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Abstract 
 
   Steady hydromagnetic Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system 
with non-conducting walls is studied. Exact solution of the governing equations is obtained in closed form. Expressions for the 
shear stress at the lower and upper plates due to primary and secondary flows and mass flow rates in primary and secondary flow 
directions are also derived. Asymptotic behavior of the solution for fluid velocity and induced magnetic field is analyzed for 
small and large values of rotation parameter K2 and magnetic parameter M2 to gain further insight into the flow pattern. Heat 
transfer characteristics of the flow are considered taking viscous and Joule dissipations into account. The numerical solution of 
energy equation and numerical values of rate of heat transfer at both plates are obtained with the help of MATLAB software. 
The numerical values of fluid velocity, induced magnetic field and fluid temperature are depicted graphically versus channel 
width variable η  for various values of M2 and K2 while numerical values of primary and secondary shear stress at the lower and 
upper plates, mass flow rates in primary and secondary flow directions and rate of heat transfer at the lower and upper plates are 
presented in tabular form for various values of K2 and M2.   
      
Keywords: Magnetic field, rotation, hydromagnetic Ekman boundary layer, Hartmann boundary layer, viscous and Joule 
dissipations. 
 
1. Introduction 

 
   An investigation of MHD flow of an electrically conducting fluid in a rotating medium is of considerable significance due to 
occurrence of various natural phenomena related to astrophysical and geophysical problems and for its application in fluid 
engineering such as vertex MHD power generator (Michiyoshi and Numano 1967), rotating drum type separator in closed cycle 
two phase power generator (Lenzo at.el 1978), isotope separation and plasma diagnostics (Thiagarajan and Rohatgi 1977). 
Keeping in view this fact Jana et.al (1977), Seth and Maiti (1982), Jana and Datta (1980), Mandal et.al (1982), Mandal and Mandal 
(1983), Seth and Ahmad (1985) and Kumar et.al (2007) studied steady MHD Couette flow of a viscous incompressible electrically 
conducting fluid in a rotating system considering different aspects of the problem. 
   It may be noted that MHD Couette flow may be generated into two ways and may be named as Couette flow of class-I and class-
II  i.e Couette flow induced due to a moving plate bounded by a stationary plate fixed at a finite distance from the moving plate  
may be named as MHD Couette flow of class-I which is similar to the fluid flow induced due to the movement of the plate 
bounded by stationary free stream whereas MHD flow past a stationary plate induced due to movement of the plate present at a 
finite distance from the stationary plate may be recognized as MHD Couette flow of class-II which is similar to the fluid flow past 
a stationary plate due to moving free stream. The research studies of Jana et.al (1977), Seth and Maiti (1982), Jana and Datta 
(1980), Mandal et.al (1982), Mandal and Mandal (1983), Seth and Ahmad (1985) and Kumar et.al (2007) belong to MHD Couette 
flow of class-I. Majumder (1991), Ganapathy (1994) and Das et.al (2008) investigated Couette flow of class-II of a viscous 
incompressible fluid in a rotating system in the absence of magnetic field whereas Singh (2000), Hayat et.al (2004a,b,c) and Seth 
et.al (2009) studied MHD Couette flow of class-II of a viscous incompressible electrically conducting fluid in the presence of a 
uniform magnetic field neglecting induced magnetic field by considering different aspects of the problem. It may be noted that 
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induced magnetic field produced by fluid motion is negligible in comparison to the applied one when magnetic Reynolds number 
is very small. Although for the problems of astrophysical and geophysical interest magnetic Reynolds number is not very small. 
For such type of problems induced magnetic field plays a significant role in determining flow features of the problem. 
   The aim of the present investigation is to study steady magnetohydrodynamic Couette flow of class-II of a viscous 
incompressible electrically conducting fluid in a rotating system in the presence of a uniform transverse magnetic field taking 
induced magnetic field into account.           
 
2. Formulation of the problem and its solution 
 
   Consider steady Couette flow of a viscous incompressible electrically conducting fluid confined within a parallel plate channel 

0y =  and y d=  with non-conducting walls in the presence of a uniform transverse magnetic field 0H  acting parallel to y -axis. 

Both the fluid and channel rotate in unison with the uniform angular velocity Ω  about y -axis. The fluid flow within the channel 
is induced due to the movement of the upper plate y d=  with uniform velocity 0U  in x -direction where as the lower plate of the 

channel 0y =  is kept fixed. Since plates of the channel are infinite along x  and z -directions and flow is steady so all the physical 
quantities, expect pressure, depend on y only. 
Therefore, fluid velocity qr  and induced magnetic field H

uur
 are assumed as 

  ( )* *,0,q u w≡
r

 and ( )* *
0, ,x zH H H H≡

uur
,        (1) 

which is compatible with the fundamental equations of Magnetohydrodynamics in a rotating frame of reference. 
 Taking into account the assumptions made above, the governing equations for steady flow of a viscous incompressible 
electrically conducting fluid in a rotating frame of reference are 

 
** 2 *

*0
2

1 2e xH dHp d u w
x dydy

μ
υ

ρ ρ
∂

− + + = Ω
∂

,        (2) 

 
*1 0p

yρ
∂

− =
∂

,           (3) 

 
** 2 *

*0
2

1 2e zH dHp d w u
z dydy

μ
υ

ρ ρ
∂

− + + = − Ω
∂

,        (4) 

 
2 **

0 2 0x
m

d HduH
dy dy

η+ = ,          (5) 

 
2 **

0 2 0z
m

d HdwH
dy dy

η+ = ,          (6) 

where 1/m eη μ σ=  and ρ , υ , eμ , σ  and *p are, respectively, fluid density, kinematic coefficient of viscosity, magnetic 

permeability, electrical conductivity of the fluid and modified pressure including centrifugal force. 
The formulation of the problem will be complete if we specify boundary conditions for the velocity and induced magnetic field. 
The boundary conditions for the velocity and induced magnetic field are given by 
 * * 0u w= =   at 0y = ’        (7a) 

 *
0u U= , * 0w =  at y d= ’        (7b) 

* * 0H Hx z= =   at 0y = ,        (8a) 

 * * 0x zH H= =   at y d= .        (8b) 
Equation (3) shows constancy of magnetohydrodynamic pressure along y -axis i.e. along the axis of rotation. Keeping into 
account the research studies made in the past on MHD Couette flow we are of opinion that MHD Couette flow may be induced in 
two ways viz. (i) Couette flow induced due to a moving plate bounded by a stationary plate fixed at a finite distance from the 
moving plate  may be named as MHD Couette flow of class-I which is similar to the fluid flow induced due to the movement of 
the plate bounded by stationary free stream and (ii) MHD flow past a stationary plate induced due to movement of the plate present 
at a finite distance from the stationary plate may be recognized as MHD Couette flow of class-II which is similar to the fluid flow 

past a stationary plate due to moving free stream. For MHD Couette flow of class-I the pressure gradient terms 
*1 p
xρ

∂
−

∂
 and 
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*1 p
zρ

∂
−

∂
; which are present in equations (2) and (4) , are not considered by Jana et.al (1977), Seth and Maiti (1982), Jana and 

Datta (1980), Mandal et.al (1982), Mandal and Mandal (1983), Seth and Ahmad (1985) and Kumar et.al (2007). This is justified 
and is clearly evident from the conditions (7a) and (8a). For MHD Couette flow of class-II the pressure gradient terms in equations 
(2) and (4) are obtained with the help of boundary conditions (7b) and (8b) which are given by   

 
*1 0p

xρ
∂

− =
∂

, 
*

0
1 2p U

zρ
∂

− = − Ω
∂

.         (9) 

Our problem belongs to MHD Couette flow of class-II therefore, equations (2) and (4) with the help of (9) reduce to  
*2 *

*0
2 2e xH dHd u w

dydy
μ

υ
ρ

+ = Ω ,         (10) 

 
*2 *

*0
02 2 ( )e zH dHd w u U

dydy
μ

υ
ρ

+ = − Ω − ,        (11) 

We introduce the non-dimensional variables 
 * * * *

0 0 0 0/ , / , / , / , / .x x z zy d u u U w w U H H H H H Hη = = = = =      (12) 
Equations (5), (6), (10) and (11) with the use of (12), in non-dimensional form, become 

 
2

2
1 0x

m

d Hdu
d R dη η

+ = ,          (13) 

 
2

2
1 0z

m

d Hdw
d R dη η

+ = ,          (14) 

2 2
2

2 2x

m

dHd u M K w
R dd ηη

+ = ,          (15) 

 
2 2

2 2
2 2 2z

m

dHd w M K K u
R dd ηη

+ = − ,         (16) 

where 2 2 /K d υ= Ω  is rotation parameter which is reciprocal of Ekman number, ( )2 2 2 2 /0M H deμ σ ρυ=  is magnetic 

parameter which is square of Hartmann number and /0R U dm mη=   is magnetic Reynolds number. 

The boundary conditions (7a) to (8b), in non-dimensional form, become 
0u w= =   at 0η = ’        (17a) 

1u = , 0w =   at 1η = ’        (17b) 

0x zH H= =   at 0η = ,        (18a) 
0x zH H= =   at 1η = .         (18b) 

Combining equations (13) and (15) with the equations (14) and (16) respectively, we obtain 
2

2 0dF d b
d dη η

+ = ,           (19) 

2
2 2 2

2 2 2d F dbM iK F iK
dd ηη

+ + = ,         (20) 

where F u iw= + , x zb h ih= + , /x x mh H R=  and  /z z mh H R= . 
The boundary conditions (17a) to (18b) become 
 0F =  at 0η =  and 1F =  at 1η = ,         (21) 
 0b =  at 0η =  and 0b =  at 1.η =         (22) 
Equations (19) and (20) subject to the boundary conditions (21) and (22) are solved and the solution for velocity field and induced 
magnetic field is expressed as 
 [ ]( ) sinh( ) (1 cosh( ))F A Bη λη λη= − − ,        (23) 

 
2

2
1 2( ) (1 cosh( )) sinh( ) ( 1) iKb A B B

M
ηη λη λη λ

λ
⎡ ⎤

= − − + +⎢ ⎥
⎢ ⎥⎣ ⎦

,      (24) 
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where iλ α β= − ,           (25a) 
1/ 24 4 1/ 2 21, ( 4 )

2
M K Mα β ⎡ ⎤= + ±⎣ ⎦ ,        (25b) 

2 2

2 2
1 2 cosh sinh
2 sinh (1 cosh )

i K MA
i K M

λ λ λ
λ λ λ

⎡ ⎤−
= ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
,        (25c) 

2 2

2 2
1 2 sinh (1 cosh )
2 sinh (1 cosh )

i K MB
i K M
λ λ λ
λ λ λ

⎡ ⎤+ −
= − ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
.        (25d) 

 
Shear Stress at plates 

The non-dimensional shear stress components xτ  and zτ  at the lower and upper plates due to primary and secondary 

flows respectively are given by 

 
2 2

0 2 2
2 cosh sinh( )

2 sinh (1 cosh )x z
i K Mi

i K Mη
λ λ λ λτ τ

λ λ λ=
⎡ ⎤−

+ = ⎢ ⎥
+ −⎢ ⎥⎣ ⎦

,       (26) 

 
2 2

1 2 2
2 sinh( )

2 sinh (1 cosh )x z
i K Mi

i K Mη
λ λ λτ τ

λ λ λ=
⎡ ⎤−

+ = ⎢ ⎥
+ −⎢ ⎥⎣ ⎦

.       (27) 

Mass flow rates 
The non-dimensional mass flow rates Qx  and Qz  in the primary and secondary flow directions respectively are given by 

 
2

2
2

x z
i K BQ iQ

M
λ λ−

+ = .          (28)  

 
3. Asymptotic Solutions 
 

We shall now discuss asymptotic behavior of the solution given by (23) to (25) for small and large values of 2M  and 2K  to 
gain some physical insight into the flow pattern. 
 
Case I: M2 << 1 and K2 << 1 

Since 2M  and 2K  are very small, neglecting squares and higher powers of  2M  and 2K  in equations (23) to (25), we 
obtain velocity and induced magnetic field from (23) to (25) as 

 
2

2(2 3 1)
12
Mu η η η η= + − + +L ,         (29) 

 
2

2( 3 2)
3

Kw η η η= − − + +L ,         (30) 

 
21 (1 ) 1 (1 )

2 12x
Mh η η η η

⎡ ⎤
= − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
L ,        (31) 

 
2

2(1 )(1 3 )
12z
Kh η η η η= − + − +L .         (32) 

It is evident from the expressions (29) to (32) that in a slowly rotating system when the conductivity of the fluid is low and/ or the 
applied magnetic field is weak,  primary velocity  u  and  primary induced magnetic field hx  are independent of rotation where as 

secondary velocity w  and secondary induced magnetic field hz  are unaffected by magnetic field. 
 
 
 
 
Case II:  K2  >> 1 and M2 ~ O(1)  

When  2K  is large and 2M  is of small order of magnitude flow becomes boundary layer type. For boundary layer flow near the 
lower plate 0η = , we obtain velocity and induced magnetic field from equations (23) to (25) as 
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 1
11 cosu e α η β η−= − ,          (33) 

 1
1sinw e α η β η−= − ,          (34) 

 1
1 1

1 (1 ) (cos sin )
2xh e

K
α ηη β η β η−⎡ ⎤= − − −⎣ ⎦ ,        (35) 

 1
1 1

1 (1 ) (cos sin )
2zh e

K
α ηη β η β η−⎡ ⎤= − − +⎣ ⎦ ,        (36) 

where 

 
2

1 21
4
MK
K

α
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 and 
2

1 21
4
MK
K

β
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

.        (37) 

Equations (33) to (37) demonstrate the existence of a boundary layer of thickness of 1( )1O α −  near lower plate of the channel. 
This boundary layer may be identified as hydromagnetic Ekman boundary layer and can be viewed as classical Ekman boundary 

layer modified by magnetic field. The thickness of this boundary layer decreases with the increase in either 2M  or 2K . 
Exponential terms in equations (33) to (36) damped quickly as η  increases. When 1/ 1η α>  i.e. outside the boundary layer region, 
we obtain from (33) to (36) as  
 1u ≈ , 0w ≈ ,           (38) 
 (1 ) / 2xh Kη≈ − , (1 ) / 2zh Kη≈ − .         (39) 
It is noticed from (38) and (39) that in a certain core given by 1/ 1η α>  i.e. outside the boundary layer region, fluid flows in 

primary flow direction only with the same velocity as that of moving plate. Primary and secondary induced magnetic fields hx  and 

hz  persist and decrease on increasing channel width variable η .   
 
Case III:    M

2  >> 1 and K2 ~ O(1) 
   In this case also boundary layer type flow is expected. For the boundary layer flow near the lower plate 0η = , we obtain 
velocity and induced magnetic field from the equations (23) to (25) as 

2
2

2 2
1 1 cos sin
2

Ku e
M

α η β η β η−
⎡ ⎤⎧ ⎫⎪ ⎪= − +⎢ ⎥⎨ ⎬

⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
,        (40) 

2
2 2

2 2
1 sin cos
2

K Kw e
M M

α η β η β η−
⎡ ⎤⎧ ⎫⎪ ⎪= − + −⎢ ⎥⎨ ⎬

⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
,       (41) 

2
2

2 2
1 1 cos sin

2x
Kh e

M M
α η β η β η−

⎧ ⎫⎛ ⎞⎪ ⎪= − +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
,       (42) 

 2
2 2

2 2
1 (2 1) sin cos

2z
K Kh e

M M M
α ηη β η β η−

⎧ ⎫⎛ ⎞⎪ ⎪= − − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
,      (43) 

where  

2 Mα = , and 
2

2
K
M

β = .          (44) 

It is evident from the expressions (40) to (44) that there arises a thin boundary layer of thickness of 1( )2O α −  near lower plate of 
the channel. This boundary layer is called Hartmann boundary layer. The thickness of this boundary layer decreases with the 

increase in 2M . Outside boundary layer region i.e. when 1/ 2η α> , we obtain from (40) to (43) as  

 1/ 2u ≈ ,  2 / 2w K M≈ − ,          (45) 
 1/ 2xh M≈ , 2 2(2 1) / 2zh K Mη≈ − .        (46) 
Expressions (45) and (46) reveal that in a certain core given by 1/2 Mα >  i.e. outside the boundary layer region fluid flows in 
both the primary and secondary flow directions and primary velocity u  is unaffected by both rotation and magnetic field. Both the 
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primary and secondary induced magnetic fields persist and secondary induced magnetic field hz  varies linearly with the channel 
width variable η . 
 
  4. Heat Transfer Characteristics 
 
   We shall now discuss heat transfer characteristics of steady hydromagnetic Couette flow of a viscous incompressible electrically 
conducting fluid in a rotating system when the upper and lower plates of the channel are maintained at uniform temperatures 1T  

and  0T  respectively, where 0 1T T T< < , T  being fluid temperature. 

The energy equation taking viscous and Joule dissipations into account is given by  

 
2 22 2 * *2 * *

*
2

1 0x z

p p

dH dHd T du dw
C dy dy C dy dydy
υα

σρ

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥+ + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦
,    (47) 

where  *α  and Cp  are thermal diffusivity and specific heat at constant pressure respectively. 

Boundary conditions for temperature field are 
 0T T=  at 0y =  and 1T T=  at y d= .        (48) 
Using the non-dimensional variables defined in (12) equation (47), in non-dimensional form, becomes 

 
2 2 2 22

2
2 0x z

r r
dh dhd du dwP E M

d d d dd
θ

η η η ηη

⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥+ + + + =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦
,     (49) 

where 0

1 0

T T

T T
θ

−
=

−
, 

*
Pr

υ

α
=  and

2
0

( )1 0

U
Er C T Tp

=
−

. θ , Pr  and Er  are non-dimensional fluid temperature, Prandtl number and 

Eckert number respectively. 
Boundary conditions (48), in non-dimensional form, become 
 (0) 0θ =  and (1) 1θ = .          (50) 
Making use of the equations (23) to (25) in equation (49), the resulting differential equation subject to the boundary conditions 
(50) is solved numerically with the help of MATLAB software. The numerical values of the rate of heat transfer at the lower and 
upper plates are also computed with the help of MATLAB software. 
 
5. Results and Discussion 
 
   To study the effects of magnetic field and rotation on fluid velocity and induced magnetic field numerical values of the fluid 
velocity and induced magnetic field, computed from the analytical solution reported in section 2 by MATLAB software, are 

displayed graphically versus channel width variable η  in figures 1 to 4 for various values of magnetic parameter 2M and  rotation 

parameter 2K . Figure 1 illustrates the influence of rotation on the primary velocity u  and secondary velocity w . It is noticed that 

from figure 1 that both the primary and secondary velocities increase on increasing 2K which implies that rotation tends to 
accelerate fluid flow in both the primary and secondary flow directions. Figure 2 demonstrates the effect of magnetic field on both 

the primary and secondary fluid velocities. Figure 2 reveals that an increase in 2M  leads to an increase in the secondary velocity 
whereas primary velocity increases in the region near the lower plate and decreases in the region near the upper plate on increasing 

2M which implies that magnetic field tends to accelerate fluid flow in secondary flow direction and it tends to decelerate fluid 
flow in primary flow direction in the region near the upper plate while it has the reverse effect on the primary flow in the region 
near the lower plate. Figure 3 displays the influence of rotation on the primary and secondary magnetic fields. It is evident from 
figure 3 that primary induced magnetic field hx  increases in the lower half of the channel whereas it decreases in the upper half of 

the channel on increasing 2K whereas secondary induced magnetic field hz  increases near the lower plate as well as near the 

upper plate on increasing 2K . This implies that rotation tends to enhance primary induced magnetic field in the lower half of the 
channel and it has reverse effect on the primary induced magnetic field in the upper half of the channel. Rotation tends to increase 
secondary magnetic field in the region near the lower and upper plates of the channel. Figure 4 depicts the influence of magnetic 
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field on the primary and secondary induced magnetic fields. It is revealed from figure 4 that primary induced magnetic field hx  

and secondary induced magnetic field hz  decrease on increasing 2M  which implies that magnetic field has tendency to reduce 
both the primary and secondary induced magnetic fields.  
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          Figure 3.  Magnetic field profiles for 2 9M =                                            Figure 4. Magnetic field profiles for 2 3K =  
 
 
   To study the effects of rotation and magnetic field on fluid temperature the numerical solution of energy equation computed with 
the help of MATLAB software is depicted graphically versus channel width variable η  in figures 5 and 6  for various values of 

2M  and 2K  taking 7.0Pr =  and 2.0Er = . Figure 5 displays the influence of rotation on the fluid temperatureθ . It is noticed 

from figure 5 that the fluid temperature θ  increases in the regions near the upper and lower plates on increasing 2K  which 
implies that rotation tends to enhance fluid temperature in the regions near the upper and lower plates. Figure 6 presents the effect 

of magnetic field on the fluid temperature. It is evident from figure 6 that fluid temperature increases on increasing 2M  which 
implies that magnetic field has tendency to increase fluid temperature throughout the channel. 
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                      Figure 5. Fluid temperature profiles for 
2 9M =                                         Figure 6. Fluid temperature profiles for 2 3K =  

 
   The numerical values of the primary shear stress component xτ  and secondary shear stress component zτ  at the lower and 

upper plates, computed from the analytical expression mentioned in section 2 by MATLAB software, are presented in tabular form 
in tables 1 and 2 while that of mass flow rates Qx  and Qz in the primary and secondary flow directions respectively are given in 

table 3 for various values of 2M  and 2K . It is evident from table 1 that primary shear stress at the lower plate i.e. 0xτ η =  and 

secondary shear stress at the lower plate i.e. 0zτ η =  increase on increasing 2K  where as 0xτ η =  increases and 0zτ η =  

decreases on increasing 2M . This implies that rotation has tendency to enhance primary as well as secondary shear stress at the 
lower plate whereas magnetic field has tendency to increase primary shear stress at the lower plate and it has reverse effect on the 

secondary shear stress at the lower plate. It is observed from table 2 that 1xτ η =  decreases whereas 1zτ η =  increases on 

increasing 2K . 1xτ η =  and 1zτ η = increase on increasing 2M  which implies that magnetic field tends to enhance both the 

primary and secondary shear stress at the upper plate and rotation has tendency to reduce primary shear stress at the upper plate 
and it has reverse effect on the secondary shear stress at the upper plate. It is noticed from table 3 that primary mass flow rate Qx  

and secondary mass flow rate Qz  increase on increasing 2K  whereas primary mass flow rate  Qx  decreases on increasing 

2M and secondary mass flow rate Qz  decreases on increasing 2M  when 2 1K =  and 3. For 2 5K =  it increases, attains a 

maximum value and then decreases on increasing 2M . This implies that rotation tends to enhance both the primary and secondary 
mass flow rates whereas magnetic field has tendency to reduce primary mass flow rate and it tends to reduce secondary mass flow 

rate when 2 3K ≤ . 
 

Table 1.  Primary and secondary shear stress at the lower plate: 
 

0x ητ =  0z ητ =−  
2M → 

 
2K ↓ 

3 9 15 3 9 15 

1 1.3195 1.7312 2.0873 0.6369 0.6167 0.6023 

3 1.8179 2.2033 2.5372 1.6443 1.6173 1.6007 

5 2.3937 2.7818 3.1171 2.2537 2.2365 2.2354 
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Table 2. .  Primary and secondary shear stress at the upper plate: 
 

1x ητ =  1z ητ =  
2M → 

 
2K ↓ 

3 9 15 3 9 15 

1 1.1662 1.5894 1.9548 0.3341 0.3589 0.3767 

3 0.7387 1.1668 1.5411 0.7451 0.8496 0.9273 

5 0.2983 0.6838 1.0316 0.7845 0.9749 1.1246 

 
Table 3.  Primary and secondary mass flow rates: 

 
xQ  zQ−  2M → 

 
2K ↓ 

3 9 15 3 9 15 

1 0.5145 0.5122 0.5105 0.0767 0.0709 0.0662 

3 0.6018 0.5889 0.5787 0.1799 0.1727 0.1660 

5 0.6962 0.6789 0.6640 0.2095 0.2098 0.2085 

 
 
   The numerical values of rate of heat transfer at the lower and upper plates are computed with the help of MATLAB software and 

are presented in table 4 for various value of 2K  and  2M  taking 7.0Pr =  and 2.0Er = . It is found from table 4 that rate of heat 

transfer at the lower plate i.e. 0
d
d
θ
ηη =  increases on increasing 2K  whereas rate of heat transfer at the upper plate i.e. 1

d
d
θ
ηη =  

decreases on increasing 2K . Both 0
d
d
θ
ηη =  and  1

d
d
θ
ηη =  increase on increasing 2M  which implies that rotation tends to 

enhance rate of heat transfer at the lower plate and it has reverse effect on the rate of heat transfer on the upper plate. Magnetic 
field has tendency to enhance the rate of heat transfer at both the upper and lower plates. 

 
Table 4.  Rate of heat transfer at the lower and upper plates: 

 

0

d
d η

θ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1

d
d η

θ
η =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 

2M → 
 

2K ↓ 

3 9 15 3 9 15 

1 8.5768 19.7156 30.6782 5.7642 16.0090 26.3293 

3 12.0455 27.3610 41.5914 4.3464 12.9220 21.9689 

5 15.8003 36.3406 55.2513 2.8140 9.3003 16.5157 

 
6. Conclusion 
 
   This study presents a theoretical investigation of steady hydromagnetic Couette flow of class-II in a rotating system. The 
significant findings are summarized below  



Seth and Singh / International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 146-156 

 

155

 

(i)  Rotation tends to accelerate fluid flow in both the primary and secondary flow directions. 
(ii) Magnetic field tends to accelerate fluid flow in secondary flow direction and it tends to decelerate fluid flow in 

primary flow direction in the region near the upper plate where it has reverse effect on the primary flow in the 
region near the lower plate. 

(iii) Rotation tends to enhance primary induced magnetic field in the lower half of the channel and it has the reverse 
effect on the primary induced magnetic field in the upper half of the channel. Rotation tends to increase 
secondary induced magnetic field in the regions near the lower and upper plates of the channel. 

(iv) Magnetic field has tendency to reduce both the primary and secondary induced magnetic fields. 
(v) Rotation tends to enhance fluid temperature in the regions near the lower and upper plates of the channel. 
(vi) Magnetic field has tendency to increase fluid temperature throughout the channel. 
(vii) Rotation has tendency to enhance primary as well as the secondary shear stress at the lower plate and magnetic 

field has tendency to increase the primary shear stress at the lower plate and it has reverse effect on the 
secondary shear stress at the lower plate. 

(viii) Magnetic field tends to enhance both the primary and secondary shear stress at the upper plate and rotation has 
tendency to reduce primary shear stress at the upper plate and it has the reverse effect on the secondary shear 
stress at the upper plate. 

(ix) Rotation tends to enhance both the primary and secondary mass flow rates whereas the magnetic field has 
tendency to reduce primary mass flow rate. 

(x) Rotation tends to enhance rate of heat transfer at the lower plate and it has reverse effect on the rate of heat 
transfer at the upper plate. 

(xi) Magnetic field has tendency to enhance rate of heat transfer at both the lower and upper plates. 
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