
  

 
MultiCraft 

 
International Journal of Engineering, Science and Technology  

Vol. 3, No. 1, 2011, pp. 87-106 
 

INTERNATIONAL 
JOURNAL OF 

ENGINEERING, 
SCIENCE AND 
TECHNOLOGY 

  www.ijest-ng.com 

© 2011 MultiCraft Limited. All rights reserved 
 

Joint energy and reserve dispatch in a multi-area competitive market using 
time-varying differential evolution  

 
Kirti Pal1, Manjaree Pandit2*, Laxmi Srivastava2  

 
1Department of Electrical Engineering, Radha Govind Group of Institutions Meerut, INDIA 

2 Department of Electrical Engineering,Madhav Institute of Technology and Science Gwalior, INDIA 
*Corresponding Author:  e-mail: manjaree_p@hotmail.com, Tel +91- 0751-2665962, +91-0751-2409380 

 
 
Abstract 
 

In a deregulated electricity industry, competitive bidding for energy and reserve is increasingly gaining importance and 
playing a decisive role in maintaining system reliability. The transmission capacity limits have a significant impact on market 
cost, therefore these limits should also be considered while optimizing the joint dispatch. In this paper, a detailed comparison of 
classical differential evolution (DE) mutation strategies is carried out to study the role of tuning parameters. For avoiding the 
time and labor lost in tuning DE parameters, an improved DE algorithm with time varying chaotic mutation and crossover is 
proposed for solving the multi-product, multi-area market dispatch problem with physical and operational constraints. The 
proposed approach effectively handles the complex constraints like reserve requirements, zonal power balance constraints, area 
spinning reserve constraints, tie-line constraints and reserve and capacity coupling constraints. The efficiency and accuracy of 
the proposed algorithm is tested on two different test systems and is found to be better than classical DE in terms of convergence 
behavior and solution quality.  
 
Keywords: Joint energy and reserve dispatch (JERD), Multi-area competitive electricity market, Reserve cost, Energy cost, Total 
market cost, Time-varying Differential evolution. 

 
    
1. Introduction 
 

Many countries have implemented deregulation of the electricity industries to create market competition for improving the 
economical efficiency of power system operation. In the competitive environment, it is necessary to maintain an adequate level of 
supply reliability to keep a secure operation. A real time market in energy can provide a balance between generation and demand 
whereas a real time reserve market is required to maintain this balance in case of a contingency. The operation of a real time 
market is managed by an independent system operator (ISO) who coordinates various activities to balance reliability and security 
with economics. In a competitive environment, several new concepts are applied to the traditional economic dispatch (ED). 
Commercial interest can affect the generator characteristics i.e. the generators may change their bid prices for improving their 
profit. Spinning reserve (SR) is one of the most important ancillary services (AS) which are needed for satisfying reliability 
requirements, including the desired level of security in power systems. By definition, spinning reserve is the unloaded section of 
synchronized generation that is able to respond immediately to serve load. Therefore it is desirable to optimize not only the 
generator bid prices for energy but also to provide AS (Shahidehpour et al, 2001). 

In the competitive electricity market, one of the major concerns of the system operator is to achieve the economic efficiency 
while maintaining the system security. Ancillary services are provided to maintain system reliability and security. Based on the 
current practices, ancillary services can be either dispatched with energy dispatch simultaneously or dispatched sequentially. This 
paper presents the multi-area joint energy and reserve dispatch (JERD) employing an improved differential evolution approach.    

Transmission limits play a very important role in the multi-area joint energy and reserve dispatching problem. If energy and 
reserve are dispatched without considering transmission limits, it is possible that larger amounts of energy and reserve be allocated 
to some units having lower prices. Now even though the units have the capacity to produce these amounts of energy and reserve, 
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there may be bottlenecks in supply due to transmission limits. Therefore, in JERD while energy cost and reserve costs are 
minimized, the capability of transmission lines to deliver these to the consumer also needs to be considered. 
   The problem of joint energy and ancillary services dispatch in a multi-area competitive market is more complex than the 
traditional power dispatch. Many different methods have been proposed to solve the problem of joint energy and reserve dispatch 
(Cheung et al, 1999, Ma et al, 1999, Chen et al, 2005, Ma et al, 1998, Bakirtzis et al, 1998, Deventer et al, 2010, Rashidinejad et 
al, 2002). In (Cheung et al, 1999) the functional requirements of the energy and ancillary service dispatch for the interim ISO-NE 
electricity market are presented. An LP-based approach is presented in (Ma et al,1999) for solving the energy and auxiliary 
services multi-zone physical market dispatch problem where various constraints, such as reserve requirement constraints, network 
security limits, and sharing of constrained resource capacity have been considered. A hybrid approach combining sequential 
dispatch with a direct search method is developed for the multi-product, multi-area electricity market dispatch problem to facilitate 
economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive 
electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the 
marginal price in each area (Chen et al,2005). The complex mutual dependence of energy and AS dispatch and the growing 
importance of AS in competitive bidding in pool market is formulated in (Ma et al,1998, Bakirtzis et al,1998). The analysis of 
cost-effective dispatching of emergency reserves with a specific focus on supply and demand side options is presented in 
(Deventer et al , 2010). A flexible joint reserve and energy dispatch approach where the contingency reserve capacity is procured 
in advance and incremental energy is dispatched in response to meet real time demand-supply imbalances, is proposed in 
(Rashidinejad et al, 2002).  

The multi-area JERD problem for a competitive power market is a more complex optimization problem than the conventional 
economic dispatch due to the various additional constraints such as i)area power balance constraints, ii) area spinning reserve 
constraints, iii) tie-line constraints and iv) constraints due to mutual dependency of energy and reserve. For such problems 
evolutionary computational techniques such as particle swarm optimization (Azadani et al, 2010), genetic algorithm (Xu et al, 
2003, Wen et al, 2002),  memetic algorithm (Hazrati et al, 2007) and harmony search (HS) (Paqaleh et al, 2009) have been applied 
very effectively. A new approach based on constrained particle swarm optimization is presented for the multi-product and multi-
area electricity market dispatch problem where constraint handling is based on particle ranking and uniform distribution (Azadani 
et al, 2010).  

Some interesting studies have been carried out on competitive electricity markets, for energy and reserve using probabilistic 
analysis (Bouffard et al, 2004),  reliability criterion (Flynn et al, 2001) and multiobjective formulations for improving system 
security indices along with generator offer costs (Amjady et al, 2009). 

A method using a recurrent neural network for considering generating unit reliability in the scheduling process which rewards 
units with lower forced outage probabilities has been proposed in ref. (Flynn et al, 2001). Reserve costs have been included 
explicitly in the cost function which results in reduced overall costs. A probabilistic method for a pool-based combined energy and 
reserve market, which considers both generators and interruptible loads  is proposed in ref. (Bai et al, 2006). 

A Genetic Algorithm based approach is presented in (Xu et al, 2003) for the design of an integrated market for energy and 
spinning reserve service with special focus on coordinated dispatch of bulk power and spinning reserve services. In (Wen et al, 
2002), two different bidding schemes using genetic algorithm are proposed for building optimally coordinated bidding strategies 
for competitive suppliers in day-ahead energy and spinning reserve markets. In (Hazrati et al, 2007) presents a memetic algorithm 
approach for SR allocation considering ramp-rate constraints and investigates the impact of these constraints on allocation strategy 
associated with clearing prices. A hybrid harmony search optimization method is proposed for the joint dispatch of energy and 
reserve considering the bottling of reserve due to transmission limits (Paqaleh et al, 2009).  

Though evolutionary methods do not always guarantee global best solutions, they usually attain a fast and near global optimal 
solution. It has been observed by researchers that all these methods very quickly find a good local solution but get stuck there for a 
number of iterations causing premature convergence. The major issue with evolutionary techniques is to maintain a proper balance 
between exploration (global search) and exploitation (local search). The issues which have emerged prominently in recent 
publications are i) Premature convergence, ii) setting up optimal tuning parameters and ii) finding optimal population size 
(Chaturvedi et al, 2009, Chiou et al, 2009, Storn et al,1995, Coelho et al,2009, Ratnaweera et al,2004, Sharma et al,2010, Sharma 
et al, 2010). Tuning parameters play a very significant role in obtaining convergence in these techniques. Optimal values of tuning 
parameters produce a proper balance between local and global search to get the best solution. There is a need to explore the role of 
different tuning parameters in various evolutionary computational techniques. Time varying acceleration coefficients 
(PSO_TVAC) (Chaturvedi et al, 2009, Ratnaweera et al,2004) were employed for iteratively controlling the global and local 
search components in PSO. The concept of variable scaling factor based on the one-fifth success rule of evolutionary strategies is 
employed in (Chiou et al, 2009) 

This paper evaluates the effectiveness of all the basic DE strategies in producing feasible solutions for multi-area JERD 
problem. The paper presents a comparative analysis of i) the various DE mutation strategies ii) impact of tuning parameters and iii) 
proposes an improved time varying DE algorithm for the joint dispatch problem. The solution quality of DE variants is also 
compared with the PSO_TVAC strategy on two test systems and is found to be superior/or comparable.  
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The major contributions of the paper are: 
1. An alternative approach which is comparatively new and based on evolutionary optimization is successfully applied for 

JERD problem in competitive environment with multiple complex constraints.  
2. The sectionalized block pricing for energy and reserve is implemented and studies are carried out for different reserve 

requirements, different tie-line limits and different loads. 
3. A detailed study of classical DE mutation strategies is carried out for the JERD problem, their deficiencies have been 

brought out and then modifications proposed using time varying mutation. 
4. Three DE variants with time varying mutation and crossover rates are proposed. All three variants are found to perform 

well; feasible and matching results (Nasr Hamdani et al, 2010) are achieved while all constraints are satisfied.  
5. The JERD problem is quite complex compared to the classical ED (economic dispatch) due to the large number of 

constraints, like the reserve limits and energy-reserve coupling constraints. Due to multi-area operation, lie-line constraints 
too affect the total cost significantly. 

6. The paper focuses on JERD for a given demand, tie-limit and reserve required and evaluates the optimal dispatch of energy 
and reserve while satisfying all the operational constraints. 

 
2.  Problem formulation for joint energy and reserve dispatch 
 

The objective of JERD in a multi-area electricity market is to minimize the total cost of energy and reserve while considering 
various constraints such as area power balance, area spinning reserve, transmission capacity limits and constrained resource 
capacity shared between generation and reserve. If inelastic load is assumed, then cost minimization instead of profit maximization 
can be considered. Figure 1 shows a simple representation of JERD problem for two areas. 
 

 
 

Figure 1. Block diagram of multi-area competitive electricity market 
 
The objective function i.e total market cost CT as given below should be minimized. 
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2.3 Unit energy and reserve capacity constraints 
 

maxmin
iii PPP <<                                                                                                                (6)

                 max0 ii RR <<
                          (7) 
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iii PRP <+                                                                                                                                                     (8) 

Spinning reserve is the resource capability which is synchronized to the power system and is fully available in a short time. 
 
2.4 Transmission capacity constraints 
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2.5 Calculation of total market cost
                                                        

 
 

In this paper, each generator offers a sectional energy offering price curve and a sectional spinning reserve offering price curve. 
In both curves of each generator, the output power interval corresponds to an energy offering price and a spinning reserve offering 
price. Take the output power interval k in Figure 2 as an example, if the output power GikP is less than or equal to GikP  and larger 

than )1( −kGiP  , the offering prices for the energy and the spinning reserve are Gikρ   and Rikρ  , respectively.  
In this paper, the energy and reserve bidding prices are calculated as 
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3. Classical Differential Evolution  
 

Evolutionary optimization methods have emerged as popular alternate approaches for solving power system optimization and 
other problems, because these methods are based on natural phenomena and therefore are more robust and suitable for practical 
problems having a real world flavor. Out of the different evolutionary methods, PSO and DE techniques have emerged as most 
popular. This section presents an i) in-depth review and comparison of various DE strategies ii) impact of tuning parameters.  
   DE is a population-based stochastic optimization method based on evolutionary computation. DE differs from conventional 
genetic algorithms in its use of perturbing vectors, which are the difference between two randomly chosen parameter vectors. The 
DE algorithm was first introduced by Storn and Price in 1995 (Storn et al,1995) and was successfully applied in the optimization 
of some well-known nonlinear, non-differentiable, and non-convex functions. DE works on three basic operations, namely 
mutation, crossover and selection. 
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Figure 2. Sectionalized price blocks for energy and reserve                                                                           

 
Mutation: This is an operation that adds a vector differential to a population vector of individuals according to the chosen DE 

mutation strategy.  The different strategies of DE are classified using the notation DE, /α/β/δ where α indicates the method for 
selecting the parent chromosome that will form the base of the mutated vector, β indicates the number of difference vectors used to 
perturb the base chromosome, and δ indicates the recombination mechanism used to create the offspring population. Much work 
has not been done on these different strategies; most researchers have explored the variant DE / rand / 1 / bin which implies, 
random selection, one difference vector and binomial crossover. The best performing strategy is found to be problem specific and 
needs detailed investigation (Sharma et al, 2010). The donor or mutant vector for each population member is generated for 
different variants in classic DE as given below 
 

1)   Mutation Strategy I: DE/rand/1 
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where i = 1, 2 …, R  is the individual’s index of population, t is the time (generation);  r1 , r2, r3, r4 and r5 and are mutually different 
integers and also different from the running index ,i , randomly selected with uniform distribution from the population set and fm > 
0 is a real parameter called mutation factor, which controls the amplification of the difference between two individuals so as to 
avoid search stagnation and is usually taken from the range [0, 2]. 
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Crossover Operation: After the mutation operation, crossover operation is performed to generate a trial vector Ui by replacing 
certain parameters of the target vector (xi) with the corresponding parameters of the randomly generated donor or mutant vector 
(Zi). 
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In the above, rand(j)  is the jth evaluation of a uniform random number generation within range [0, 1], CR is a crossover rate in 

the range [0, 1]. The performance of a DE algorithm usually depends on three variables; the population size R, the mutation factor 
fm and the recombination rate CR.  
Selection:  It is the procedure to decide whether the generated trial vector should replace the target vector and be a member of the 
population in the next generation. In this case, the cost of each trial vector Ui(t+1)  is compared with that of its parent target vector 
xi(t) and selection for a minimization problem can be carried out using the following: 
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3.1 Time- varying differential evolution   
  

The complex behavior of a non-linear, deterministic, dynamical system which is highly sensitive to initial conditions can be 
described by Chaos (Li et al,1998). Premature convergence to local minima in evolutionary optimization methods can be 
prevented by employing chaotic sequences in place of random sequences (Li et al,1998, Caponetto et al, 2003, Coelho et al, 2006). 
Coelho and Mariani (Coelho et al, 2006) integrated chaotic sequences with the mutation factor in differential evolution to improve 
solution quality. Caponetto (Caponetto et al, 2003) proposed various chaotic sequences in evolutionary algorithms (EAs) in place 
of the random numbers. . 

Mutation rate fm and crossover rate CR in the DE algorithm, significantly affect the performance of the algorithm. The smaller 
the mutation rate fm, longer time will be required for convergence. Larger values of fm allow exploration due to which the 
algorithm may not converge and skip good optimal solution. The value of fm should be small enough to enable the algorithm to 
explore tight valleys and large enough to allow global exploration in order to maintain population diversity. A higher CR creates 
more diversity and better exploration in the new population. In classical DE both fm and CR are fixed, so a lot of parameter tuning 
is required to achieve global best results. This problem can be solved by employing time-varying mutation and crossover rates. 
The parameters can be varied with time linearly or in a random manner. The use of chaotic sequences in DE is useful to escape 
easily from local minima. One of the simplest dynamic systems evidencing chaotic behavior is the iterator called the logistic map 
(Li et al,1998), whose equation is given by 

 
)]1(1[)1()( −−×−×= tytyty μ                                                                  (19) 

 
where t is the iteration count and µ is a control parameter, 0 ≤  µ ≤ 4 . The behavior of the system represented by eq. (19) 
significantly changes with the variation in µ. The value of µ controls the variation of the chaotic sequence. Three DE variants with 
time-varying fm and CR are proposed here. The variation of fm chaotically, based on logistic map and time varying crossover rate 
CR, give rise to the following time-varying DE variants: 
 
Variant 1 /TVDE(1): The parameter fm  is varied as per equation (19) where fm(0) lies between [0,1]. The index ‘t’ is the current 
iteration and fm (t) is the new mutation factor based on the logistic map. 
 

)]1(1[)1()( −−×−×= tftftf mmm μ ;                                                                                           (20) 
The parameter µ decides whether the mutation rate fm oscillates between a limited sequence, varies chaotically or stabilizes to a 
constant value. A very small difference in fm(0) causes significant difference in its variation pattern. The system at (20) is 
deterministic and displays chaotic behavior when µ=4 and fm(0)∉ { }0.1,75.0,5.0,25.0,0 .  
 
Variant 2 /TVDE(2): The parameter fm is decreased from an  initial value f2i  to a final value f2f  with the progress of the 
optimization algorithm, as per the dynamics given below: 

)]1(1[)1()( 111 −−×−×= tftftf μ                                                                                        (21) 
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Variant 3/TVDE(3): The parameter fm is increased from an initial value f2i  to a final value f2f  with the iterative progress of the 
optimization algorithm, as per the dynamics given by (21) and (22) by suitable choice of initial and final values of mutation rate.  
The value of CR in all the above cases is changed iteratively as given below: 
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The variation of fm and CR for µ =3 has been shown for the above three time-varying DE variants in Figure 3(a) –Figure 3(c) 
respectively. 
 
 

 
                                                     

Figure 3(a). Variation of fm for TVDE1 strategy; µ =3, f1(t=0) =0.48 
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Figure 3(b). Variation of fm for TVDE2 strategy; µ =3, f1(t=0) =0.48; f2i=1.5; f2f=0.5; 

 

 
 

Figure 3(c). Variation of fm for TVDE3 strategy; µ =3, f1(t=0) =0.48; f2i=0.5; f2f=1.5 
 
4. Solution of JERD using time-varying DE  
 

This section presents step by step solution of JRED problem employing time-varying differential evolution and critically 
compares the performance for various DE mutation strategies and proposed variants. 
 
Step 1) Parameter setup 

 
The DE parameters such as population size, the boundary constraints of optimization variables, mutation strategy to be adopted, 

the mutation factor (fm), the crossover rate (CR), and the stopping criterion or maximum number of iterations, are selected. 
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Step 2) Initialization of an individual population 
 
For fast convergence it is necessary to ensure generation of a feasible initial population vector. The individuals in the population 

are randomly generated between the maximum and the minimum operating limits of the units respectively such that constraints 
given by eq.(6)-eq. (8) are satisfied. 

 The ith individual population is represented as 

( )lk
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Step 3) Initialization of energy and reserve of the population   
 

The jth dimension (from j=1 to k+l) of the ith individual of the population is initialized as given below to satisfy the generation 
and reserve limit constraints given by eq. (6)-eq. (9). Here, r1 , r2 and r3 are random numbers between [0,1].  

)( minmax
1

min
ijijijij PPrPP −+=                                                                                                     (25) 

)( minmax
2

min
ijijijij RRrRR −+=                                                                                             (26)  

For satisfying constraint given by eq. (8), 
{ }ijijijij RPPR ),(min max −=                                                                                                   (27) 

)( minmax
3

min
CCCiC PPrPP −+=                                               (28) 

Step 4)  Fitness evaluation of each individual of the population                   
 
The fitness of each individual in the population is evaluated to judge its merit for JERD problem using a function called 

evaluation function. The evaluation function is defined such that cost is minimized while area wise power balance constraints 
given by eq. (2)-(3) and reserve balance constraints for all areas given by eq. (4) and eq. (5) respectively are satisfied. The popular 
penalty function method has proved very effective in modeling complex equality constraints in multi-area and reserve constrained 
economic dispatch (Sharma et al, 2010). The penalty functions convert a constrained optimization problem into an unconstrained 
optimization problem.  The penalty functions composed of squared or absolute violations are introduced in the fitness function 
such that an infeasible solution is awarded lesser fitness than the weakest feasible individual string. Since two infeasible 
individuals are not treated equally, the individual which is further away from the feasibility boundary is more heavily penalized 
compared to the one which is nearer to the boundary. The evaluation function used here is given by                                                                                    
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 Here, α , β  and γ  are the penalty coefficients respectively. The penalty terms impose a penalty on the individual in terms of 
increased cost, if any of the equality constraints are not satisfied. The first term is calculated for each individual using eq. (1). 
Large values of penalty coefficients are selected to guarantee feasible solutions and fast convergence. 

 
Step5) Parameter updating using mutation 

 
The individuals are updated to improve their fitness. In mutation a vector differential is added to the population vector of 

individuals; the donor vector is generated for the selected DE strategy by using any one equation from eq. (12)-eq. (16). 
 

Step 6) Crossover operation 
 
Recombination is applied in DE using eq. (17) to generate a trial vector by replacing certain parameters of the target vector with 

the corresponding parameters of the randomly generated donor in the step 5.  
  

Step 7) Checking the updated population for bound violations 
 

The upper and lower limits specified by eq. (6) to eq. (9) may get violated after population updating process in step5-step6. Each 
dimension of an individual is checked for the binding constraints, and made to follow the minimum and maximum limits. Violated 
values are made to assume the nearest value on feasibility boundary.  
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Step 8) Selection operation 
 
The values of the evaluation function are calculated for the updated positions of the individuals. The trial vector Ui(t+1)  

replaces its parent target vector xi(t) if its cost is found to be better otherwise the target vector is allowed to proceed to the next 
generation. 
 
Step 9) Stopping criterion:  

 
A stochastic optimization algorithm is stopped either based on the tolerance limit or maximum number of iterations. The number 

of iterations is adopted as the stopping criterion in this chapter.  
The detailed flow chart given in Figure 4  details the procedure followed for the JERD problem using  TVDE approach. 
 

 
Figure 4. Flow chart of proposed TVDE for JERD problem 
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5. Results and Discussions  
 

The different DE mutation strategies are tested for the proposed practical JERD problem on two test cases. The first case is New 
Zealand market data taken from (X. Ma et al, 1998) and multi-area operation is carried out. Complex constraints like reserve 
requirements, zonal power balance constraints, area spinning reserve constraints, tie-line constraints and reserve and capacity 
coupling constraints have been included in the joint energy and reserve dispatch (JERD) model defined by equations (1) to (11). 
Demand elasticity has been considered and objective function defined by eq.(1), i.e .total cost of energy and reserve is optimized 
using a time-varying DE algorithm. Security constraints have not been formulated in this work, however the security constraints 
(voltage limits, power flow limits etc.) can also be implemented in a similar manner. The results are in agreement with previously 
published results (Nasr azdani et al, 2010) and also match with PSO_TVAC technique. 

The different DE mutation strategies are tested for the proposed practical JERD problem on two test cases. The performance of 
different classical DE strategies is compared for time varying DE variants and with PSO_TVAC (Ratnaweera et al, 2004) 
technique. The obtained results are also compared with previously published results (Azadani et al, 2010). Simulations were 
carried out using MATLAB 7.0.1 on a Pentium IV processor, 2.8 GHz. with 1 GB RAM. 
 
5.1 Description of test systems 

 
Case I: It is a six-generating unit, 2-area system, with three units in each area. The data is given in Table A1 in the appendix 

(Azadani et al, 2010). Total load demand is 1040 MW which is equally divided between the two areas, reserve requirement is 100 
MW. The transmission limit is taken as 240 MW. 

 
Case II: In this system, there are four units in area one and two units in area two. The area loads are 113 MW and 84 MW 

respectively, reserve requirement is 33 MW and tie-line limit is 20 MW. The price data is given in Table A2 in the appendix 
section. The block diagram of this system is given in Figure 5.  

 
 
 

 
Figure 5. Block diagram of Test Case II 

 
5.2 Parameter set-up 

 
Evolutionary techniques employ random operators for updating parameters, as a result of which the results obtained in every 

fresh trial are slightly different. Therefore, to establish the consistency of these methods, results are compiled out of a number of 
trials, with different random initial populations. Thirty different trials with a population size of 50 with 1500 number of iterations, 
are carried out in this paper for both test cases and the obtained mean cost and standard deviation (S.D.) is used to compare the 
different strategies and variants. 
 
5.3 Comparison of classical DE mutation strategies 

 
In the present paper, a detailed comparison is carried out for finding out the best mutation strategy (eq. (12) –eq. (16)) for JERD 

problem using mean cost and its standard deviation (S.D.) as the performance measures. Both the test cases failed to converge for 
mutation strategy II and V. To highlight the dependence of classical DE on tuning parameters, the variation of mean cost and S.D. 
for case II is plotted in Figure 6-Figure 8 for strategy I, strategy III and strategy V respectively, for different values of CR and fm. 
It is clear from these three Figures that classical DE works effectively in a very narrow range of tuning parameters. For example, 
for strategy I better results are obtained for low and medium values of fm and CR while for strategy III and IV lesser S.D. is 
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obtained for medium and larger values of fm and CR. This dependence on tuning parameters is eliminated when the TVDE variants 
proposed in section 3.1 are implemented as shown ahead. 

 

 
Figure 6. Effect of Mutation rate and C.R. on Mean cost and S.D. for Strategy I 

 
Figure 7. Effect of Mutation rate and C.R. on Mean cost and S.D. for Strategy III 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
7000 

7100 

7200 

7300 

7400 

7500 

7600 

Mutation Rate ..........>

M
ea

n 
...

...
...

.>
 

 

     C.R.=0.1
     C.R.=0.2
     C.R.=0.5
     C.R.=0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0 

50 

100 

150 

200 

Mutation Rate ............>

S
.D

...
...

...
.>

 

 

    C.R.=0.1 
    C.R.=0.2 
   C.R.=0.5
   C.R.=0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
7200 

7400 

7600 

7800 

8000 

Mutation Rate ..........>

M
ea

n 
...

...
...

.>
 

 

 
     C.R.=0.1 
     C.R.=0.2 
     C.R.=0.5 
     C.R.=0.9 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0 

50 

100 

150 

200 

250 

Mutation Rate............>

S
.D

...
...

...
.>

 

 

 

      C.R.=0.1
      C.R.=0.2
      C.R.=0.5
      C.R.=0.9



Pal et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 1, 2011, pp. 87-106 

 

99

 

 
Figure 8. Effect of Mutation rate and C.R. on Mean cost and S.D. for Strategy IV 

 
5.4 Time varying DE variants 

 
Table 1 presents the results of TVDE1-TVDE3 for test case I. On comparison with classical DE and PSO_TVAC method the 

results of TVDE1 and TVDE3 variants are found to be better and closely matching with the results of (Azadani et al, 2010) and 
PSO_TVAC for Case I. For classical DE strategy III with fm =CR=0.9 was adopted. For the case I all techniques converge to the 
global best value of $3357.8/h but classical DE has slight area power balance violations. In Table 2 the results of TVDE1-TVDE3 
are compared with PSO_TVAC for Case II  It is found that without parameter tuning, classical DE does not converge to the global 
best value of $6934.9840/h for the case II. But all three TVDE methods converged to the best results. As the results of TVDE3 are 
found to be the best, further results are computed using TVDE3 approach with mutation strategy III and μ =3. 

 
Table 1.  Comparison of joint dispatch results for Case I without transmission limits 

Unit PSO_TVAC DE TVDE1 TVDE2 TVDE3 CPSO[9 ] 
A1 12.0008 11.9973 12.0004 11.9999 12.0009 12 
A2 133.0198 133.0238 133.0196 133.0200 133.0191 133 
A3 99.9993 99.9987 100.0000 100.0000 100.0000 100 
B1 469.9831 469.9800 469.9819 469.9730 469.9807 470 
B2 274.9967 274.9984 274.9974 275.0000 274.9993 275 
B3 50.0000 50.0015 50.0008 50.0069 50.0000 50 

Tie-line -274.9800 -274.9800 -274.9800 -274.9800 -274.9800 -275 
RA1 4.9992 5.0000 4.9996 5.0000 4.9991 5 
RA2 20.0000 20.0000 20.0000 20.0000 20.0000 20 
RA3 0.0007 0.0013 0.0000 0.0000 0.0000 00 
RB1 50.0000 50.0000 50.0000 50.0000 50.0000 50 
RB2 5.0033 5.0016 5.0026 5.0000 5.0007 5 
RB3 20.0000 20.0000 20.0000 20.0000 20.0000 20.00 

T. M.Res 100.0032 100.0029 100.0024 100.00 100.00 100.00 
E.M.Cost 3174.53925 3174.5501 3174.5389 3174.5548 3174.5353 3174.5 
R.M.Cost 183.30340 183.30509 183.3027 183.3000 183.29843 183.3 
T.M.Cost 3357.8426 3357.8552 3357.8416 3357.8548 3357.8337 3357.80 

V1* -0.0001 -0.0001 0.0000 -0.0001 0.0000 0.0000 
V2* -0.0001 -0.0001 0.0000 -0.0001 0.0000 0.0000 

* V1: Area ‘A’ power balance violation; V2: Area ‘B’ power balance violation 
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Table 2.  Comparison of joint dispatch results for Case II 
 with transmission limit( A

DP =113MW, B
DP =84 MW) Tie-line limit=20;Reserve limit=33 MW 

Unit PSO_TVAC DE TVDE1 TVDE2 TVDE3 
A1 34.9161 21.3813 33.8446 23.3455 35.9498 
A2 30.0808 34.4564 26.8841 35.9992 31.9002 
A3 35.7429 36.1238 36.2385 35.9912 24.8283 
B1 32.2599 33.0789 30.5118 34.5889 35.9657 
B2 35.1093 35.3738 35.2078 35.6447 35.1523 
B3 28.8905 36.5857 34.3132 31.4301 33.2038 

Tie-line 20.0000 12.0405 14.4790 16.9250 15.6439 
RA1 5.5000 5.5000 5.5000 5.5000 5.5000 
RA2 5.5000 5.5000 5.5000 5.5000 5.5000 
RA3 5.5000 5.5000 5.5000 5.5000 5.5000 
RB1 5.5000 5.5000 5.5000 5.5000 5.5000 
RB2 5.5000 5.5000 5.5000 5.5000 5.5000 
RB3 5.5000 5.5000 5.5000 5.5000 5.5000 

Reserve 33.00 33.00 33.00 33.00 33.00 
E.M.Cost 6439.98400 6447.0933 6442.3818 6439.98400 6440.0000 
R.M.Cost 495.00000 495.0000 495.0000 495.00000 495.0000 
T.M.Cost 6934.98400 6942.0933 6937.3818 6934.9840 6935.0000 

V1* -0.0002 0.0000 0.0000 -0.0002 0.0000 
V2* -0.0002 0.0000 0.0000 -0.0002 0.0000 

V1: Area ‘A’ power balance violation; V2: Area ‘B’ power balance violation 
 

5.5 Effect of transmission limits 
    
  Transmission line constraints play an important role in deciding the market cost under a given demand. Table 3 and Table 4 
give the joint dispatch results for case I and case II respectively for different tie-line limits for the TVDE3 approach. When the tie-
line limits are increased from 250 MW to 270 MW the total market cost is reduced from $3424.3993/h to $3364.3297/h for case I. 
Similarly, when tie-limits are increased form 5 MW to 20 MW the cost reduced from $9105.0000/h to $9045.0000/h for A

DP  

=133Mw and B
DP  =110MW.     

 
Table 3.  Effect of transmission limits on joint dispatch results for case I (Reserve=100 MW; A

DP =520 MW, B
DP =520 MW) 

Generating Units Tie line limit=250 MW Tie line limit=260MW Tie line limit=270 MW 
A1(MW) 17.0000 17.0000 12.4042 
A2(MW) 153.0000 143.0000 137.7235 
A3(MW) 100.0000 100.0000 99.8725 
B1(MW) 470.0000 470.0000 469.5204 
B2(MW) 250.0000 260.0000 270.2863 
B3(MW) 50.000 50.0000 50.1931 

RA1(MW) 0.0000 0.0000 0.3023 
RA2(MW) 20.0000 20.0000 20.0000 
RA3(MW) 0.0000 0.0000 0.0012 
RB1(MW) 50.0000 50.0000 50.0000 
RB2(MW) 30.0000 20.0000 9.7137 
RB3(MW) 0.0000 10.0000 19.9828 

BA
CP (Tie-line flow) MW -250.00  -260.00  -269.9998 

Energy Market Cost($/h) 3280.4993 3230.4993 3190.4460 
Reserve Market Cost($/h) 143.9000 158.6000 173.8806 

Total Market cost($/h) 3424.3993 3389.0993 3364.3266 
Area ‘A’ Violations (V1) -0.0000 -0.0000 -0.0000 
Area ‘B’ Violations(V2) -0.0000 -0.0000 -0.0000 
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Table 4.  Effect of transmission limits on joint dispatch results for case II ( A
DP =133 MW; B

DP =110MW; Reserve=33MW) 
Generating Units Tie line limit=20 MW Tie line limit=10 MW Tie line limit=5 MW 

A1(MW) 36.0035 35.0699 35.4941 
A2(MW) 44.0090 35.9585 35.9909 
A3(MW) 36.0072 35.9927 30.5595 
B1(MW) 36.9017 35.9789 35.9555 
B2(MW) 46.8090 52.1416 51.6146 
B3(MW) 43.2696 47.8584 53.3854 

RA1(MW) 5.5000 5.5000 5.5000 
RA2(MW) 5.5000 5.5000 5.5000 
RA3(MW) 5.5000 5.5000 5.5000 
RB1(MW) 5.5000 5.5000 5.5000 
RB2(MW) 5.5000 5.5000 5.5000 
RB3(MW) 5.5000 5.5000 5.5000 

AB
CP (Tie-line flow) MW 19.9214 10.00 5.00 

Energy Market Cost($/h) 8550.0000 8560.0000 8610.0000 
Reserve Market Cost($/h) 495.0000 495.0000 495.0000 

Total Market cost($/h) 9045.0000 9055.0000 9105.0000 
Area ‘A’ Violations (V1) 0.0000 0.0000 0.0000 
Area ‘B’ Violations(V2) 0.0000 0.0000 0.0000 

 
 
5.6 Effect of load variation and reserve limits 

 
The performance of time varying DE variants was also tested for load and reserve requirement variation. The results for the two 

cases are tabulated in Table 5 and Table 6 for the TVDE3 approach which performed the best out of the three variants. 
 

Table 5. Effect of load variation and reserve limits on joint market cost for case I 
Load Demand 
Area1     Area2 

Reserve(MW) Energy cost 
($/h) 

Reserve cost($/h) Total cost 
($/h) 

100 3174.4940      183.2997      3357.7937 

120 3247.4926      209.9000      3457.3926 

130 3287.4984    223.2000      3510.6984    

 
520MW 

 520MW  

140 3325.4983      241.8499      3567.3482 
80 4755.4984      148.8000      4904.2984 

90 4785.4984 160.0000 4945.4984 
100 4810.4984      183.3000      4993.7983 

 
550MW 

 
550MW 

120 4913.4981      209.9000  5123.3980 
 

 
 

Table 6. Effect of load variation and reserve limits on joint market cost for case II 
Load Demand 
Area1     Area2 

Reserve (MW) Energy cost 
($/h) 

Reserve cost($/h) Total cost 
($/h) 

20 6439.9997 300.0000 6739.9997 

25 6439.9997 375.0000 6814.9997 
30 6439.9997 450.0000 6889.9997 

113 MW 84 MW 

33 6439.9997 495.0000 6934.9997 
20 8549.9995 300.0000 8849.9995 
25 8549.9995 375.0000 8924.9995 
30 8549.9995 450.0000 8999.9995 

 
133 MW 

 
110 MW 

33 8549.9995      495.0000 9044.9995 
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5.7 Effect of population size 
 

To study the effect of population size on time varying DE variants, a statistical analysis was carried out for 30 trials with 
different population sizes. The results are given in Table 7 for TVDE3. With increase in population size the minimum, maximum, 
mean cost and S.D. improve as a rule but the computational time increases.  It can be seen that the minimum result with zero S.D. 
was achieved for a population size 50. Therefore the optimal population size was selected at 50.  
 

Table 7: Effect of population size on performance of TVDE3 for Case II out of 30 trials 
Population Size Minimum Maximum Mean Standard 

deviation 
CPU time/trial(seconds) 

10 7108.6700 15906.0 13450.9 357.68 1.062 
20 6937.6711 7500.7 7154.8 80.55 1.812 
50 6934.9840 6934.9840 6934.9840 0.0 3.89 
100 6934.9840 6934.9840 6934.9840 0.0 7.391 

 
5.8 Convergence characteristics and consistency analysis 

 
The time varying DE variants were found to have a stable convergence characteristic for all tested cases, under all possible 

variations of demand, reserve, tie-line limit and population size. On comparison with classical DE, the convergence behavior of 
TVDE schemes was found to be better. Figure 9 shows that out of the three TVDE variants the performance of TVDE3 was found 
to be the best. Figure 10 compares the best results of 30 trials of the DE variants and it can be seen that TVDE3 is the most 
consistent approach. 

 
 

 

 
Figure 9. Comparison of convergence characteristics of DE variants for Case I 
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Figure 10 Comparison of best performance of DE variants for case II 

 
6. Conclusions  

 
The multi-area joint energy and reserve dispatch problem for the competitive market is more complex as compared to the 

conventional economic dispatch due to the individual area power balance constraints, reserve requirement constraints, reserve and 
energy mutual dependence constraints and tie-line constrains. Evolutionary optimization methods are becoming very popular for 
solving such complex constrained optimization problems due to their population based excellent parallel search capability and 
superior constraint handling mechanism. To avoid the cumbersome process of parameter tuning in classical DE, a time varying 
differential evolution approach is proposed in this paper for solving multi-area JERD problem. The major findings can be 
summarized as: 
• A detailed study of DE mutation strategies was carried out and strategy III i.e. DE/rand to best/1 was found to produce the 

best results. Strategy II and V did not converge for the tested cases. 
• The solution quality of classical DE was found to be highly dependant on the values of mutation and crossover rates. The 

best DE performance is achieved for only certain combinations of tuning parameters fm and CR; for other values the results 
were quite inferior. This limitation of classical DE was removed in the time varying DE variants proposed in this paper. The 
performance of TVDE variants was found to be superior to classical DE.  

• The performance of TVDE was tested with change in load demand, reserve requirements, tie-line limits and population size. 
In all cases TVDE was found to converge to the global best solution with a small S.D. While all the TVDE schemes 
performed efficiently, the performance of TVDE3 was found to be the best for the tested JERD cases. The best strategies as 
well as the best variant are problem dependant as their performance depends on the nature of the optimization function and 
constraints. For any one type of optimization function same variant performs the best while for a different problem, another 
variant may work better. 

Appendix 
Table A1. Market Price Data for Test case I  

Energy offer Reserve offer 
 

Band 1 Band 2 Band 3 Band 1 

 
Unit 

MW Price MW Price MW Price MW Price 

MW 
limit 

A1 5 -2.3 7 23 5 27 5 3.33 17 

A2 80 -2.6 60 26 60 28 20 2.40 200 

A3 70 -2.0 15 22 15 24 10 2.40 100 

B1 400 -2.4 60 21 60 24 50 1.12 520 

B2 200 -3.0 40 17 40 23 50 1.33 280 

B3 50 -2.4 30 27 30 29 20 2.80 110 
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Table A2. Market Price Data for Test case II
 

Energy offer Reserve offer 
 

Band 1 Band 2 Band 3 Band 1 

 
Unit 

MW Price MW Price MW Price MW Price 

MW 
limit 

A1 12 20 24 40 24 50 5.5 15 60 
A2 12 20 24 40 24 50 5.5 15 60 
A3 12 20 24 40 24 50 5.5 15 60 
A4 12 20 24 40 24 50 5.5 15 60 
B1 12 20 24 40 24 50 5.5 15 60 
B2 12 20 24 40 24 50 5.5 15 60 
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Nomenclature 
CT             Total market cost 
F(Pi)         Energy price of the ith generating unit 
G(Ri)        Reserve price of the ith generating unit   
k, l            Number of units in the two areas 

A
iP          Generation of ith unit of area ‘A’ 
A

iR          Reserve of ith unit of area ‘A’ 
max

CP        Transmission limit between area ‘A’ and area ‘B’ 
BA

CP , BA
CR   Transmitted power and reserve between area ‘A’ and area ‘B’ 

A
DP , B

DP    Area loads 
A
DR , B

DR    Reserve requirements of the two areas 
min

iP , max
iP  minimum and maximum generation limits on ith unit 

GikP , RikP     Value of energy and reserve in the kth price block 

Gikρ , Rikρ    Offering prices for the energy and the reserve in the kth  block 

fm, CR            Mutation factor  , Crossover rate 
R                   Population size 
xi , Ui,, Zi           Target vector,  Trial vector, Mutant vector 
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