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Abstract 
 
   In principle, control methods for multi-phase machines are the same as for three-phase machines. Variable speed induction 
motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace 
the speed sensor, information of the rotor speed is extracted from measured stator currents and voltages at motor terminals. 
Vector-controlled drives require estimating the magnitude and spatial orientation of the fundamental magnetic flux in the stator 
or in the rotor. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, 
robustness, and sensitivity against model parameter variations. This paper analyses operation of a modified Euler integration-
based sensorless control of vector controlled five-phase induction machine with current control in the stationary reference frame. 
A linear neural network has been then designed and trained online by means of back propagation network (BPN) algorithm, 
differently from that in the literature which employs a nonlinear back propagation network (BPN) algorithm. The Artificial 
Neural Network (ANN)-Model Reference Adaptive System (MRAS) based sensorless operation of a three-phase induction 
machine is well established and the same principle is extended in this paper for a five-phase induction machine. Performance, 
obtainable with hysteresis current control, is illustrated for a number of operating conditions on the basis of simulation results. 
Full decoupling of rotor flux control and torque control is realised. Dynamics, achievable with a five-phase vector controlled 
induction machine, are shown to be essentially identical to those obtainable with a three-phase induction machine. 
 
Keywords: Multi-phase machine, MRAS, ANN, BPN, Euler Integration, Sensorless control. 
 
1. Introduction 
 

Variable speed electric drives predominately utilise the three-phase machines. However, since the variable speed ac drives 
require a power electronic converter for their supply (in vast majority of cases an inverter with a dc link), the number of machine 
phases is essentially unlimited. This has led to an increase in the interest in multiphase ac drive applications, since multiphase 
machines offer some inherent advantages over their three-phase counterparts. a number of interesting research results has been 
published over the years and detailed reviews are available in (Singh, 2002, Jones et al., 2002, Toliyat et al., 2000, Xu et al., 2002, 
Parsa, 2005).  

Major advantages of using a multi-phase machine instead of a three-phase machine are detailed in (Singh, 2002, Jones et al., 
2002, Toliyat et al., 2000, Xu et al., 2002, Parsa, 2005) and are higher torque density, greater efficiency, reduced torque 
pulsations, greater fault tolerance, and reduction in the required rating per inverter leg (and therefore simpler and more reliable 
power conditioning equipment). Additionally, noise characteristics of the drive improve as well.  

Sensorless vector control of three-phase induction machine has attracted wide attention in resent years (Parsa et al, 2004, Terrien 
et al., 2004, Holtz, 2006, 2002). Several attempts have been made in the past to extract the speed signal of the induction machine 
from measured stator currents and voltages. Initially, the sensorless techniques were restricted to techniques which are only valid 
in the steady-state and can only be used in low cost drive applications, not requiring high dynamic performance. Different, more 
sophisticated techniques are required for high performance applications in vector controlled drives (Holtz, 2002). In a sensorless 
drive, speed information and control should be provided with an accuracy of 0.5% or better, from zero to the highest speed, for all 
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operating conditions and independent of saturation levels and parameter variations. In order to achieve good performance of 
sensorless vector control, different speed estimation schemes have been proposed and a variety of speed estimators exist 
nowadays. 

Sensorless operation of a vector controlled three-phase induction machine drive is extensively discussed in the literature (Vas, 
1998, Rajashekara et al, 1996), but the same is not true for multi-phase induction machine. Only few application specific 
sensorless operation of multi-phase machine is elaborated in the literature. The problem of using the position sensor in ‘more-
electric’ aircraft fuel pump fault tolerant drive is highlighted in (Green et al, 2000). The drive utilises a 16 kW, 13000 rpm six-
phase permanent magnet motor with six independent single-phase inverters supplying each of the six-phases. The authors 
proposed an alternative sensorless drive scheme. The proposed technique makes use of flux linkage-current-angle model to 
estimate the rotor position.  

Although several schemes are available for sensorless operation of a vector controlled drive, but the most popular is the MRAS 
because of ease of their implementation (Elbulk et al, 2002, Kim et al, 1995). An attempt is made in this paper to extend the 
MRAS-based technique of a three-phase machine to an indirect field oriented five-phase induction motor drive.  

It has been shown in (White, 1959) that multi-phase machine models can be transformed into a system of decoupled equations in 
orthogonal reference frames. The d-q axis reference frame currents contribute towards torque and flux production, whereas the 
remaining x-y components plus the zero sequence components do not. This allows a simple extension of the rotor flux oriented 
control(RFOC) principle in that the rotor flux linkage is maintained entirely in the d-axis, resulting in the q-axis component of 
rotor flux being maintained at zero. This reduces the electromagnetic torque equation to the same form as that of a dc machine or a 
rotor flux oriented three-phase machine. Thus the electromagnetic torque and the rotor flux can be controlled independently, by 
controlling the d and q components of stator current independently. The decoupled control of torque and flux using rotor flux 
oriented control for a five-phase induction machine is illustrated in (Xu et al, 2002). 

Ben et al. (1993) and Elloumi et al. (1998) present an MRAS speed observer which is an evolution of Shauder (1992) and 
minimizes the error between rotor fluxes estimated respectively with a reference and an adaptive flux model, and then they apply it 
to an field oriented control(FOC). Like in Shauder (1992), it employs, as a reference model, the voltage model of the induction 
machine and the open-loop integration is performed by an LP filter. However, it uses the adaptive model, by rearranging the rotor 
equations of the machine so that a multilayer perceptron can be employed. On this basis, these articles exploit the classical back 
propagation network (BPN) algorithm for the online training of the neural network to estimate the rotor speed. In Ben et al. (1999) 
the observer is verified also experimentally, even if neither the lowest speed limit of the observer nor the zero-speed operations, at 
no load and at load, are presented. This paper proposes an improvement of the MRAS artificial-neural-network (ANN)-based 
speed observer presented in (Ben et al, 1999), for basically two reasons. First it does not use the BPN neural network but an 
Adaptive Linear neural Network (ADALINE), since the problem to be solved is linear: it is in fact questionable to use a nonlinear 
method like the BPN algorithm which causes local minima, paralysis of the neural network, need of two heuristically chosen 
parameters, initialization problems, and convergence problems. In (Ben et al, 1999) this linearity problem has been recognized, but 
the minimization has been performed with a gradient-descent dependent also from the momentum, which is not necessary. Second, 
the adaptive model in (Ben et al, 1999) is used in simulation mode, which means that its outputs are feed back recursively. In this 
paper, in contrast to this, a modified adaptive model is used as a predictor, without feedbacks, no need of filtering the estimated 
signal, and resulting in higher accuracy both in transient and steady-state operation. Moreover, differently from (Ben et al, 1999), a 
stable behavior in field weakening is achieved. In this paper the improvements achieved with the MRAS-OLS observer are 
emphasized. 

The analysis is here restricted to ANN-MRAS-based sensorless control of a five-phase induction machine, with current control 
in the stationary reference frame. The ordinary least square (OLS) algorithm for the online training of the neural network is used to 
estimate the rotor speed. Phase currents are controlled using hysteresis current control method. A simulation study is performed for 
speed mode of operation, for a number of transients, and the results are reported in the paper. 

A detailed modelling of a five-phase induction machine and it vector control principle is reported in (Jones et al, 2002, Xu et al, 
2002).  
   The developed model of a five-phase induction motor indicates that an ANN-MRAS technique used for three-phase    machines 
can be easily extended to multi-phase machines. For multi-phase machines ANN-MRAS-based speed estimator requires only d 
and q components of stator voltages and currents. The model of a five-phase induction machine (Jones et al, 2002, Xu et al, 2002), 
it has been shown that the stator and rotor d and q axis flux linkages are function of magnetising inductance Lm and stator and 
rotor d and q axis currents, where as the x and y axis flux linkages are function of only their respective currents. Therefore in speed 
estimation for multi-phase machine the x and y components of voltages and currents are not required. The speed can be estimated 
using only d and q components of stator voltages and currents.  
   The proposed ANN-MRAS-based five-phase vector controlled induction motor drive structure with current control in the 
stationary reference frame is shown in Figure 1. 
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Figure 1. ANN MRAS BPN based five-phase induction motor drive structure. 

 
3.  BPN Algorithm based Speed Estimator 
 
(A)  Using Simple Euler Integration Method 
   A linear neural network has been designed and trained online by means of BPN algorithm. It is clear from “Figure 2(a),” that the 
adaptive model is characterized by the feedback of delayed estimated rotor flux components to the input of the neural network, 
which means that the adaptive model employed is in simulation mode. Moreover, the adaptive model is tuned online (training) by 
means of a BPN algorithm, which is, however, nonlinear in its nature with the consequent drawbacks (local minima, heuristics in 
the choice of the network parameters, paralysis, convergence problems, and so on). 
   In Figure 2(b), the adaptive model employs an ADLINE and the values of the rotor flux-linkage components at the input of the 
ANN come from the reference model, and not from the adaptive one; this means that the ANN is employed in prediction mode. 
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(a)      (b) 

Figure 2.  Schematic block diagram of Recurrent Neural Network speed estimator using BPN algorithm in  
(a) Simulation mode and (b) Prediction mode. 

   Figure 2(a) and Figure 2(b) show the block diagrams of MRAS-based speed estimation schemes, which contain an ANN. This 
network has four inputs and two outputs. It follows from these figures that the inputs to the reference model are the monitored 
stator voltages and currents of the induction machine. The outputs of the reference model are the rotor flux-linkage components in 
the stationary reference frame ( rqrd ψψ , ). These are obtained by considering the following equations (Vas, 1998):  

[ ]dssdssds
m

r
dr iLdtiRV

L
L ')( −−= ∫ψ          (1) 

[ ]qssqssqs
m

r
qr iLdtiRV

L
L ')( −−= ∫ψ          (2) 

   These two equations do not contain the rotor speed and describe the reference model. However, when the rotor voltage equations 
of the induction machine are expressed in the stationary reference frame, they contain the rotor flux linkages and the rotor speed as 
well. These are the equations of the adaptive model and are given as: 

[ ]dtTiL
T qrrrdrdsm

r
dr )ˆˆ(1ˆ ∫ −−= ψωψψ         (3) 
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[ ]dtTiL
T drrrqrqsm

r
qr )ˆˆ(1ˆ ∫ +−= ψωψψ         (4) 

   In these equations drψ̂  and qrψ̂  are the rotor flux linkages estimated by the adaptive model. Equations (3) and (4) contain the 
rotor speed, which in general is changing, and it is our purpose to estimate this speed by using an ANN. For this purpose, 
Equations (3) and (4) can be implemented by a two-layer ANN which contains variable weights, and the variable weights are 
proportional to the rotor speed 
   For given stator voltages and currents and induction machine parameters, the actual rotor speed rω  must be the same as the 

speed estimated by the ANN ( rω̂ ), when the outputs of the reference model and the adaptive model are equal. In this case the 

errors drdrd ψψε ˆ−=  and qrqrq ψψε ˆ−=  are zero. 
   When there is any mismatch between the rotor speed estimated by the ANN and the actual rotor speed, then these errors are not 
zero, and they are used to adjust the weights of the ANN (or in other words the estimated speed). The weight adjustment is 
performed in such a way that the error should converge fast to zero.  
   To obtain the required weight adjustments in the ANN, the sampled data forms of equations (3) and (4) are considered. Using the 
backward difference method, e.g. considering the rate of change of an estimated rotor flux linkage 

s

qrdrdr

T
kk

dt
d )1(ˆ)(ˆˆ −−

=
ψψψ

          (5) 

Where sT  is the sampling time, the sampled data forms of the equations for the rotor flux linkages can be written as:  

)1(
)1(ˆ)1(ˆ)1(ˆ)(ˆ

−+
−

−
−

−=
−−

ki
T
L

T
k

T
k

T
kk

ds
r

m

s

qrr

r

dr

s

drdr ψωψψψ
     (6) 

)1(
)1(ˆ)1(ˆ)1(ˆ)(ˆ
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−

+
−

−=
−−

ki
T
L

T
k

T
k

T
kk

qs
r

m

s

drr

r

qr

s

qrqr ψωψψψ
     (7) 

Thus the rotor flux linkages at the kth sampling instant can be obtained from the previous  
(k -1)th values as 

)1()1(ˆ)1(ˆ)1()(ˆ −+−−−−= ki
T

TL
kTwk

T
Tk ds

r

sm
qrsrdr

r
dr ψψψ      (8) 

)1()1(ˆ)1(ˆ)1()(ˆ −+−+−−= ki
T

TL
kTwk

T
Tk qs

r

sm
drsrqr

r
qr ψψψ      (9) 

By introducing c = rs TT / and assuming that the rotor time constant ( rT ) is constant, the following weights are introduced: 

cw −=11 , srTw ω=2 , mcLw =3  and 
r

s

T
Tc =         (10) 

Where 
r

r
r R

LT = , drdrd ψψε ˆ−=  and qrqrq ψψε ˆ−=         (11) 

It can be seen that 1ω , and 3ω  are constant weights, but 2ω  is a variable weight, and is proportional to the speed. Thus equations 
(8) and (9) take the following forms:  

)1()1(ˆ)1(ˆ)(ˆ 321 −+−−−= kiwkwkwk dsqrdrdr ψψψ        (12) 

)1()1(ˆ)1(ˆ)(ˆ 321 −+−−−= kiwkwkwk qsdrqrqr ψψψ        (13) 
These equations can be visualized by the very simple two-layer ANN shown in “Figure 1,”. This contains four input nodes. The 
input signals to these input nodes are the past values of the estimated rotor flux-linkage components expressed in the stationary 
reference frame [ )1(ˆ),1(ˆ −− kk qrdr ψψ ], and also the past values of the stator current components expressed in the stationary 

reference frame [ )1(),1( −− kiki qsds ]. There are two output nodes which output the present values of the estimated rotor flux-
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linkage components [ )(ˆ),(ˆ kk qrdr ψψ ]. Thus all the nodes are well defined. The connections between the nodes are represented 
by weights (synapses), and a weight shows the strength of the connection considered. In general a weight can be positive or 
negative, corresponding to excitatory and inhibitory weights.  
 

1w

1w
2w2w−

3w

3w

)1(ˆ −kdrψ

)1(ˆ −kqrψ )(ˆ kdrψ

)(ˆ kqrψ)1( −kids

)1( −kiqs  
Figure 3. ANN representation of estimated rotor flux linkages. 

   In the ANN shown in Figure 3, the adaptive w2 weights are shown with thick solid lines and, as noted above, these are 
proportional to the speed ( srTw ω=2  )where the proportionality factor is the sampling time. The adaptive weights are adjusted so 

that )()2/1( 2 kE ε= should be a minimum, where, 

rr kk ψψε ˆ)()( −= , T
qrdrr kkk )](),([)( ψψψ =  and T

qrdrr kkk )](ˆ),(ˆ[)(ˆ ψψψ =  
Thus the weight adjustments to give minimum squared error have to be proportional to the negative of the gradient of the error 
with respect to the weight, 2/ wE ∂∂−  since in this way it is possible to move progressively towards the optimum solution, where 
the squared error is minimal. The proportionality factor is the so-called learning rate, η. which is a positive constant and larger 
learning rates yield larger changes in the weights. In practice as large a value is chosen for the learning rate as possible, since this 
gives the fastest learning, but a large learning rate can yield oscillations in the output of the ANN. 
   It follows from the above that the mathematical expression for the weight adjustment has to be  

22 /)( wEkw ∂∂−=Δ η            (14) 
This after simplification gives the following expression: 

)]1(ˆ)()1(ˆ)([)(2 −+−−=Δ kkkkkw drqqrd ψεψεη      (15) 

Where )(ˆ)()( kkk drdrd ψψε −= , and )(ˆ)()( kkk qrqrq ψψε −= . Equation (15) is a well known type of expression in neural 
networks using the method of steepest & gradient for weight adjustment and it can be seen that the appropriate errors are 
multiplied by the appropriate inputs of the neural network shown in Figure 3. 
Thus in Figure 3, the weight adjustments can be obtained from  

)()1()( 222 kwkwkw Δ+−=           (16) 
 It has been discussed above that for rapid learning, the learning rate (η) has to be selected to be large, but this can lead to 
oscillations in the outputs of the ANN. However, to overcome this difficulty, a so-called momentum term is added to Equation 
(16). Which takes into account the past [(k-l)th] weight changes on the present [kth] weight This ensures accelerated convergence of 
the algorithm. Thus the current weight adjustment )(2 kwΔ  described by Equation (16) is supplemented by a fraction of the most 

recent weight adjustment, )1(2 −Δ kw : 

)1()()1()( 2222 −Δ+Δ+−= kwkwkwkw α         (17) 

 Where α is a positive constant called the momentum constant. The term )1(. 2 −Δ kwα  is called the momentum term, 
and is a scaled value of the most recent weight adjustment. Usually, α is in the range between 0.1 and 0.8. The inclusion of the 
momentum term into the weight adjustment mechanism can significantly increase the convergence, which is extremely useful 
when the ANN shown in Figure 3, is used to estimate in real-time the speed of the induction machine. Since it follows from 
equation srTw ω=2 , that the weight 2ω  is proportional to the speed, finally the estimated rotor speed can be obtained from  

 
s

r T
w2=ω              (18) 

4.  Simulation Results and Discussion 
 

The adaptation algorithm described above can be implemented in two ways (i) ANN MRAS BPN Model (adaptive model 
in Simulation mode), and (ii) ANN MRAS BPN Model (adaptive model in Prediction mode). It is clear from the Figure 1, 



Khan et al./ International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 218-230 

 

223

 

that the adaptive model is characterized by the feedback of delayed estimated rotor flux components to the input of the 
neural network, which means that the adaptive model employed is in simulation mode. Moreover, the adaptive model is 
tuned online (training) by means of a BPN algorithm, which is nonlinear in nature. In the second mode Figure 2, the values 
of the rotor flux-linkage components at the input of the ANN come from the reference model, and not from the adaptive 
one; this means that the ANN is employed in prediction and not in simulation mode. 
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(a)        (b) 

Figure 4. Estimated Speed of the ANN-MRAS-BPN scheme (a) adaptive model in Simulation mode (b) adaptive model in 
prediction mode 
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(a)                                                                     (b) 

Figure 5. Speed response with vector controller of the ANN-MRAS-BPN scheme (a) adaptive model in Simulation mode  
(b) adaptive model in prediction mode. 

It is observed from the simulation results (Figures 4 and Figure 5) that much better response is obtained if it is 
implemented in the prediction mode the starting ripples which are the problem of ANN speed estimator can be eliminated 
& the tracking capability further improves in the prediction mode. The neural adaptive model employed in prediction mode, 
has the advantages that it gives quicker convergence of the speed estimation, higher bandwidth of the speed loop, lower estimation 
errors both in transient and steady-state operation, better behaviour in zero-speed operation at no load, and stable behaviour in field 
weakening. 

 
(a)     (b) 

Figure 6.  Actual and reference rotor flux for (a) Simulation mode  (b) Prediction mode. 
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(a)     (b) 

Figure 7.  The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:  
excitation and acceleration transient for (a) simulation mode and (b) prediction mode. 

 
The drive is operated in speed mode with speed feedback is taken from the BPN-MRAS speed estimator. Figure 6 displays 

results for reference and actual rotor flux in simulation mode and prediction mode. After the initial transient rotor flux settles to the 
reference value and there is a change of flux of 0.15Wb in simulation mode and 0.13Wb in prediction mode. It is due to loss of 
decoupled control or parameter variation effect or lack of proper tuning. Figure 7 displays results for reference and actual torque, 
speed, stator phase ‘a’ reference and actual current and stator phase ‘a’ phase-to-neutral voltage for both modes. It can be seen 
from Figure 7 that the flux and torque control are fully decoupled. Acceleration takes place with the maximum allowed value of 
the motor torque. Actual motor phase current tracks the reference very well. Consequently, torque response closely follows torque 
reference and a small deviation appears only at the end of the transient. No viable conclusion can be drawn because of PWM 
nature of voltages. In simulation mode, the ripples in the torque are of 4 N-m and spikes in speed are of 80 rpm. These torque and 
speed ripples are very small in prediction mode. 

Disturbance rejection properties of the drive are investigated next. Previous steady state is the one of Figure 7 (no-load operation 
at 1200 rpm) and a load torque equal to the motor rated torque is applied in a step-wise manner at t = 1 s. Responses are shown in 
Figure 8, for simulation mode and prediction mode. Application of the load torque causes an inevitable dip in speed, of the order 
of 20 rpm in this period. Motor torque quickly follows the torque reference and enables rapid compensation of the speed dip (in 
less than 100 ms). The motor torque settles at the value equal to the load torque after around 100 ms and the motor current 
becomes rated at the end of the transient. The maximum ripples in the torque and speed during this period in simulation mode are 6 
N-m and 13 rpm and in prediction mode are 0.4 N-m and 2 rpm. Due to presence of high ripples in torque and speed, the machine 
produces more noise; more losses, more heating and therefore derating of machine will take place. 
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(a)     (b) 

Figure 8. The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:  
disturbance rejection behaviour for  (a)simulation mode and(b) prediction mode. 

 
   Finally, reversing transient is examined as well. Previous steady state is the one of Figure 8, (rated load torque operation at 1200 
rpm) and the command for speed reversal is given at t = 1.2 s. Responses, obtained for this transient, are shown in Figure 9, for 
simulation mode and prediction mode. Once more, actual torque closely follows the reference, leading to the speed reversal, with 
torque in the limit, in the shortest possible time interval (approximately 350 ms). During this period, in simulation mode, the ripple 
in the torque is 4 N-m and a spike in the speed is 200 rpm. The torque and speed ripples are very small in prediction mode. 

The speed feedback signal is the estimated one obtained from BPN-MRAS-based speed estimator first from simulation mode 
and then from prediction mode. The attainable performances are examined by simulation in both modes and compared. It is 
concluded and shown that the performance achieved with prediction mode are better than simulation mode. 

 

(B)  Using Modified Euler Integration Method 

   This is the improvement of the artificial-neural-network (ANN)-based speed estimator MRAS ANN BPN presented in 
previous section. In this modified scheme the number of inputs to the adaptive model is increased with a consequent quicker 
convergence of the speed estimation. This modified ANN MRAS BPN speed estimator uses the current model as an adaptive 
model discretized with the modified Euler integration method. A neural network has been then designed and trained online by 
means of a nonlinear back propagation network (BPN) algorithm. Moreover, the neural adaptive model is employed here both in 
simulation and prediction mode. The quick convergence of the speed estimation & lower estimation errors both in transient and 
steady-state operation is obtained in the prediction mode. 
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(a)     (b) 

Figure 9.  The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:  
reversing transient for (a) simulation mode and (b) prediction mode. 

  
   A more efficient integration method is used by the so-called modified Euler integration, which also takes into consideration the 
values of the variables in two previous time steps.  

[ ]dtTiL
T qrrrdrdsm

r
dr )ˆˆ(1ˆ ∫ −−= ψωψψ         (19) 

[ ]dtTiL
T drrrqrqsm

r
qr )ˆˆ(1ˆ ∫ +−= ψωψψ         (20) 

From equations (19) & (20) discrete-time equations (21) can be obtained, as given below: 

)1()1(ˆ)1(ˆ)()(ˆ)(ˆ)1(ˆ
)1()1(ˆ)1(ˆ)()(ˆ)(ˆ)1(ˆ

654321

654321

−−−−−+++=+

−−−+−++−=+

kikkkikkk

kikkkikkk

qsdrqrqsdrqrqr

dsqrdrdsqrdrdr

ωψωψωωψωψωψ

ωψωψωωψωψωψ
   (21) 

where 1ω , 2ω , 3ω , 4ω , 5ω , 6ω  are the weights of the neural networks defined as:   

rTT 2/311 −=ω , 2/32 Trωω = , 

rm TTL 2/33 =ω , rTT 2/4 =ω , 

2/5 Trωω = , rm TTL 2/6 =ω . 
And the rest of the equations are same as used in the previous ANN MRAS BPN scheme i.e. 

drdrd ψψε ˆ−=  qrqrq ψψε ˆ−=           (22) 
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⎥⎦
⎤

⎢⎣
⎡ −+−−=Δ )1(ˆ)()1(ˆ)()(2 kkkkkw drqqrd ψεψεη        (23) 

)1()()1()( 2222 −Δ+Δ+−= kwkwkwkw α          (24) 

And the speed is obtained as 
s

r T
w2=ω            (25) 
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(a)      (b) 

Figure 10. Schematic block diagram of Recurrent Neural Network speed estimator using modified Euler BPN algorithm in  
(a) Simulation mode and (b) Prediction mode 

   Figure 10 shows the block diagram of the corresponding MRAS speed observer for simulation and prediction mode. The 
modified Euler has eight inputs and two outputs with a consequent quicker convergence of the speed estimation. 

The simple Euler causes an error at starting of transient. This problem can be avoided either by using a simple Euler 
integration in prediction mode or by using a modified Euler integration either in simulation or in prediction mode. In this last case, 
however, the use of the prediction mode results in better accuracy in rotor speed estimation and a better performance at zero speed 
as shown in the Figure 11, and Figure 12. 

 
(a)      (b) 

Figure 11.  Speed characteristics of RNN speed estimator using modified Euler BPN algorithm for fixed voltage and fixed 
frequency supply fed in (a) simulation mode (b) prediction mode. 

 
(a)      (b) 

Figure 12.  Speed characteristics of RNN speed estimator using modified Euler BPN algorithm for vector control in  
(a) simulation mode (b) prediction mode. 

   As in the previous BPN scheme (MRAS-ANN-BPN scheme) adaptation algorithm described above is implemented in two 
ways viz adaptive model in Simulation mode,(ii) adaptive model in prediction mode. 



Khan et al./ International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 218-230 

 

228

 

   Figure 11 shows the speed response of the modified ANN MRAS BPN scheme with adaptive model in simulation & 
prediction mode and Figure 12 shows the Speed response in presence of a vector controller of the modified ANN-MRAS- 
BPN scheme with adaptive model in simulation and prediction mode. 
   It is clear from the simulation results that much better response is obtained by increasing the number of inputs to the 
adoptive model. Furthermore the tracking capability further improves. In the simulation mode ripples are found for a 
period less than 0.1 seconds. After this period the estimator no ripples are there and the estimator closely tracks the actual 
speed. As shown in Figure 12(b), these starting ripples can be completely eliminated in the prediction mode besides the 
tracking capability which is much better than with the simulation mode. 
 
5.  Conjugate Gradient Algorithm based speed estimator 
 

The Conjugate Gradient method is an effective method for symmetric positive definite systems. It is the oldest and best known 
of the non-stationary methods discussed here. The method proceeds by generating vector sequences of iterates (i.e., successive 
approximations to the solution), residuals corresponding to the iteration, and search directions used in updating the iterates and 
residuals. Although the length of these sequences can become large, only a small number of vectors need to be kept in memory. In 
each iteration of the method, two inner products are performed in order to compute update scalars that are defined to make the 
sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear system these conditions imply that the 
distance to the true solution is minimized in some norm. 

The bi-conjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient 
methods seek minima of nonlinear equations. 

It makes the learning algorithm faster. This method implies that the momentum factorα  is changed during learning time 
according to the following formula: 
 )()()()( kekkekg riri ββαα ψψ +−=                     (26) 

Where, )()()( kkke riru ψψ −=  

and )1(/)()1( 22 −=− kgkgkα                       (27) 
Figure 13 shows the speed response of the ANN-MRAS-Conjugate Gradient scheme. Small error is present in the transient 

period but the error is completely omitted in the steady-state region. The conjugate gradient method is faster as compared to the 
BPN scheme, because the learning rate is modified during learning, thus making the learning algorithm faster. 

 

 
(a)     (b) 

Figure 13. Speed response of the ANN-MRAS-Conjugate Gradient scheme for (a) fixed voltage and fixed frequency supply  
(b) with vector controller. 

 
 
6.  Conclusion 
 
   The paper deals with ANN-MRAS- based sensorless vector control of a five-phase induction machine, utilising an indirect 
machine is at first reviewed and it is shown that the resulting model is the  same as for a three-phase machine rotor flux oriented 
controller and current control in the stationary reference frame. Hence the same vector control principles and speed estimation 
technique are applicable for five-phase machine. Operation in the speed mode is further studied, utilising the hysteresis current 
control. The speed feedback signal is the estimated one obtained from ANN-MRAS-based speed estimator. The attainable 
performance is examined by simulation. It is shown that the dynamic behaviour, obtainable with the indirect vector control, is the 
same as it would have been had a three-phase machine been used. Rotor flux and torque control are fully decoupled, enabling the 
fastest possible accelerations and decelerations with the given torque limit. 
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Nomenclature 
 

qsds VV ,  d- and q-axis stator voltages 

qsds ii ,  d- and q-axis stator currents 

sR  Stator winding resistance 
', ss LL  Stator winding self and leakage inductances 

rL  Rotor winding self inductance 

mL  Machine mutual inductance  

qrdr ψψ ,  d- and q-axis rotor fluxes 

qrdr ψψ ˆ,ˆ  d- and q-axis estimated rotor fluxes 

rr ww ˆ,  Actual and estimated rotor speed 

rT  Rotor time constant 

sT  Sampling time constant 

qd εε ,  d- and q-axis rotor fluxes error 

)(kψ  kth instant flux 

321 ,, www ANN weights 

wΔ  Weight error 
η  Learning rate 
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