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Abstract 
 
   This paper investigates the asymmetrical rolling process using the Modified Slab Method. Elastic-plastic and linear work 
hardening material was assumed. In solving the equilibrium equations, the difference in roll pressure distribution was assumed 
linear. Using this model rolling parameters such rolling force, torque and the developed curvature were easily calculated. 
Simulation results indicated that for decreasing warping in an asymmetrical rolling, bending moment can be applied in suitable 
direction. In addition, employing a bending moment at entry of the roll gap in a symmetrical rolling process causes pressure 
difference on the rolls and warping at the outlet, as happens in an asymmetrical rolling process. Similarly, increasing the roll 
diameter ratio increases the pressure differences, but the average pressure between the sheet and the rolls is decreased while by 
increasing the reduction in thickness the average pressure is increased.  
 
Keywords: Asymmetrical Rolling; Modified Slab Method; Pressure Difference; Rolling Force; Bending Moment. 
 
1. Introduction 
 
    In practice, rolling of plate and sheet asymmetry arises due to inequality in roll radii, roll velocity and interface friction. These 
variations may cause the outgoing plate to bend in upward or downward directions. Actually, one of many difficulties appearing 
during asymmetrical rolling process is band bending at exit from a deformation zone. An effect of non-uniform deformation is 
bending up or down at the outlet. This can cause damage to the table rollers and difficulty in next roll pass entry. Significant 
curvature of the band can cause breaking of the rolling process. Recently this type of rolling has become more important because it 
requires less rolling force and torque. A few researchers have carried out experimental investigations and theoretical analyses to 
study the effect of asymmetrical rolling. Some papers are not essentially able to predict the developed curvature. Only a few 
researchers were able to predict the developed curvature through complex and time-consuming computations.  
   Chekmarev et al. (1956) carried out the experimental research on rolling of aluminum, lead and steel sheets. Their observations 
indicated that employing asymmetrical rolling reduced the rolling force as much as 40%. Collins et al. (1975) presented a solution 
based on slip line field method and compared the results with experimental data. Pan et al. (1982) used upper bound method in 
order to calculate the sheet warping. Their results showed that by employing the front tensile force the product curvature would be 
reduced. Kiuchi et al. (1986) used the same technique to analyze the process. They predicted the sheet warping as well as the other 
asymmetrical rolling characteristics. Dyja et al (1994) found that in an asymmetrical rolling for speed ratio of about 1.05, the 
average pressure applied on the workpiece is reduced by 15%.  Hwang et al. (1996) attempted to analyze the asymmetrical rolling 
by using the stream function method. They investigated the influence of thickness reduction in presence of roller speed mismatch 
on outgoing curvature. According to their analysis, when the speed ratio is smaller than one, the curvature will be positive. It 
means that the plate bends toward the roller with higher speed. In addition, they concluded the radius of curvature is sensitive to 
variations of radius ratios. In the other research, Hwang et al. (1997) developed an analytical model based on the slab method 
assuming constant shear friction between the rolls and the sheet. Their model did not account for the developed curvature. 
Richelsen (1997), Shivpuri et al. (1988) and Lu et al. (2000) used finite element method to estimate the rolling force, the rolling 
torque and the developed curvature. Richelsen investigated the effect of initial thickness and roughness ratio of rollers on sheet 
bending. For this purpose, she studied two-dimensional viscoelastic-plastic behavior of the sheet in a finite element simulation. 
Wanheim and Bay’s friction model was incorporated in her FE model. She concluded that by increasing the thickness reduction 
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the neutral points displaces toward the exit and increases the frictional stress between the sheet and rollers. Salimi et al. (2002) 
used modified slab method to analyze the asymmetrical plate rolling and to predict strip curvature. Knight et al. (2003 & 2005) 
considered a rigid-plastic model of continuous hot rolling of low carbon steel under unequal friction coefficients using ABAQUS 
commercial software. According to their observations, in the first pass low carbon steel sheet tends to warp toward roller with 
slower speed and in the next passes it bends toward faster speed one. They concluded that applying lubricant to the plate reduces 
the warping effectively. That was a proof for influence of rollers friction coefficient on sheet curvature. Farhatnia et al. (2005 
&2006) studied the effect of different factors on rolling force, torque and warping in the clad sheet rolling process that is one of the 
classifications in asymmetrical rolling, by applying Modified Slab Method. In addition, Farhatnia et al. (2006) carried out a 
numerical simulation on asymmetrical rolling based on ALE technique in Finite Element Method. Mousavi et al. (2007) performed 
finite element simulation using ABAQUS commercial software package. Their results indicated that by increasing the length of the 
shear zone the sheet curvature did not necessarily increase. The sheet curvature also depends on the plastic strain distributions and 
the shape factor. Gudur et al. (2007) presented a method for estimating the friction coefficient based on the asymmetric rolling 
operation. They developed a slab method based computer code for estimating the curvature of the rolled sheet under asymmetric 
conditions by incorporating Wanheim and Bay’s friction model. The internal moment was ignored and free entry without any 
restraint was assumed. They concluded that when the asymmetry due to speed mismatch is considered, the strip curls towards the 
slower rotating roll; however, the magnitude of the curvature depended on the friction coefficient of rollers. They solved the 
inverse problem of finding out the coefficient of friction for a given the radius of curvature using the bisection method.  
   In present work, a mathematical model is developed which allows the complete inclusion of asymmetric deformation effects 
through three equation of equilibrium. The effect of shear stress across the thickness is considered. By simultaneously solving 
three equilibrium equations, characteristics of asymmetrical rolling are derived. The modified slab method is employed to consider 
the effects of variations in roll radii, reduction, forward and backward tensions, work rolls speed mismatch, interface friction and 
bending moment at entry. For this purpose, the equation of internal bending moment distribution is derived. For the first time, the 
influence of bending moment on outgoing curvature is considered in this paper. It is also shown that how the application of 
bending moment at entry changes the characteristics of rolling from symmetrical to asymmetrical condition. 
 
2. Modeling and equilibrium equations  
 
   Figure 1 shows the schematic diagram of asymmetrical rolling. The deformation zone is divided into 3 distinct zones. In zone I 
and III both frictional stresses on the upper and lower rolls are either forward or backward. In zone II (the cross shear region), the 
frictional stresses on upper and lower side are in opposite directions. Following are the basic assumption in building up the model. 

1. The work rolls are rigid. 
2. Elastic-plastic and linear work hardening material is assumed. 
3. The plastic deformation is plane strain. 
4. Frictional stresses at interfaces are functions of the material yield stress and friction coefficient. 
5. The contact length is small compare to the circumference of the rolls. 

 
Figure 1.  Schematic illustration of asymmetrical rolling 

   Referring to Figure 2, the mathematical expressions of equilibrium for the slab element are given by the three following 
equations: 
  
( ) ( )[ ] 0tantan 221121 =+++−+ dxpphqd θθττ  
( ) ( )[ ] 0)(tantan 212211 =−−+−+ dxpphd θτθττ    

[ ] 02)()tantan(
2 212211 =−−+−+ dxpphdM τττθθ                                                                                                                                           (1) 
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(a)                                                                            (b) 

               Figure 2. (a) External load acting on the vertical                    (b) Assumed stress system for 
                                    element in zone I                                                   infinitesimal triangular elements 
 
Defining the mean pressure “p” and the pressure difference “Δ” by the following relations:  

Δ=−=+ 2121 ,2 ppppp                                                                                                                                                                     (2) 
 
   The three equilibrium equations take the form: 
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   The above equilibrium differential equations may be rearranged as follows: 
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2.1. Yield criterion  

   Using the same approach as described by Salimi et al. (2002) the yield criterion for a vertical slab element is given as follows: 
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Where xσ and yσ are the average normal stresses in x and y directions. Friction coefficients between the upper roll and that of 

lower rolls ( 1m and 2m ) may be different but it is assumed to remain constant along the contact length of the work-piece and the 
rolls. They introduced constants 1c , 2c   and showed that these values depend on parameters such as the roll gap geometry and are 
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the average shear stress through thickness to that of the surface shear stresses. The horizontal and vertical equilibrium equations 
for the differential triangular elements are given by: 

 0)(tan)( 11111 =+−+ xyx p ττθσ                                                                                                                                                        (6-1) 

 0)(tan)( 11111 =+−− pyxy σθττ                                                                                                                                                        (6-2) 
 
Writing similar equations for the lower portion and combining the equations we have:  
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   Depending on the zone considered, values in the parenthesis change sign. The general form of the above equation is given by the 
following equation: 
 

xIIqp 21 +=+                                                                                                                                                                                   (8) 
 

By referring to equations 9 and 11, 1I and 2I  are given by: 
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   Constant 1c and 2c depend on parameters such as the roll gap geometry and are the average shear stress through thickness to 
surface shear stresses as defined by Salimi et al. (2002).                                                                                                     
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3. Method of solving the differential equation 
 
   The unknowns of the differential equilibrium equation are M, Δ, τ, q and p. Previous theoretical and experimental investigations 
have shown that the distribution of the roll pressure difference with respect to the distance from the neutral point is linear. In this 
paper this distribution for the entry and exit regions are assumed as follows: 
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   In these relations k  and mx  are the mean yield stress and the point at which the pressure difference vanishes, respectively. As 

an approximation, the location of this point is considered to be at the center of the cross shear region, i.e. 2)( 21 nnm xxx += . 
While h as sheet thickness depends to the distance from the exit, h=ho+x2/Rm and hm is the average thickness. 
Substituting the above relations into the equilibrium equations, the shear force )( hτ , the mean tension to the strip (q) and the 
bending moment )( bM  for the entry region are expressed as: 
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Coefficients ,,, 321 qqq JJJ in the second equation are defined as follows: 
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   ee ττ ′, and eτ ′′ are parameters related to the friction appeared at different regions accordingly. qcc ,τ and Mc are constants, 

which are determined by applying the boundary conditions for the shear stress, front/back tension and bending moments to the 
element in different regions. 121 ,, axx nn and 2a are the unknown values, if these unknowns are calculated the neutral point 

location and the stress distributions can be determined easily. To determine these values, four distinct equations are required. 
These equations are derived from the continuity conditions of the shear stress, the strip tension, the internal moment at two 
adjacent regions and the volume constancy. In pressure difference equations at the entry ( mxx ≤≤0 ) and exit ( om xxx ≤≤ ) 
regions (equation 11 and 12), the coefficients 1a and 2a  are different, the cross shear region are divided into two distinct zones A 
and B. 
    By imposing the continuity equations at mxx = ; BA hh )()( ττ = , qA=qB and B
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4. Determination of output curvature 
 
   As the material behaviour is considered as elastic-plastic and linear work hardening one, the shear strain at any point is the 
summation of the elastic and plastic strain given by: 
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where yσ ′  is the stress deviation.   
 Method of calculating the developed curvature due to the shear strain is the same as the method given by Salimi et al. (2002) In 
addition to the effect of the shear strain on the sheet, the effect of the bending moment along the arc of contact has to be 
considered. 
 
4.1   Curvature due to internal bending moment 
   To evaluate the curvature imposed on the sheet due to the bending moment in any deformation zone, it is assumed that a crossing 
sheet through the roll gap may be considered as a beam with variable thickness subjected to external loading. The distribution of 
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internal reactions (bending moments, shear and axial forces) has to be obtained. Due to variation in sheet thickness and for 
simplicity in calculations the mean thickness of the plate at any region is employed as the beam height )( ih , the average thickness 
is changed stepwise in the entire deformation zone. Generally, the mean thickness in domain a<x<b, is obtained as follows: 

ab
hdx

h
a
b

−
∫=                                                                                                                                                                                         (16) 

    Hence, for the entire deformation zone, the average thickness ih (where i is related to the deformation region) can be obtained 
using the following relations: 
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The average moment along any deformation zone is given by: 
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In any deformation zone, the plate is considered as a beam of uniform thickness ih  subjected to bending moment ibM )( . By 
calculating the radius of curvature due to moment, the resultant curvature is obtained by summation of the developed curvatures at 
different regions. 
  

IIIBIIAIIIM ρρρρρ
11111

+++=                                                                                                                                                       (19) 

   It is assumed that the deformation of plate in the roll gap is similar to a beam subjected to external loading. Considering elasto-
plastic material subjected to loading to plastic condition and then unloading, the final curvature after the elastic recovery is. 
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where Eρ  is the elastic radius of curvature. In any cross section, the bending moment due to the normal stress is given by: 
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   By definition: 
Eρ
yex = . Substituting for xσ  from Hook’s constitutive law into equation (21), the elastic radius of curvature with 

respect to the internal bending moment, thickness and elastic constants is obtained as follows: 
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   Considering elasto-plastic behavior, the relation between the bending moment and the radius of curvature as given by Johnson et 
al. (1972) is expressed as follows: 
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Substitution equation (22) and (23) in equation (20), the outgoing radius of curvature is obtained as follows: 
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   This curvature is due to the axial strain and is added to the curvature due to the shear strain, so that the final outgoing curvature 
is given by: 
 

shraxe ρρρ
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   Method of calculating the developed curvature
shrρ
1 , due to shear strain for a rigid-plastic material is the same as the method 

given in an earlier paper by Salimi et al.(2002). Appendix A presents a method of determining the average yield stress for an 
elastic-plastic and linear work hardening material. 
The curvature index K, defined as the ratio of slab upper surface length divided by slab lower surface length. The relation between 
ρ and K is given by the following relation: 
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   Method of roll force and torque calculation for elasto-plastic and strain hardening material is given in appendix B.  
 
5. Results and discussion  

 
   To verify the present analytical model and to study the effect of asymmetrical rolling parameters, the work piece was assumed to 
have an average yield shear strength of k =98.2 MPa and rolled through the rollers of unequal roll radii (R2=0.9R1). A method is 
presented in appendix A to determine the mean yield stress along the roll gap. Figure (3) illustrates the variation of pressure 
differences along the contact length for different roll speed ratio. It is indicated that the pressure difference between the rollers 
increases by increasing the roll speed ratio. 
   Figure (4) depicts the average pressure along the contact length for different roll speed ratio. By increasing the roll peripheral 
speed ratios, the length of cross shear zone is also increased. As the mean pressure decreases, the rolling force decreases too. 

 
Figure 3.  Roll pressure difference distribution along the arc of contact for different speed ratios 
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Figure 4. Effect of roller velocity ratio on mean pressure 

 
   Figure (5) illustrates the pressure difference along the contact length for different roll diameter ratios. As shown the pressure 
difference is increased by decreasing the diameter ratio and the pressure difference is more significant for 0<x<xm. By decreasing 
the radius of one of the rollers, the normal force is distributed along a shorter contact length, thereby the pressure differences is 
increased. 
   Figure (6) depicts the variation of pressure difference versus the thickness reduction.By increasing the thickness reduction, the 
contact length is increased and the pressure difference is decreased. The pressure difference from inlet to middle of the cross shear 
region is lower than that of the rest of the contact length.  
 

 
Figure 5.  Roll pressure difference distribution for different roll diameter ratios 
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Figure 6.  Roll pressure difference distribution for different thickness reduction 

 
   Figure (7) illustrates the mean pressure distribution with respect to the thickness reduction. For higher reduction in thickness, the 
mean pressure is increased as more pressure is needed along the contact length. In addition, it is shown that for lower reduction in 
thickness, the length of the cross shear zone is longer than that of the higher reductions.  
 

 
Figure 7.  Effect of thickness reduction on distribution of mean pressure 

 
   Figure (8) shows the effect of friction factor upon pressure difference distribution. For m1/m2<1, the pressure difference from 
the middle of cross shear region toward the outlet is positive, but for xm<x<l this parameter is negative.  Considering the plate as a 
beam of unequal loading, it is clear that this kind loading, rotates the plate downward. When m1/m2>1, the rotation will be in 
opposite direction. 
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Figure 8.  Roll pressure difference distribution for different friction factor ratios 

 
   Figure (9) illustrates the effect of forward tension upon curvature index for a constant thickness reduction and different friction 
factor ratios. As it is shown, the outgoing strip curls towards the roll with higher friction as the smoother roller moves faster than 
the rough one. This relative motion makes the rotation toward the rougher roll. By applying tension at exit, strip curvature is 
reduced. Hence, the warping decreases as tension increases. 

 
Figure 9.  Effect of forward tension on plate curvature 

 
   Figure (10) illustrates the effect of bending moment on curvature at entry of the roll gap. Steel strip with an initial thickness of 
hi=12.5 mm is rolled with no bending moment at entry (free entry) and a reduction in thickness of 30%. As shown for equal 
friction factor and equal peripheral velocity, the outgoing strip remain straight (curvature index equal unity). By employing a 
positive bending moment at entry, the pressure difference is generated between the upper and lower rolls to establish rotational 
equilibrium. At entry side, the pressure difference is positive and in exit side, this is negative. Under this situation, a positive 
coupling is created due to the pressure difference and bends the plate toward the upper roll (K>1). Applying a negative bending 
moment to the plate bend the plate downward (K<1).  
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Figure 10. Effect of bending moment at entry to curvature index for identical friction factors 

 
   Figure 11 show the same effect where the plate rolled under the same condition except that the friction factor of the upper roll is 
different. With no bending moment at entry, warping is toward the upper roll. Application of negative bending moment reduces the 
amount of curvature while positive moment increases the curvature.  

 
Figure 11.  Curvature indexes versus bending moment at entry for different friction factors 

 
   The effect of inlet bending moment on pressure difference is examined in Figure 12. Asymmetry was created due to the 
difference in friction factors, with no bending moment at the entry, pressure difference in xm<x<l, is positive (p1>p2) and for 
0<x<xm pressure difference is negative (p1<p2). By applying positive bending moment, the pressure difference for maintaining 
the rotational equilibrium in both area is increased and it is positive for xm<x<l and negative for 0<x<xm. Application of negative 
moment at entry has a negative effect on this parameter. 
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Figure 12.  Roll pressure difference distribution for different bending moment at entry of roll gap 

 
   In Figure (13) the effect of front tension upon the variation of average pressure is given. By increasing the front tension, the 
average pressure decreases. In addition, the neutral points move toward the entry of roll gap. By increasing the strip tension the 
average pressure is reduced thus, the separating roll force is decreased.  

 
Figure 13.  Effect of forward tension on mean pressure 

 
   In Figure 14, the variation of average pressure is plotted versus the variation of back tension. By increasing the back tension, the 
average pressure is decreased. As a result, the roll separating force decreases. The location of neutral points moves toward the exit 
of roll gap. 
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Figure 14.  Effect of backward tension on mean pressure 

 
   It is concluded from Figures13 and 14 that application of forward and backward  tension decreases the roll separating force. As it 
is shown in both Figures, the length of cross shear zone is not affected by backward or frontward tension. Comparison of results 
for the current model, Hwang et al. (1996) and their experimental values are shown in Figures15 and 16. Since in present model, 
the effect of shear stress across the thickness is considered, the predicted values of the model for the rolling force and torque are 
closer to the experimental values.  
 

 
Figure15. Comparison between evaluated rolling force in the present model with Hwang model and experimental results 
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Figure 16. Comparison between evaluated rolling torque in the present model with Hwang model and experimental results 

 
6. Conclusion    
 
   This paper has presented an analysis using the modified slab method to study a wide range of asymmetrical rolling.  Following 
are some of the concluding remarks:  

1. Increasing the roll diameter ratio increases the pressure differences, but the average pressure to the rolls will decrease. 
2. By increasing the reduction in thickness, the pressure difference will decrease and the average pressure will increase. 
3. To decrease warping, bending moment may be applied in a suitable direction. If all conditions at the top and bottom 

rollers are the same but only v2>v1, application of positive bending moment decreases the pressure difference and 
advances the rolling process toward the symmetrical condition. If only the friction factors are different; m1>m2, the 
pressure difference will increase. 

4. Applying front or back tension results in decreasing of average pressure distribution and moves the position of the neutral 
points towards to entry or exit. In addition, by applying the front tension the outgoing sheet warping will decrease. 

5. Applying bending moment at entry of the roll gap in a symmetrical rolling process causes pressure difference on the rolls 
and warping in outgoing sheet, as it happens in an asymmetrical rolling process. 

6. The length of cross shear zone depends on peripheral speed ratio, thickness reduction, shape factor (length per average 
height) and other input variables. 

 
 
Appendix A 
 
   Determination of average yield stress for elasto-plastic and linear strain hardening   material  
 

 
Figure (A-1) stress-strain curve of an elasto- plastic material with linear strain hardening 
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By referring to Figure (A), the yield stress is function of the effective strain, while for an elasto – plastic material; total strain ε  is 

the summation of elastic and plastic strains, 
e

ε  and 
p

ε : 
     

pe
εεε +=                                                                                                                                                                                       (A-1) 
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The effective strain is the summation of elastic and plastic effective strains. Assuming plane strain condition and volume 
constancy we have: 
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By dividing of the plate to upper and lower portion based on different characteristics of distribution of shear strain along the 
thickness, principal strain in any portion is obtained as follows: 
 

( )
2
1

22

2

12,1

)1(

,
4

1

cm

mcdd y

−

=+= ηηεε m                                                                                                                                (A-4) 

 
In above equation, c may be replaced by c1 or c2 based on Salimi et al. (2002). Effective plastic strain can be obtained as a 
function of thickness in any distance from the exit, as follows: 
 

)(
ln

3

2)(
xh

hx ip
ςε =                                                                                                                                                                      (A-5) 

 

2
1

22

22

1
4
31

2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−
=

cm

cm
ς                                                                                                                                                                      (A-6) 

      Hence, the yield stress in upper portion of sheet can be determined as follows: 
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 Practically, ς is not much different at the top and bottom portion, thus the average yield stress in upper and lower portion of sheet 
is approximately the same. 
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The average of yield stress along the contact length is determined as follows: 
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Appendix B 
 
    Determination of roll force and torque for elasto-plastic and strain hardening material  
   The rolling load can be obtained by integrating from the roll pressure qxIIp −+= 21  where q is given by equation (13-2) and 
the coefficients qq JJ 21 , and qJ3  are given in equation (14).The rolling torque exerted to the upper and lower rolls can be 

calculated by integrating from the torque applied by frictional stress along the arc of contact around each roll axis: 
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Total rolling torque is the summation of upper and lower torque of rollers: 
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In this equationξ is defined as follows: 
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