αβ −=  

These are orthonormalized basis elements for isotropic system. it is possible to compute inner products for isotropic system, they 
are 

],222[
3
1),( 231312332211 CCCCCCAI

ijkl +++++=C                   (33)  

].121212444444[
56

1),( 665544233322131211 CCCCCCCCCAII
ijkl +++−++−−=C                                                      (34) 

   Same procedure is valid for other symmetry types but number of basis elements are changing depending on the number of 
independent elastic constants of material symmetry. The orthonormalized basis elements for isotropic system are constructed by 
performing the several steps given in Appendix B. 
 
3. 2  For Transversely Isotropic Materials 
The form invariant expression for transversely isotropic materials  

,54321 ijklijklijklijklijklijklC ελδλγλβλαλ ++++=                      (35) 

where  klijijkl δδα =  , jkiljlikijkl δδδδβ += , lkjiijkl 3333 ννννγ =  ,   

ijlkkljiijkl δννδννδ 3333 +=  and  

.33333333 ilkjjkliikljjlkiijkl δννδννδννδννε +++=  

,1λ    ,2λ    ,3λ    4λ   and  5λ   are invariant elastic constants for transversely isotropic system. (See, Srinivasan and Nigam 
(1969)) 
The decomposition of  ijklC   for transversely isotropic system is given in terms of the orthonormalized basis elements as 

,),(),(),(),(),( V
ijkl

V
ijkl
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ijkl

IV
ijkl
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ijkl

III
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II
ijkl

I
ijkl

I
ijklijkl AAAAAAAAAAC CCCCC ++++=                (36) 

where  ),( K
ijklAC   denotes the inner product of  ijklC   and 
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 ),32(
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which are orthonormalized basis elements for transversely isotropic system. Since first two orthonormalized basis elements of 
transversely isotropic system are same with isotropic symmetry, inner products are also same, the other inner products for 
transversely isotropic system are found as 

],4442221233[
56

1),( 665544231312332211 CCCCCCCCCAIII
ijkl −−−−−−+−−=C                 (37) 

],444881033[
12
1),( 6655442313122211 CCCCCCCCAIV

ijkl +++++−−−=C                  (38) 

].4442[
4
1),( 665544122211 CCCCCCAV

ijkl −+++−−=C                    (39) 

This method is orthogonal and it is proved by constructing orthonormalized basis elements in Appendix B. The decomposed parts 
are different from the expressions given in eqs. (22)-(26) obtained by irreducible decomposition method. 
 
4. Harmonic Decomposition Method 
 
   In the literature, harmonic decomposition had been studied extensively. Firstly, Backus (1970) proposed a representation of 
elastic constant tensor in terms of harmonic tensors. These are based on an isomorphism between the space of homogeneous 
harmonic polynomials of degree q and the space of totally symmetric tensors of order q. Furthermore according to Sirotin (1975) 
elastic constant tensor was decomposed with respect to general linear group and then orthogonal group O(3). Baerheim (1993) 
followed Backus (1970) and developed the method. 
   In harmonic decomposition, the action of  )3(SO   on a vector space is said to be irreducible when there are no proper invariant 
subspaces. It is deduced that there is a decomposition of  the space of elastic constant tensors ( E la) into a direct sum of 
orthogonal subspaces on which the action of  )3(SO   is irreducible. An important theorem of group representation theory can be 
summarized as: every space on which the group of rotations acts irreducibly is isomorphic through an  )3(SO  -invariant map 
with an appropriate space of harmonic polynomials. In view of isomorphism, there is a decomposition of  E la into a direct sum of 
spaces of harmonic tensors. (See, for instance; Forte and Vianello (1996)) 
Besides, there is an  )3(SO  -invariant isomorphism between  E la and the direct sum 
R ⊕  R ⊕  Dev ⊕  Dev Hrm⊕ .  We give a brief review for this method as follows: The decomposition of elastic constant 
tensor for anisotropic materials possessing triclinic symmetry, we obtain 

+++++++++= jlikklijiljkjkilikjljlikijklklijijklijkl HHHHHHHHC δδδδδδδδδδ [][  
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In this method, we use the notation of Baerheim (1993). 
The total scalar (isotropic) part of harmonic decomposition (obtained from eq. (40)) is (denoted as  S  ) 
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   Furthermore the total deviatoric part or second rank traceless tensor is composed of  summation of  the linear combination of 
second order tensors( ijH   and  ijh  ) given in eq. (40), which is (denoted as  D  ) 
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From eq. (40), harmonic (nonor) part is obtained as the same expression as  )1;4(
ijklC   given in eq. (15). 

   Moreover, the results for elastic constant tensor decomposition are given by Onat (1984, 1994) and quoted by Cowin (1989), 
Forte and Vianello (1996, 2006), He (2004), Ting and He (2006), Zheng (2007), Annin and Ostrosablin (2008) in which elastic 
constant tensor is decomposed into two scalar, two deviatoric and nonor parts. These decompositions are the same as harmonic 
decomposition method since scalar, deviatoric and nonor parts are common and they are identical with those obtained from 
harmonic decomposition method, only difference here is notations used for scalar, traceless symmetric second rank tensors and 
nonor parts. 
   According to these studies, decomposition of elastic constant tensor for anisotropic materials possessing triclinic symmetry is 
expressed as follows: 

,

))(3(
30
1)2(

15
1

ijkliljkjkilikjl

jlikijklklijjkiljlikppqqpqpqklijpqpqppqqijkl

ZBBB

BAACCCCC

+++

+++++−+−=

δδδ

δδδδδδδδδ
            (43) 

From eq. (43), total scalar part is 

).)(3(
30
1)2(

15
1

jkiljlikppqqpqpqklijpqpqppqq CCCC δδδδδδ +−+−                   (44) 

The total deviatoric part is 
.iljkjkilikjljlikijklklij BBBBAA δδδδδδ +++++                    (45) 

The components of deviatoric part are   
,21/)451215( pkpkijppkkijikjkijkkij CCCCA δδ +−−=  

.21/)3296( pkpkijppkkijikjkijkkij CCCCB δδ −++−=  

Finally nonor part is the same as  )1;4(
ijklC   given in eq. (15). 

   Furthermore the decomposition of elastic constant tensor given in Forte and Vianello (1996, 2006) contains misprints in 
components of scalar part and total deviatoric part. In eqs. (44) and (45), these parts are corrected. 
 
4. 1 For Isotropic Materials 
       Like irreducible decomposition method, there are two irreducible parts constituted total isotropic (scalar) parts which are 
found by using eqs. (43) and (44) and these decomposed parts are  

klijpqpqppqq CC δδ)2(
15
1

−                                                                                                                                              (46) 

and 

))(3(
30
1

jkiljlikppqqpqpq CC δδδδ +−                (47)

  
The sum of eqs. (46) and (47) gives total scalar part which is obtained in eq. (44). 
 
4. 2 For Transversely Isotropic Materials 
   There are five irreducible parts for transversely isotropic materials which are two scalars and two deviators and a nonor 
(harmonic) part. The decomposed parts of total scalar part are the same as those given in eqs. (46) and (47) and decomposed parts 
of total deviatoric part which are  )1;2(

ijklC   and  )2;2(
ijklC   found in eqs. (24) and (25) respectively, are obtained by arranging equation 

(42) so we get total deviatoric part in harmonic decomposition method. 
   Nonor part is equal to  )1;4(

ijklC   given in eq. (26), we obtain harmonic part for transversely isotropic materials in harmonic 
decomposition method. 
 
5. Spectral Decomposition Method 
 
The spectral decomposition of  C   (elastic constant tensor) for triclinic materials which is well known in the literature, given by 
Cowin et al. (1991), Sutcliffe (1992) and Rychlewski (2000)  

.)6,....,1(,kover summation )(
)()(

=⊗=
→→

knn
kk

kλC                    (48) 
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where  kλ   are the eigenvalues of elastic constant tensor and  
)(k

n
→

  are the corresponding eigenvectors of elastic constant tensor. 

The symbol  ⊗   is the dyadic (tensor) product. 

N=⊗
→→ )()( kk

nn   are the eigentensors (idempotent tensors) and they are orthogonal to each other. 
   This decomposition method is a non-linear orthogonal method since eigenvalues constituting decomposed parts, are expressed in 
terms of elastic constants. 
In spectral method; the orthogonality condition is checked by using orthonormalized basis elements. In order to construct 
orthonormalized basis, the following properties must be satisfied 

,..........
)6()6()1()1( →→→→

⊗++⊗= nnnnI  
which yields 

654321 NNNNNN +++++=I           

(Where  I   is the identity matrix.) 
,1N    KKK NNNNN =⋅,,...., 62   

    (0=⋅ LK NN  if  )LK ≠   
So by using this method, decomposed parts of elastic constant tensor is orthogonal to each other. 
 
5. 1  For Isotropic Materials 
   For isotropic symmetry, there are two eigenvalues which are 1211 2CC +  )( 1λ  and 2/)( 1211 CC −   ).( 2λ   These eigenvalues 

are found by the formula: ,0=− IkλC   the normalized eigenvectors are obtained by the formula: ,0)(
)(
=−

k

k nIλC   where  
)(k

n   are normalized eigenvectors. 
The elastic constant tensor for isotropic materials can be written as 

).()(
)()(

2

6

2

)1()1(

1

kk

k

nnnn ⊗+⊗=
=
∑λλC                                                                                                                                (49) 

Recall that  == 32 λλ    ,654 λλλ ==   and tensors that have the same eigenvalues can be combined and the elastic constant 
tensor can be written as two parts, we obtain the same parts in eqs. (19) and (31) given in  irreducible decomposition and 
orthonormal tensor basis methods for isotropic materials. 
 
5. 2  For Transversely Isotropic Materials 
   For transversely isotropic symmmetry like isotropic symmetry, eigenvalues are found by the formula;  ,0=− IkλC   
corresponding normalized eigenvectors are obtained by the formula: 

 .0)(
)(
=−

k

k nIλC  From these formulas, eigenvalues are 

 ,2/)8)(( 2
13

3
3312113312111 CCCCCCC +−+−++=λ   

 ,2/)8)(( 2
13

3
3312113312112 CCCCCCC +−++++=λ   

 .2, 12116445412113 CCCCC −===−= λλλλ   
The corresponding normalized eigenvectors are 

 ( )[ ] ,0,0,0,,,
2

1
113132

1
2

13

)1( TbCC
bC

n
+

=    ( )[ ] ,0,0,0,,,
2

1
213132

2
2

13

)2( TbCC
bC

n
+

=   

 [ ] ,0,0,0,0,1,1
2

1)3( Tn −=    [ ] ,0,1,0,0,0,0
)4( Tn =    [ ] ,0,0,1,0,0,0

)5( Tn =   

 [ ] ,1,0,0,0,0,0
)6( Tn =   

where  ( ) 2/2/)8)( 2
13

3
3312113312111 CCCCCCCb +−+−+−−=   and 
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 ( ) .2/2/)8)( 2
13

3
3312113312112 CCCCCCCb +−+++−−=   

By using these eigenvalues and eigenvectors, elastic constant tensor for transversely isotropic material can be decomposed by 
spectral method as 

)(
)()(

1

6 kk

k
k

nn ⊗=
=
∑λC             (50) 

 
Since spectral decomposition is a non-linear method, it gives decomposed parts in terms of eigenvalues which are functions of 
elastic constants. The results are different from the other three decomposition methods. 
 
6. Numerical Examples 
 
   To support the analytic results of four methods, we give illustrative numerical examples for triclinic, transversely isotropic and 
isotropic symmetries. The main purpose of these examples from various symmetry systems to figure out not only the significant 
differences but also the critical similarities among all decomposition methods more explicitly. 
   For triclinic material, let C be an elastic constant tensor of Low Albite (taken from Brown et al. (2006)) which has the matrix 
form in GPa, 

.

5.335.02.78.98.59.0
5.08.264.21.77.74.2
2.74.29.247.89.31.5
8.91.77.85.1795.58.30
8.57.79.35.55.18334
9.04.21.58.30341.69

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−

−−−−
−−
−−−
−−

=ijC                   (51) 

Applying irreducible decomposition method, we use the formulas given in section 2 and we obtain the scalar, deviatoric and nonor 

parts respectively. Hence elastic constant tensor for Low Albite can be decomposed as 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

16.4100000
016.410000
0016.41000
00088.5444.2744.27
00044.2788.5444.27
00044.2744.2788.54

000000
000000
000000
0006333.636333.636333.63
0006333.636333.636333.63
0006333.636333.636333.63

ijC  

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−
−

−
−−−

0733.674.05.0064.364.3
74.02133.882.1101

5.082.12867.1448.148.10
0148.12933.2400

64.3048.108533.320
64.310001467.57
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+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−

−−−−
−−−
−−−−−
−−−

1733.05429.04743.19857.01971.01971.0
5429.02152.03943.07371.06857.37371.0
4743.13943.00419.02714.02714.03571.1
9857.07371.02714.01733.01048.05381.0
1971.06857.32714.01048.02152.04333.0
1971.07371.03571.15381.04333.00419.0

 

 

         .

76.19782.07225.53814.89962.11937.2
9782.05931.53974.09362.7386.111137.2
7225.53974.0589.306908.96108.51457.6
3814.89362.76908.952.36589.304931.5
9962.1386.116108.5589.30349.3276.1

1937.21137.21457.64931.576.15691.7

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−−−−−
−−−−−
−−−−
−−−−−

−−−

                                          (52) 

 Using orthonormal tensor basis method,  we apply the formula given in eq. (31). For this reason inner products are 

calculated as: 

,0731.184),(,9.190),( == II
ijkl

I
ijkl AA CC   

 ,4924.12),(,8894.69),(,302.18),(,4376.43),( −=−=−== VI
ijkl

V
ijkl

IV
ijkl

III
ijkl AAAA CCCC   

 ,3647.20),(,687.2),(,3.25),(,893.80),( −=−==−= X
ijkl

IX
ijkl

VIII
ijkl

VII
ijkl AAAA CCCC   

 ,7882.6),(,4.15),(,8.4),(,2.14),( −=−=−== XIV
ijkl

XIII
ijkl

XII
ijkl

XI
ijkl AAAA CCCC   

 ,4142.1),(,6.19),(,6.11),(,8.1),( =−=−=−= XVIII
ijkl

XVII
ijkl

XVI
ijkl

XV
ijkl AAAA CCCC   

 .2.10),(,4.17),(,8.7),( =−=−= XXI
ijkl

XX
ijkl

XIX
ijkl AAA CCC   

The elastic constant tensor for triclinic material, ijklC  , can be represented in the following matrix form: 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

164100000
016410000
001641000
000885444274427
000442788544427
000442744278854

000000
000000
000000
000633363633363633363
000633363633363633363
000633363633363633363

.
.

.
...
...
...

...

...

...

C pq
 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

000000
000000
000000
00002833.52833.5
0002833.505667.10
0002833.55667.100

000000
000000
000000
0004667.3500
00007333.170
000007333.17
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+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

−−
−−

1.500000
055.20000
0055.2000
000000
000000
000000

76.1200000
076.120000
0076.12000
00052.2576.1276.12
00076.1252.2576.12
0002833.576.1252.25

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

000000
09500000
00950000
000000
000000
000000

000000
000000
000000
000065126512
000651200
000651200

000000
000000
000000
000000
00002570
00000257

.
.

..
.
.

.
.

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

000000
0000042
000000
000000
000000
0420000

000000
0001700
000000
0170000
000000
000000

0027000
000000
2700000
000000
000000
000000

.

.

.

.

.

.
 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0000090
000000
000000
000000
000000
9000000

000000
0042000
0420000
000000
000000
000000

000000
0000770
000000
000000
0770000
000000

.

.

.
.

.

.

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0500000
5000000
000000
000000
000000
000000

0008900
000000
000000
8900000
000000
000000

0000850
000000
000000
000000
8500000
000000

.
.

.

.

.

.

 

.
.

.

.
.

.

.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

000000
000000
0000015
000000
000000
0015000

000000
000000
0007800
0078000
000000
000000

000000
000000
0000930
000000
0093000
000000

             (53) 

By applying harmonic decomposition method, we use the formulas given in section 4 and we obtain the scalar, deviatoric and 

nonor parts respectively. Hence elastic constant tensor for Low Albite can be decomposed as 
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+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

16.4100000
016.410000
0016.41000
00032.8200
000032.820
0000032.82

000000
000000
000000
00019.3619.3619.36
00019.3619.3619.36
00019.3619.3619.36

ijC  

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−
−

−
−−−

0733.674.05.0064.364.3
74.02133.882.1101

5.082.12867.1448.148.10
0148.12933.2400

64.3048.108533.320
64.310001467.57

                       

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−

−−−−
−−−
−−−−−
−−−

173305429047431985701971019710
542902152039430737106857373710
474313943004190271402714035711
985707371027140173301048053810
197106857327140104802152043330
197107371035711538104333004190

......

......

......

......
......
......

                                     

                 .

......
......
......
......
......
......

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−−−−−
−−−−−
−−−−
−−−−−

−−−

7619782072255381489962119372
978205931539740936273861111372
722553974058930690896108514576
38148936276908952365893049315
9962138611610855893034932761

1937211372145764931576156917

                                      (54) 

By applying the formula given in eq. (48) and using these eigenvalues and eigenvectors, elastic constant tensor for Low Albite can 

be decomposed by spectral method and we obtain six decomposed parts which are 

 

 +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

−−−
−−−
−−−

=

7289.01402.04083.03501.78640.89091.3
1402.00270.00785.04135.17046.17517.0
4083.00785.02288.01175.49656.41899.2
3501.74135.11175.41153.743808.894175.39
8640.87046.19656.43808.897906.1075364.47
9091.37517.01899.24175.395364.479639.20

ijC  
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                    +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−

−−−
−−−

1087.03032.01174.03451.38088.20587.0
3032.08461.03277.03339.98373.71638.0
1174.03277.01269.06149.30353.30635.0
3451.33339.96149.39695.1024599.868074.1
8088.28373.70353.34599.865973.725176.1
0587.01638.00635.08074.15176.10317.0

 

 

                     +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−
−−−

−−−

052.01391.04027.03298.03942.05609.1
1391.03723.00778.18828.00551.11776.4
4027.00778.11202.35557.20544.30941.12
3298.08828.05557.20933.25018.29058.9
3942.00551.10544.35018.29900.28390.11
5609.11776.40941.129058.98390.118766.46

 

 

                     +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−−−
−
−
−

8742.279691.34437.150291.01001.04427.3
9691.35652.01991.20041.00143.04902.0
4437.151991.25565.80161.00555.09074.1
0291.00041.00161.00000.00001.00036.0
1001.00143.00555.00001.00004.00124.0
4427.34902.09074.10036.00124.04252.0

 

                       

                      +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
−−−

−−−
−−−

7732.03636.41815.03477.01032.04139.0
3636.46255.240241.19624.15827.03357.2
1815.00241.10426.00816.00242.00971.0
3477.09624.10816.01564.00464.01861.0
1032.05827.00242.00464.00138.00553.0
4139.03357.20971.01861.00553.02215.0

 

 

                      .

9661.31955.11323.78412.06485.05244.1
1955.13604.01499.22536.01955.04595.0
1323.71499.28263.125128.11662.17413.2
8412.02536.05128.11784.01375.03233.0
6485.01955.01662.11375.01060.02492.0
5244.14595.07413.23233.02492.05859.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−
−

−−−−−

                                               (55) 
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For Low Albite, eqs. (52), (53), (54) prove that total scalar parts (sum of the first two decomposed parts) are common in 

irreducible, orthonormal tensor basis and harmonic decomposition methods whereas eq. (55) illustrates that total scalar part is 

different from other decomposition methods. 

For transversely isotropic material, let  C   be an elastic constant tensor of Polystyrene (see, Wright et al., 1971) which has the 

matrix form in GPa, 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

225.100000
030.10000
0030.1000
00070.575.275.2
00075.220.575.2
00075.275.220.5

ijC                   (56) 

Applying irreducible decomposition method, we use the formulas given in section (2.2) and we obtain the scalar, deviatoric and 

nonor parts respectively. Hence elastic constant tensor for Polystyrene can be decomposed as 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2883.100000
02883.10000
002883.1000
0007178.18589.08589.0
0008589.07178.18589.0
0008589.08589.07178.1

000000
000000
000000
0006222.36222.36222.3
0006222.36222.36222.3
0006222.36222.36222.3

ijC  

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

0076.000000
00038.00000
000038.0000
0000076.00095.00095.0
0000095.00038.0019.0
0000095.0019.00038.0

0767.000000
00383.00000
000383.0000
0003067.000
00001533.00
000001533.0

            

.

0057.000000
00229.00000
000229.0000
0000457.00229.00229.0
0000229.00171.00057.0
0000229.00057.00171.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−
−

                  (57) 

By orthonormal tensor basis method, we apply the formula given in eq. (36). For this reason, inner products must be calculated as 

,8667.10),( =IAC    ,7616.5),( =IIAC    ,4025.0),( =IIIAC    ,05.0),( =IVAC    .15.0),( =VAC   

The elastic constant tensor for Polystyrene can be represented in the form 
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+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2883.100000
02883.10000
002883.1000
0007178.18589.08589.0
0008589.07178.18589.0
0008589.08589.07178.1

000000
000000
000000
0006222.36222.36222.3
0006222.36222.36222.3
0006222.36222.36222.3

ijC

  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

−−−
−−−

0042.000000
00042.00000
000042.0000
00000167.00167.0
0000167.00125.00208.0
0000167.00208.00125.0

03.000000
003.00000
0003.0000
00036.003.003.0
00003.009.003.0
00003.003.009.0

 

 

.

0375.000000
00375.00000
000375.0000
000000
00000375.00375.0
00000375.00375.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

+                                                              (58) 

           

Elastic constant tensor of Polystyrene can be represented by harmonic decomposition method as 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2883.100000
02883.10000
002883.1000
0005767.200
00005767.20
000005767.2

000000
000000
000000
0007633.27633.27633.2
0007633.27633.27633.2
0007633.27633.27633.2

ijC  

 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

0076.000000
00038.00000
000038.0000
0000076.00095.00095.0
0000095.00038.0019.0
0000095.0019.00038.0

0767.000000
00383.00000
000383.0000
0003067.000
00001533.00
000001533.0
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.

0057.000000
00229.00000
000229.0000
0000457.00229.00229.0
0000229.00171.00057.0
0000229.00057.00171.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−
−

                 (59) 

By using the formula given in eq. (50), elastic constant tensor for Polystyrene can be decomposed by spectral method and we get 
following six decomposed parts which are different from those obtained by other three methods: 

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000
000000
000774.1943.0943.0
000943.0501.0501.0
000943.0501.0501.0

000000
000000
000000
000926.3693.3693.3
000693.3474.3474.3
000693.3474.3474.3

ijC  

.

225.100000
000000
000000
000000
000000
000000

000000
000000
003.1000
000000
000000
000000

000000
03.10000
000000
000000
000000
000000

000000
000000
000000
000000
0000225.1225.1
0000225.1225.1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

                      (60) 
From eqs. (57), (58), (59) and it is obvious that decomposed parts of total scalar (isotropic) parts are identical in both orthonormal 
tensor basis and irreducible decomposition methods besides total scalar parts are the same in all methods except spectral 
decomposition illustrated in eq. (60). 
For isotropic material , RPV Steel (see, Cheong et al., 1999) is selected as an example, 
 

.

143.7900000
0143.790000
00143.79000
000001.277715.118715.118
000715.118001.277715.118
000715.118715.118001.277

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ijC                   (61) 

Using irreducible decomposition method, we apply the formula given in section (2.1). So elastic constant tensor for RPV Steel can 
be decomposed as 

.

143.7900000
0143.790000
00143.79000
000524.105762.52762.52
000762.52524.105762.52
000762.52762.52524.105

000000
000000
000000
000477.171477.171477.171
000477.171477.171477.171
000477.171477.171477.171

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ijC
   

                      (62) 
By orthonormal tensor basis method, we apply the formula given in eq. (32). For this reason 
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inner products must be calculated as;  ,431.514),( =IAC    .94.353),( =IIAC   
The symmetric fourth rank tensor for RPV Steel can be represented in the form 

.

143.7900000
0143.790000
00143.79000
000524.105762.52762.52
000762.52524.105762.52
000762.52762.52524.105

000000
000000
000000
000477.171477.171477.171
000477.171477.171477.171
000477.171477.171477.171

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ijC

                                      (63) 
Like irreducible decomposition method, there is only scalar part for RPV Steel in harmonic decomposition method and the elastic 
constant tensor for it, represented as follows: 
 

.

143.7900000
0143.790000
00143.79000
000286.15800
0000286.1580
00000286.158

000000
000000
000000
000715.118715.118715.118
000715.118715.118715.118
000715.118715.118715.118

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ijC

                                   (64) 
By applying the formula given in eq. (49) and using these eigenvalues and eigenvectors, elastic constant tensor for RPV Steel can 
be decomposed by spectral method. We obtain the same decomposed parts as irreducible decomposition and orthonormal tensor 
basis methods. 

.

143.7900000
0143.790000
00143.79000
000524.105762.52762.52
000762.52524.105762.52
000762.52762.52524.105

000000
000000
000000
000477.171477.171477.171
000477.171477.171477.171
000477.171477.171477.171

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ijC

                         (65) 
   From eqs. (62), (63), (64) and (65), it is seen that harmonic decomposition method yields different decomposed parts for 
isotropic materials while these parts are identical in the other three methods. The summation expressed in eqs. (62), (63), (64) and 
(65) states that total of these decomposed parts for isotropic materials are the same. 
  
7. Comparison of the Decomposition Methods  
 
   For comparison purposes, we find out critical relationships between irreducible and harmonic decomposition methods. Not only 
these relations but also the comparison of the four decomposition methods are summarized in this section. 
In section 4, it is seen that there are many works done harmonic decomposition method in the literature. Like irreducible 
decomposition, two scalars, two deviators and the nonor part are obtained in harmonic decomposition method. Hence total scalar, 
total deviatoric parts and nonor part are identical in two methods. This is the first relationship between these methods. 
   In irreducible method, components of total scalar parts;  )1;0(

mnC   and  )2;0(
mnC  are orthogonal to each other. Contrary to it, 

decomposed parts of total scalar part are not orthogonal to each other in harmonic decomposition method due to the expression for 
decomposition of elastic constant tensor given in eqs. (40) and (43). Since  klijδδ   is not orthogonal to  jkiljlik δδδδ +   (denoted 

as  ijklI2  ). If we replace  klijδδ   and  ijklI2   by the hydrostatic and deviatoric operators 
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,,
3
1 h

ijklijkl
d
ijklklij

h
ijkl IIII −== δδ                      (66) 

respectively, then we obtain back the matrices in eq. (19) in which decomposed parts of total scalar parts are orthogonal to each 
other. So the components of total scalar part in harmonic decomposition method takes the form of  )1;0(

mnC   and  .)2;0(
mnC   This case 

is a significant innovation for both decomposition methods for elastic constant tensor. It is the second relationship between both 
decomposition methods. 
Besides, in irreducible decomposition method, by using equations (18), (21), we obtain two physically meaningful parts which are 

,3 11 KIJ =                    (67) 
and  

),
3
1(2)

3
1( ijrrijijrrij G δεεδσσ −=−                 (68) 

where  iiJ σ=1   and  iiI ε=1   are the first fundamental invariants of stress and strain tensors, respectively. 
Equation (67) represents volume-change without distortion under hydrostatic stress and eq. (68) represents shape-change without 
volume-change under deviatoric stress. 
   So irreducible decomposition method gives two isotropic (scalar) parts which have significant physical meanings. On the other 
hand, scalar parts obtained from harmonic decomposition method do not have any physical meanings like irreducible 
decomposition method. By using eq. (66), we can make scalar parts orthogonal to each other for harmonic decomposition method 
and then these parts also have same physical meanings as those in irreducible decomposition method. So orthogonal 
decomposition of elastic constant tensor is important. 
   As a result, components of scalar and deviatoric parts in irreducible method are not equal to those in harmonic decomposition 
method, so it proves that there is not a unique decomposition for both deviatoric and scalar parts, in other words total deviatoric 
and scalar parts can be decomposed into infinitely many independent components. This case also indicates that total scalar, 
deviatoric and nonor parts of elastic constant tensor obtained from irreducible decomposition methods are the same as those of 
harmonic decomposition method. (See, Rychlewski (2000)) 
   Furthermore, in order to designate the similarities between the all decomposition methods as well as differences, we compare 
them. The following results are found out: 
1. Irreducible decomposition, orthonormal tensor basis, harmonic and spectral decomposition methods are suitable for the 

orthogonal decomposition of the elastic constant tensor. 
2. Orthonormal tensor basis method gives twenty one decomposed parts and spectral decomposition yields only six terms at 

most for triclinic system whereas irreducible and harmonic decomposition methods decompose elastic constant tensor into 
five parts at most for triclinic materials and these five parts are composed of two scalars, two deviators and one nonor part. 

3. Decomposed parts of isotropic material are identical in orthonormal tensor basis, irreducible decomposition and spectral 
methods, contrary to these methods, components of isotropic material are different in harmonic decomposition method. 

4. Total scalar (isotropic) parts from irreducible and harmonic decomposition methods are identical with the isotropic parts of 
lower symmetry types such as transversely isotropic symmetry obtained from orthonormal tensor basis method. 

 
Following Ryclewski (2000), we can call spectral method `non-linear invariant decomposition' and the other three 
decomposition methods `linear invariant decomposition'. 
 
8. Discussion 
 
   Decomposition methods as irreducible decomposition, orthonormal tensor basis, harmonic decomposition and spectral have 
many applications in different subjects of physics and engineering (atomic and molecular physics and the physics of condensed 
matter). The decomposition methods of elastic constant tensor are applied to different fields of science and engineering. For 
instance, Geophysicists have used it in geophysical applications. (See, for instance; Chevrot and Browaeys (2004)) Furhermore for 
very valuable materials like diamond or quartz used in mining, it is difficult to measure its elastic constants because of its small 
samples. Applying orthonormal tensor basis method, we are able to specify the elastic constants of these types of materials (this 
case is proved by Tu (1968)). As an application for harmonic decomposition, it is possible to decide which type of symmetry a 
material has when the elastic constants are measured relative to an arbitrary coordinate system. A second rank symmetric tensor 
associated to the elastic constant tensor can be used to verify if the coordinate axes are the symmetry axes of the material and 
determine a symmetry coordinate system (examples for this case are given in Baerheim (1993)). So comprehending the 
decomposition methods is considerable to understand the idea behind these decomposition methods as well as the physical 
properties of anisotropic materials. 
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9. Conclusions 
 
   In conclusion, it is seen that orthonormal tensor basis, irreducible and harmonic decomposition methods give orthogonal and 
linear decomposed parts, while spectral method is a non-linear and orthogonal decomposition method since decomposed parts are 
expressed in terms of functions of elastic constants. In harmonic decomposition method, we are able to construct the decomposed 
parts, obtained from irreducible decomposition method, by making decomposed parts of total scalar part orthogonal. One of the 
important contribution of this work is that the sum of the total scalar and deviatoric parts are the same in both irreducible and 
harmonic decomposition methods. Finally, we hope this paper prepares interested readers to appreciate a deep understanding of 
application the orthonormal tensor basis and irreducible decomposition methods to elastic constant tensor and general review of 
harmonic decomposition and spectral methods for elastic constant tensor and for comparison purposes as well as the non-linear 
property of spectral method. 
 
Appendix A 
 
   For irreducible decomposition method; the orthogonality condition is checked by using orthonormalized basis elements, the 
procedure is shown as 
   For fourth rank tensor  4=n   and  0=j  ,  q   will take the values  2,1   and  3  . For  ,1=q  

.)1,0(
klijijkl aQ δδ=                       (A1) 

Applying the normalization condition, eq. (A1) takes the following form: 
12)1,0()1,0( == klijklijijklijkl aQQ δδδδ  

,
3
1

=a   So the first idempotent is 

,
3
1)1,0(

klijijklQ δδ=                       (A2) 

For  2=q  , 

),()2,0(
jkiljlikijkl baQ δδδδ +=                            (A3) 

According to orthogonality condition (we take the inner product of both eqs. (A2) and (A3)) 
0)2,0()1,0( =ijklijkl QQ , 1)2,0()2,0( =ijklijkl QQ  

so for  2=q  ,   ,
32

1
=a     

32
1

−=b  . The second idempotent is 

jkiljlikijklQ δδδδ
32

1
32

1)2,0( −=                     (A4) 

By using the same procedure, the last idempotent is found as 

)233(
56

1)3,0(
klijjkiljlikijklQ δδδδδδ −+=                    (A5) 

As an example to how we obtain the irreducible parts from idempotent is demonstrated,  )1;0(
ijklC   is given 

.~ )1;0()1;0()1;0(
ijklijklijklijkl CQQC ′=  This gives 

 

.
9
1)1;0(

ppqqklijijkl CC δδ=                       (A6) 

This is the first decomposed part of scalar part. Second decomposed part  )2;0(
ijklC   is found as 

.~ )2;0()2;0()2;0(
ijklijklijklijkl CQQC ′=  This gives 

 

).3)(233(
90
1)2;0(

ppqqpqpqklijjkiljlikijkl CCC −−+= δδδδδδ                  (A7) 

Using same procedure, the other parts can be found. 
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Appendix B 
For orthonormal tensor basis method; the orthogonality condition is checked by using orthonormalized basis elements, the 
procedure is shown as 
Any isotropic tensor  ijklC   can be written as follows 

 .II
ijkl

I
ijklijkl bAaAC +=                                                                                 (B1) 

Taking inner products of both sides with  ,IA   eq. (B1) takes the following form: 

).,(),(),( IIIIII AAbAAaA +=C                     (B2) 
 
In order to satisfy the orthogonality conditions 

1),( =II AA       and      .0),( =III AA   So we get;  ),( IAa C=   

In order to find  ,b   again we can take inner products of both sides with  ,IIA   eq. (B1) takes the following form: 

).,(),(),( IIIIIIIII AAbAAaA +=C                     (B3) 

By using same procedure,  ).,( IIAb C=   Then we get the following: 

,),(),( II
ijkl

III
ijkl

I
ijkl AAAAC CC +=                      (B4) 

where  ,ijkl
I
ijkl dA α=   

 ijklijkl
I
ijkl

I
ijkl dAA αα2),( =  

Then  .
3
1

=d   So  the first orthonormalized basis element  I
ijklA   can be found as 

klijijkl
I
ijklA δδα

3
1

3
1

==   

 II
ijklA   can be obtained by applying the same procedure step by step. Let ijklijkl

II
ijkl edA βα +=    

Now taking inner product with  II
ijklA   and 

),)((),( ijklijklijklijkl
II
ijkl

II
ijkl ededAA βαβα ++=  which gives 

 
22 241291 eded ++=  

),(
3
1),( ijklijklijkl

I
ijkl

II
ijkl edAA βαα +=   this causes 

,
33

0 ijklijklijklijkl
ed βααα +=  

where   ,9))(( == klijklijijklijkl δδδδαα 6))(( =+= jkiljlikklijijklijkl δδδδδδβα   

Then  ,
56

2
−=d    .

52
1

=e   So, the second orthonormalized basis element for isotropic system  II
ijklA   can be found as  

).23(
56

1
ijklijkl

II
ijklA αβ −=   

For transversely isotropic system, the other orthonormalized basis elements for transversely isotropic system are constructed by 
performing the following steps: 
A transversely isotropic tensor can be written as follows: 

.321 ijklijklijkl
III
ijkl dddA γβα ++=   By taking inner products of both sides with  III

ijklA  ,  the above equation takes the form: 

].][[),( 321321 ijklijklijklijklijklijkl
III
ijkl

III
ijkl ddddddAA γβαγβα ++++=   In order to satisfy the orthogonality conditions, 

1),( =IIIIII AA   and  .0),( =IIII AA   So we get 
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ijklijklijkl

ijklijklijklijklijklijklijklijklijklijklijklijklijklijkl
IIIIII

ddd

ddddddddddddAA

γβγ

αγγβββαβγαβααα
2
323

1332
2
2123121

2
11),(

+

+++++++==

 By rearranging the above equation, we obtain 
2
3

2
2313221

2
1 24241291 ddddddddd +++++=                   (B5) 

,0][
3
10),( 321321 ijklijklijklijklijklijklijklijklijklijkl

IIII ddddddAA γαβαααγβαα ++=⇒++==  

321 690 ddd ++=                       (B6) 

].][23[
56

10),( 321 ijklijklijklijklijkl
IIIII dddAA γβααβ ++−==  By rearranging the above equation, we get 

32 15
1 dd −=                        (B7) 

By substituting eq. (B7) into eq. (B6) we get 
 

31 15
1 dd −=                                     (B8) 

By putting eqs. (B7) and (B8) into eq. (B5), the constants are found as 

56
15,

56
1

321 =−== ddd                     (B9) 

The third basis element of transversely isotropic system is 

)15(
56

1
ijklijklijkl

III
ijklA αβγ −−=                   (B10) 

For the other element, similar steps are performed then we obtain 
 ijklijklijklijkl

IV
ijkl ddddA δγβα 4321 +++=   

By taking inner products of both sides with  IV
ijklA  ,  the above equation takes the form 

]][[),( 43214321 ijklijklijklijklijklijklijklijkl
IV
ijkl

IV
ijkl ddddddddAA δγβαδγβα ++++++=  

Orthogonality conditions are 

ijklijklijklijklijklijkl

ijklijklijklijklijklijklijklijklijklijkl

ijklijklijklijklijklijklijklijklijklijkl

ijklijklijklijklijklijklijklijkl
IV

ijkl
IV

ijkl

ddddd

dddddddd

ddddddddd

dddddddAA

γγδγβδ

αδδγγγβγγα

βαβγβγββαβ

αγγαβααα

2
44324

1443
2

33231

312423
2

212

413121
2

11),(

++

+++++

+++++

++++==

 

2
4344241

2
34332314232

2
221413121

2
1

8246

22422466691

ddddddd

ddddddddddddddddddddd

+++

++++++++++++=⇒
 

By rearranging the above equation, we obtain 
2
4344232

2
2413121

2
1 8484241221291 ddddddddddddddd ++++++++=              (B11) 

Another equation is obtained from the orthogonality condition which is 

]][15[
56

10),( 4321 ijklijklijklijklijklijklijkl
III
ijkl

IV
ijkl ddddAA δγβααβγ +++−−==  

By rearranging the above equation, we get 

43 3
5 dd −=                      (B12) 

In order to find the constant, steps should be continued as follows 
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]][23[
56

10),( 4321 ijklijklijklijklijklijkl
II
ijkl

IV
ijkl ddddAA δγβααβ +++−==  

From the above equation, we obtain 

42 9
1 dd =                     (B13) 

 

][
3
10),( 4321 ijklijklijklijklijkl

I
ijkl

IV
ijkl ddddAA δγβαα +++==  

From above equation, we get 

41 9
5 dd −=                      (B14) 

By substituting eqs. (B14), (B13), (B12) into eq. (B11), we can find the constants as 

,
12
5

1 −=d    ,
12
15,

12
1

32 −== dd    .
12
9

4 =d   So the fourth basis element of transversely isotropic system is 

)5159(
12
1

ijklijklijklijkl
IV
ijklA αβγδ −+−=                      (B15) 

For the other element, similar steps are performed then we get 

ijklijklijklijklijkl
V
ijkl dddddA εδγβα 54321 ++++=  

1]][[),( 5432154321 =++++++++= ijklijklijklijklijklijklijklijklijklijkl
V
ijkl

V
ijkl ddddddddddAA εδγβαεδγβα  

1884168424122129 2
5

2
443

2
3524232

2
2413121

2
1 =+++++++++++⇒ ddddddddddddddddddd           (B16) 

0]][15[
56

1),( 54321 =++++−−= ijklijklijklijklijklijklijklijkl
III
ijkl

V
ijkl dddddAA εδγβααβγ  

543 820120 ddd −+=                     (B17) 

0])[5159(
12
1),( 54321 =++++−+−= ijklijklijklijklijklijklijklijklijkl

IV
ijkl

V
ijkl dddddAA εδγβααβγδ  

From the above equation two constants are found as 

5354 2
3,

2
1 dddd =−=                    (B18) 

0])[23(
56

1),( 54321 =++++−= ijklijklijklijklijklijklijkl
II
ijkl

V
ijkl dddddAA εδγβααβ  

52 2
1 dd −=⇒                  (B19) 

0][
3
1),( 54321 =++++= ijklijklijklijklijklijkl

I
ijkl

V
ijkl dddddAA εδγβαα  

51 2
1 dd =⇒                                (B20) 

By putting eqs. (B20) , (B19) and (B18) into eq. (B16), we can find the constants as 

 ,
2
1,

4
3,

4
1,

4
1

53421 ==−===⇒ ddddd   

Then  we can find the last orthonormalized basis element for transversely isotropic system as 
 

)32(
4
1

ijklijklijklijklijkl
V
ijklA αβγδε +−+−=         (B21) 
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