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Abstract 
 
   Biot’s poroelastic theory is employed to investigate stresses under an excitation in an infinite poroelastic slab of arbitrary 
thickness. Both for pervious and impervious surfaces, the radial normal stress is obtained, and in the neighbourhood of the 
centre, the same is computed as function of thickness of the slab. Numerical data is presented graphically and then discussed. It 
is seen that nature of surface, mass coupling parameter and elastic constants (Lame constants) have greater influence over radial 
normal stress.  
  
Keywords: Flat slab, radial normal stress, pervious surface, impervious surface. 
 
1. Introduction 
 
   Flat slabs are most commonly used in structures such as railway stations, bus stations, exhibition halls, and large structures, like, 
high towers, telecom masts, etc. Such structures when exposed to natural turbulent wind are susceptible to wind induced excitation 
phenomena. In an earlier study (Davids & Kumar, 1957), wave propagation in elastic flat slabs under excitation is carried out and 
even compared with experimental data. However, above structures are poroelastic in nature, hence they are to be investigated 
using the theory of poroelasticity. Waves of axial symmetry in poroelastic cylindrical structures are studied in cylindrical co-
ordinate system wherein boundaries go with radial coordinate (Reddy & Tajuddin, 2000; Tajuddin & Shah, 2007; Tajuddin &. 
Shah, 2006; Tajuddin & Reddy, 2005) in the framework (Biot, 1956). Wave propagation in poroelastic flat slabs wherein 
boundaries go with the azimutal coordinate is studied in the paper (Reddy & Tajuddin, 2006). In the said analysis, the frequency   
equation is investigated for a pervious boundary and an impervious boundary and realized the fact that the nature of boundary and 
mass coupling parameter influence wave propagation. Earlier studies have not considered excitation phenomena, which is 
warranted, because of above mentioned applications.  
   In this paper, the waves under line source sinusoidal excitation are obtained thereby the radial normal stress along thickness of 
the slab is computed, and seen how the nature of surface and material parameters influence the values. Although, our analysis 
would confine to a periodic disturbance, because of the Fourier integral theorem, it is possible to extend conclusions to pulse 
propagation as well. 
   The rest of the paper is organized as follows. First, the problem is formulated and the boundary conditions are prescribed in 
section 2. Then in section 3, waves under line source excitation is investigated. The non-dimensionalisation as well as numerical 
results is discussed in section 4. Finally, concluding remarks are given. 
 
2.  The Boundary Value Problem 
 
   Consider an infinite poroelastic slab of thickness ‘2a’ excited along a line coinciding with the z-axis in cylindrical polar 
coordinate system (r, θ, z). Let the slab be homogeneous and isotropic.  The equations of motion of a poroelastic solid (Biot 1956) 
in presence of dissipation (b) which in terms of displacement vectors are: 
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In (1), P (=A+2N), N, Q, R are all poroelastic constants, ∇2 is the Laplacian operator; and ρij are mass coefficients, ∈ande  
are solid dilatation and fluid dilatation, respectively. The solid displacement components (u, 0, w) which are functions of r, z and t 
(here the problem is plane strain that is independent of θ ) which can readily be evaluated from the field equations (Biot 1956) 
representing steady state harmonic vibrations presented in matrix notation are  
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where p is the frequency of wave, k is the wavenumber, 111 ,, CBA are all constants. Jn(x) is a Bessel function of first kind of order 
n and 
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In equation (3),    )3,2,1( =iVi   are dilatational wave velocities of first and second kind, and shear wave velocity, respectively. 
Using these displacements into stress-displacement relations (Biot 1956) the relevant stresses (σij) and liquid pressure (s) are 
obtained as follows: 
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8642 ,,, DDDD  = similar expressions as 7531 ,,, DDDD  with 1α  and 1δ  replaced by 2α  and 2δ  , respectively. 
The boundary condition that the front and back surfaces z = a and z = -a for a pervious surface  and an impervious surface to be 
stress free are 

                              
0,0,0 ===+ ss rzzz σσ

            (Pervious surface),   

         and     
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        (Impervious surface).     (5) 

Equations (4) and (5) together give a system of three homogeneous equations for the constants 111 ,, CBA   each for a pervious 
surface and an impervious surface.  In order to obtain a nontrivial solution of this system, the coefficient matrix must be singular.  
This leads to a frequency equation for both pervious and impervious surfaces.  These frequency equations and their limiting cases 
are investigated in the paper (Malla Reddy & Tajuddin 2006). 
 
3.  The Excitation  
 
   This section presents the conditions under which a wave represented by radial and azimuthal displacement components can be 
generated for a pervious surface and an impervious surface.  Since the boundaries are stress free, there can be no excitation from 
the faces of slab.  The only remaining source for the wave, which must be radially symmetric, can be a line corresponding to the 
axis of cylindrical coordinate system. It is interesting to see how these free boundaries are affecting the stress components   rzσ   

and rrσ pertaining to radial coordinate and presented for both pervious and impervious surfaces given under: 
 
3.1 Pervious surface 
   Because of the boundary conditions, arbitrary constants 111 ,, CBA are no longer independent but are connected as follows: 

From the third boundary condition, we have      
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Substituting (6) in the first boundary condition, we obtain  
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Substituting (6) and (7) in the expression for srr +σ  , we obtain 
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Similar expression can be obtained for rzσ .  The case of axial excitation can be dealt with by letting 0→r  in   the   expressions 

for   srr +σ and    rzσ  .      Their values in this case are 

                                                             ,,0 11
ipt
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where                                                                                                                                    
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   In the case of a radially symmetric disturbance, continuity of the medium demands that the radial displacements at the line of 
symmetry must be zero. From the equation (2) it is obvious since   0=u when .0=r  
 
3.2 Impervious surface 

   From the equation (4), we have [ ] iptekrJzDBzDA
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 Substitution of (11) in the first boundary condition yields  
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Substituting (11) and (12) in the expression for srr +σ , we obtain  
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Letting 0→r  in   the   expressions for   srr +σ  and rzσ , we obtain                                                       
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4.  Numerical Results and Discussion 
 
   Now we introduce non-dimensional parameters to compute the quantities 1F   and  2F  for a non-dissipation case (that is when 

0=b ), which are approximations for the srr +σ in the case of pervious surface and impervious surface, respectively   as 
follows: 
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where m is non-dimensional phase velocity,τ is non-dimensional frequency, and   
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   Using non-dimensional variables defined in (16) into  1F  and  2F  given by (10) and (15), respectively, one obtains an explicit 

relation between non-dimensional quantities 0/ FFi  (i=1,2, 2
0 HkF =  ) and az /   for given materials, keeping non-

dimensional frequency  aτ and non-dimensional wavenumber ka fixed. Three sets of material parameters are employed for 
computational work, which are presented in the table I. Of three, first two are given by Biot (Biot 1956) and third set is pertaining 
to sandstone saturated with kerosene given by Fatt (Fatt 1957). In material-II, mass coupling parameter is present while in 
material-III, elastic parameters (Lame constants) are dominant. For materials I & II Poisson ratio is 0.47 whereas for material-III it 
is 0.25. 

 
Table 1. Three sets of material parameters employed for computational work 

Material  
1a  2a  3a  

4a  1d  2d  3d  
~
x  

~
y  

~
z  

  I 0.61 0.0425 0.305 0.034193 0.5 0 0.5 1.671 0.812 14.623 
  II 0.61 0.0425 0.305 0.034193 0.65 -0.15 0.65 2.388 0.909 18.002 
  III   0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

 
   Quantity 0/ FFi computed against az /  for three given materials, each for pervious boundary and impervious boundary.   
Computations are performed for various values of   ka and aτ  as taken by Davids et.al (Davids & Kumar 1957), which are given 
as follows: ka=0.5, aτ =0.83, say, set 1 ; ka=1, aτ =1.64, say ,set 2 ;  ka=1.4, aτ =2.13, say, set 3.Numerical results are presented 
graphically in figures 1-4. All the curves are symmetric with respect to y-axis. For the material –I and material –II, all the values in 
the case of pervious and impervious surfaces are negative, which correspond to tension, whereas for material –III, in the case of 
pervious surface, some values are negative and some values are positive.  Positive values correspond to stress. It is interesting to 
note that in the case of material –III and impervious surface, all the values are positive. From the Fig.1, it is clear that tension 
decreases as ka and aτ  increase, but in the neighbourhood of 0/ =az  the trend is reversed. When  ka and aτ  are high,  that is 
in the case of set 3, the values of material-I  and that of material-II are coinciding, which means that mass coupling parameter  does 
not have any influence when ka and aτ are relatively higher. From the Fig.2, it is seen that in the case of material-I, the values of 
pervious surface and the values of impervious surface are closer which is not the true in the case of material-II which can be seen 
from Fig. 3. Therefore, from Fig.2 and Fig.3, one can infer that in the case of material-II, the values are affected by the nature of  
the surface. It is the mass coupling parameter present in material-II is making above distinction. Fig. 4 corresponds to material –III 
and it is found that impervious values are higher than that of pervious values. In either case the values decrease as ka and aτ  
increase. In the case of pervious surface the curves are concave upwards and in the case of impervious surface the curves are 
concave downwards. 
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Figure1. Variation of 0/ FFi  with z/a in Material –I & Material-II for Pervious Surface 
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Figure 2. Variation of  0/ FFi  with z/a in Material –I for both Pervious and Impervious Surfaces 
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Figure3. Variation of  0/ FFi  with z/a in Material –II for both Pervious and Impervious Surfaces 
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Figure4. Variation of  0/ FFi  with z/a in Material –III for both Pervious and Impervious Surfaces 

4. Conclusion 
  
   The study of stress waves in a poroelastic flat slab under an excitation is made using Biot’s theory. It is seen that how  the radial 
stress components are  affected in view of the traction free boundary conditions on the surfaces az −= and  az= .Our analysis 
is confined to a periodic disturbance, however, because of the Fourier integral theorem, it is possible to extend the  conclusions to 
pulse propagation as well. The radial normal stress at the centre is computed against thickness of the slab for three types of 
materials. Numerical results show the following conclusions: 

1. All the curves are symmetric with respect to y-axis.  
2. The values pertaining to material-I and material-II are negative, which correspond to tension whereas the values of 

material-III in the case of impervious surface are positive that correspond to stress. 
3. Mass coupling parameter does not affect the values when both wavenumber and frequency are high. 
4. Nature of surface influences the values in presence of mass coupling parameter and impervious surface values are greater 

than that of pervious surface when elastic constants are higher. 
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