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Abstract 
 
   In the present paper, an effective approach for the optimization of turning parameters based on the Taugchi’s method with 
regression analysis is presented. This paper discusses the use of Taugchi’s technique for minimizing the surface roughness and 
maximizing the material removal rate in machining unidirectional glass fiber reinforced plastics (UD-GFRP) composite with a 
polycrystalline diamond (PCD) tool. A multiple objective utility model has been studied to optimize both the dependent 
parameters. Experiments were conducted based on the established Taguchi’s technique L18 orthogonal array on a lathe machine. 
The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting 
environment (dry, wet and cooled) on the surface roughness and material removal rate produced. The performances of the 
cutting tool were evaluated by measuring surface roughness and material removal rate. A second order mathematical model in 
terms of cutting parameters is also developed using regression modeling. The results indicate that the developed model is 
suitable for prediction of surface roughness and material removal rate in machining of unidirectional glass fiber reinforced 
plastics (UD-GFRP) composites. The predicted values and measured values are fairly close to each other. The results are 
confirmed by further experiments.  
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1. Introduction 
 
   Fiberglass composites are replacing many of the materials used in industries as they are economical. Glass fibre reinforced 
polymers (GFRP) are being used in variety of applications that include oil, gas and corrosive environments. Machining of glass 
fiber-reinforced polymer (GFRP) composite materials have always been a challenge due to host of difficulties encountered such as 
fiber pull-out, fiber fuzzing, matrix burning, and fiber-matrix debonding leading to subsurface damage, reduced strength and short 
product service life. The necessities of machining FRP composites come from the requirement of the conversion of raw composite 
material into engineering component despite the ability to fabricate near-net shape components. The FRPs are one of the ‘difficult-
to-machine’ materials because of the fibre arrangement. Machining of composite parts creates discontinuity in the fibre and thus 
affects the performance of the part. Besides, the mechanism of material removal is different from that of single-phased materials, 
such as metals. The material removal process is quite complex. Many variables such as the workpiece material, the cutting tool 
material, the rigidity of the machine, the set up, the cutting feed, speed, tool wear and chip control must be considered.  
   Arola and Ramulu (1997) as well as Mahdi and Zhang (2001) applied the finite element method to investigate the cutting of 
FRPs but the former adopted a homogenized material model and the latter considered the micro details of individual fibre-tool 
interactions. Fiber reinforced materials generally contain two or more constituents. They are matrix and the fiber to name, to take 
advantage of the best properties of those, without compromising on the weakness of either. Generally the matrix is of ductile and 
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fiber is of brittle in nature. In fiber reinforced composite materials, fibers act as a load carrying medium and the matrix acts as a 
load transporting medium (Mohan et al., 2005). Machining glass fibre composite is still a major problem, because of their inert 
nature, high hardness, and refractoriness (Jain et al., 2002). Because of their different applications, the need for machining FRP 
material has not been fully eliminated. Glass fibre reinforced plastics (GFRPs) are extremely abrasive, thus proper selection of the 
cutting tool and cutting parameters is very important for a perfect machining process (Davim et al., 2009). The surface integrity of 
a GFRP machined composite is hard to control due to varying mechanical properties of the fibre and the matrix (Zang, 2009). 
Caprino et al. (1998) carried out orthogonal cutting tests using high speed steel tools, to determine the trend of the principal forces 
on unidirectional-GFRP. The cutting direction was held parallel to the fibre orientation while the tool rake, relief angle and the 
depth of the cut were varied. The authors concluded that the frictional force generated by the chip sliding up the tool face was 
negligible so that the tool face-chip interaction resulted in a force practically normal to the face itself. The forces arising at the top 
flank and cutting edge were a considerable part of the overall cutting forces. The vertical force, due to the compression of the tool 
against the freshly generated work material surface, was dependant on all the machining parameters. Vertical force decreased with 
both the rake and relief angles and linearly increased by increasing the depth of the cut. Wang and Zhang (1999) investigated the 
cutting of carbon fibre-reinforced composites and found that the machinability and surface integrity are mainly controlled by fibre-
orientation. 
   The role of these parameters is to evaluate the surface produced by a machining process and to quantify the amount of machining 
damage for different process parameters such as cutting speed, feed rate and depth of cut. It has been shown that lower the value of 
surface roughness, the better is the quality of machined surface. Roughness values also indicate changes in the mechanical 
properties of machined FRP. Studies have shown that with increasing roughness the fatigue strength and impact strength decreases 
(Ramulu and Arola, 1995). There is a significant difference between the machining of conventional metals and their alloys and that 
of FRP materials (Ramulu et al, 1991). This is because FRP materials are anisotropic, inhomogeneous and are mostly prepared in 
laminate form before undergoing the machining process. Unlike the case of homogeneous metals, where the machining is 
associated with plastic deformation and shearing, the machining of FRP composites is associated with plowing, cutting and 
cracking (Wang et al., 1995 and Pwu et al., 1998), it is necessary to control/minimize the occurrence of such defects which poses 
considerable machinability problems. (Hussain et al., 2010) developed a surface roughness prediction model for the machining of 
GFRP pipes using response surface methodology by using carbide tool (K20). Four parameters such as cutting speed, feed rate, 
depth of cut and work piece (fiber orientation) were selected to minimize the surface roughness. It was found that, the depth of cut 
shows a minimum effect on surface roughness as compared to other parameters. (Ramesh et al., 2008) developed a surface 
roughness prediction model for the machining of CVD (TiN–TiCN–Al2O3–TiN) using response surface methodology by using 
coated carbide insert under different cutting conditions using taguchi's orthogonal array. Three parameters such as cutting speed, 
feed rate and depth of cut were selected to minimize the surface roughness. It was found that, the feed rate is the factor, which has 
great influence on surface roughness, followed as compared to other parameters. 
   Several methodologies were developed to solve the multi-response optimization problems. Byrne and Taguchi (1987) presented 
a case where the responses were optimized independently using Taguchi’s approach and then the results were compared 
subjectively to select the best levels in terms of the responses of interest. (Logothetis and Haigh, 1988) employed multiple 
regressions and a linear programming approach for multi response optimization by Taguchi method. This procedure was 
computationally complex thereby making its use difficult on shop floor. (Shiau, 1990) solved the multi-response problem by 
assigning the weights to S/N ratio of each quality characteristic and then summing up the weighted S/N ratios for the measurement 
of overall performance of a process. (Singh et al., 2002) used multi-response optimization through utility concept and Taguchi 
method for optimization of the quality characteristics of MAFM process. Isik et al. (2009) proposed an approach for turning of a 
glass fiber reinforced plastic composites using cemented carbide tool. Three parameters such as depth of cut, cutting speed and 
feed rate were selected to minimize the Tangential and feed force. Weighting techniques was used. The idea of this technique 
consists in adding all the objective functions together using different coefficients for each. It means that multicriteria optimization 
problem is changed to a scalar optimization problem by creating one function of the form. It was found that this technique will be 
more economical to predict the effect of different influential combination of parameters.  
   Rajasekaran et al. (2011) used fuzzy logic for modeling and prediction of CFRP work piece. Three parameters such as depth of 
cut, feed rate and cutting speed were selected to minimize the surface roughness. Cubic boron nitride tool was used for turning 
process. It was found that the fuzzy logic modeling technique can be effectively used for the prediction of surface roughness in 
machining of CFRP composites. GFRP is a cheaper option than Carbon or Kevlar, so GFRP rods were used in this work. In this 
study, the surface roughness and MRR were measured on machining UD-GFRP composite materials. Hussain et al. (2011) 
developed a surface roughness and cutting force prediction model for the machining of GFRP tubes using response surface 
methodology by using carbide tool (K20), cubic boron nitride (CBN) and polycrystalline diamond (PCD). Four parameters such as 
cutting speed, feed rate, depth of cut and work piece (fiber orientation) were selected to minimize the surface roughness and 
cutting forces. It was found that, the polycrystalline diamond (PCD) cutting tool is better. As seen from the literature, only limited 
work has been carried out on the machinability aspects of unidirectional glass fiber reinforced plastic (UD-GFRP) composite. 
Thus, this present work aims at investigating the effects of tool nose radius, tool rake angle, feed rate, cutting speed, cutting 
environment (dry, wet and cooled) and depth of cut on some aspects of machinability of UD-GFRP composites. In the present 
investigation, the machinability aspects have been evaluated in terms of surface roughness and material removal rate during the 
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turning of UD-GFRP composites using PCD tools. Regression analyses are applied to identify the best levels of cutting parameters 
and their significance. Insignificant parameters are not taken into consideration in this Regression modelling. To convert the 
different performance into a single performance unit, linear regression modeling is used. Also these techniques are effectively used 
for optimization of parameters and for modeling as well. 
 
2. Experimental Procedure  
 
2.1 Material 
 
   In the present study, pultrusion processed unidirectional glass fiber reinforced plastic composite rods is used. The diameter of the 
rod taken is 42 mm and length 840 mm. The fiber used in the rod is E-glass and resin used is epoxy and properties of material used 
are shown in Table 1. 
 
                             Table 1 Mechanical and Thermal Properties of the UD-GFRP Material 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Method  
 
   The Taguchi method is a commonly adopted approach for optimizing design parameters. The method was originally proposed as 
a means of improving the quality of products through the application of statistical and engineering concepts. It is a method based 
on Orthogonal Array (OA) experiments, which provides much-reduced variance for the experiment resulting is optimum setting of 
process control parameters. Orthogonal Array (OA) provides a set of well-balanced experiments (with less number of experimental 
runs) and Taguchi’s signal-to-noise ratios (S/N), which are logarithmic functions of desired output, serves as objective function in 
the optimization process. This technique helps in data analysis and prediction of optimum results. In order to evaluate optimal 
parameter settings, Taguchi method uses a statistical measure of performance called signal-to-noise ratio. The S/N ratio takes both 
the mean and the variability into account. The S/N ratio is the ratio of the mean (Signal) to the standard deviation (Noise). The 
ratio depends on the quality characteristics of the product/process to be optimized. The standard S/N ratios generally used are as 
follows:- Nominal-is-Best (NB), lower-the-better (LB) and Higher-the-Better (HB). The optimal setting is the parameter 
combination, which has the highest S/N ratio.  
   In this study, material removal rate is taken “higher the better” type and surface roughness is taken “lower the better”. The 
corresponding loss function can be expressed as follows (Ross, 1988). 
Smaller the better:      

                S/N = 10 Log ∑ 21 y
n

                                                     (1) 

 
       Larger the better: 

 

                   S/N = 10 Log ∑ 2
11
yn

                                                        (2) 

Sr. No. Particular Value Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Glass Content (by weight) 
Epoxy Resin content (by weight) 
Reinforcement, unidirectional 
Water absorption 
Density 
Tensile Strength 
Compression Strength 
Shear Strength 
Modulus of elasticity 
Thermal Conductivity 
Weight of Rod 840 mm in length 
Electrical strength (Radial): 
Working Temperature Class: 
Martens Heat Distortion Temperature 
Test in oil : (1) At 20° C: 
(2) At 100° C: 

75±5 
25±5 
‘E’ Glass Roving 
0.07 
1.95-2.1 
6500 or (650) 
6000 or (600) 
255  
3200 or (320) 
0.30 
2.300 
3.5 
Class ‘F’ (155 ) 
210 
20 KV/cm 
20 KV/cm (50 KV / 25 mm) 

% 
% 
--- 
% 
gm/cc 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 
Kcal /Mhc° 
Kgs 
KV / mm 
Centigrade 
Centigrade 
 
KV/cm 
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“Where n is the number of observations, y is the observed data”.  
 
2.3 Present Problem  
   Taguchi design of experiment is a powerful analysis tool for modeling and analyzing the influence of control factors on 
performance output. The initial step in the Taguchi model is to build up an input-output database required for the optimization 
through the turning experiments. In order to have a complete knowledge of turning process over the range of parameters selected, a 
proper planning of experimentation is essential to reduce the cost and time. In order to identify the process parameters that may 
affect the machining characteristics of centre lathe machined parts an Ishikawa cause effect diagram was constructed and is shown 
in Figure 1. The Ishikawa cause-effect gives analysis from the observation based on previous research. The identified process 
parameters are: 

                  Cutting Tool 
  
Cutting Parameters 
 
                                                  Cutting Speed                                                         Tool Material 
                                                       

                                                                                     Type of Coating 
                                                             Feed Rate 
        Flow &                                                                                                                        Tool Geometry 
 Type of Coolant  
                                                                  Depth of Cut                  

                                                                                                                          
                                                                                                                          

 
                                                  Dry                                                                                                   
 
                                                                                                         
                                                                               Cooled 

          Diameter 
                                 Wet                                                                                                       
   
 
 
 
              
                                
                    Cutting Environment                   
                                                                                          Workpiece Parameters 
 
Cutting Parameters: cutting speed, feed rate, depth of cut, flow of current and environment  
Cutting tool related Parameters: tool material, tool geometry, type of coating and inserts condition.   
Work piece based Parameters: type of material, mechanical properties and diameter. 
Cutting Environment: dry, wet and cooled environment 

 
Figure 1: Ishikawa Cause-Effect Diagram of a Turning Process 

 
   Although Taguchi's approach towards robust parameter design introduced innovative techniques to improve quality, a few 
concerns regarding his philosophy have been raised. Some of these concerns relate to the signal to noise ratios defined to reduce 
variations in the response and some others are related to the absence of the means to test for higher-order control factor 
interactions when his orthogonal arrays are used as inner arrays for the design. For these reasons, other approaches to carry out 
robust parameter design have been suggested including response modeling and the use of lnsi

2 in the place of the signal to noise 
ratios in the dispersion model. In response modeling, the noise factors are included in the model as additional factors, along with 
the other control factors. The most significant limitation of these techniques relates to process data availability and quality. Current 
databases were not designed for process improvement, resulting in potential difficulties for the Taguchi experimentation, where 
available data does not explain all the variability in process outcomes. The limitation of OA is that it can only be applied at the 
initial stage of the product/process design system. There are some situations whereby OA techniques are not applicable, such as a 
process involving influencing factors that vary in time and cannot be quantified exactly (Weibull, 2012).  

Mechanical 
Properties 

Quality of 
Turned Parts 

Type of 
Material 
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   The Taguchi’s mixed level design was selected as it was decided to keep two levels of tool nose radius. The rest five parameters 
were studied at three levels. Two level parameter has 1 DOF, and the remaining five three level parameters have 10 DOF, i.e., the 
total DOF required will be 11 [= (1*1+ (5*2)]. The most appropriate orthogonal array in this case is L18 (21 * 37) OA with 17 [= 
18-1] DOF. Standard L18 OA with the parameters assigned by using linear graphs is used. The unassigned columns will be treated 
as error. According to the Taguchi design concept, a L18 orthogonal array is chosen for the experiments as shown in Table 2. 

Table 2 Experimental Layout using L18 Orthogonal Array 
Expt. No. A B C D E F --- --- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
3 
1 
2 

1 
2 
3 
2 
3 
1 
1 
2 
3 
3 
1 
2 
3 
1 
2 
2 
3 
1 

1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
1 
2 
3 
3 
1 
2 

1 
2 
3 
3 
1 
2 
2 
3 
1 
2 
3 
1 
3 
1 
2 
1 
2 
3 

1 
2 
3 
3 
1 
2 
3 
1 
2 
1 
2 
3 
2 
3 
1 
2 
3 
1 

 
   The L18 orthogonal array has 18 rows corresponding to the number of tests. The parameters tool nose radius, tool rake angle, feed 
rate, cutting speed, cutting environment and depth of cut are assigned to columns (A, B, C, D, E, F) respectively as shown in Table 
2. Out of which cutting environment parameters (dry, wet and cooled) are especially applied to composite rods. The cutting 
environment (dry, wet and cooled) on the workpiece was set during the machining of the rod, so as to obtain a comparative 
assessment of the performance of cutting environment which has not been studied earlier. So, it can be used for the cutting 
environment. The cutting fluid used in flooded machining is CASTROL water miscible soluble coolant contains 1:6 volumetric 
concentration is flushed at cutting zone. The spray is concentrated on rake and flank surface along the cutting edges, minimize the 
friction, lubricity abilities and reduce the tool wear (Kodandaram et al., 2010). Cutting environment: Wet (33-38° temperature) and 
Cooled (5-7° temperature) is used. The output responses used to measure the machinability are surface roughness and material 

removal rate. The parameters selected, the designated symbols, and their ranges are given in Table 3.  
 

Table 3 Control Parameters and their Level 
 
   The machining tests were conducted on a conventional lathe machine as shown in Figure 2 with the following specifications: a 
height of center 220 mm, swing over bed 500 mm, spindle speed range 60 – 3000 rpm, feed range 0.04 – 2.24 mm /rev and main 
motor 11 kW. A tool holder SVJCR steel EN47 was used during the turning operation. The different cutting tool inserts as shown 
in Figure 3(a) & 3(b) are made of polycrystalline diamond. The geometry of the cutting tool VNMG insert 110404/110408 is as 
follow: NQA BS EN ISO 9001-2000, tool rake angle -6° (negative), 0°, and +6° (positive) and tool nose radius 0.4mm & 0.8mm. 
From these 54 data points, the suitable L18 array data points were chosen. With the finished product, the surface roughness values 
were measured. The surface roughness was measured by using Tokyo Seimitsu Surfcom 130A type instrument as shown in Figure 
4. For each trial, experiments were replicated (three times). A statistical analysis of variance (ANOVA) is performed to see which 
process parameter is statistically significant for surface roughness and material removal rate property. The optimum condition for 

Process 
Parameters 

Design 

Process Parameters Levels 
Level (1) Level  (2) Level  (3) 

A 
B 
C 
D 
E 
F 

Tool nose Radius / mm 
Tool  Rake angle / Degree 
Feed rate / (mm/rev.) 
Cutting speed / (m/min.) & rpm 
Cutting environment 
Depth of cut / mm 

0.4 
(-6) 
0.05 

(55.42) 420 
Dry (1) 

0.2 

0.8 
(0) 
0.1 

(110.84) 840 
Wet (2) 

0.8 

NIL 
(+6) 
0.2 

(159.66) 1210 
Cooled (3) 

1.4 
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surface roughness and material removal rate characteristic has been established through S/N data analysis aided by raw data 
analysis. Surface roughness and material removal rate data are analyzed to determine the effect of the various design parameters. 
The experimental results are then transformed into signal-to-noise (S/N) ratio. Taguchi recommends the use of S/N ratio to 
measure the quality characteristics deviating from the desired values. The material removal rate, in mm3/ sec., has been calculated 
from the following relation: Material Removal rate = It is the volume of material being removed per unit time the work piece,  
 

Tc

LdLD
MRR

22

44
ππ

−
=                                                                (3) 

 
Where,   D = initial dia in mm, d = final dia in mm, L = length in mm, f = feed rate in mm/rev. where Tc per pass is defined as:  Tc 
= L /f N is the machining time, F =feed rate in mm/rev.  
L = length of the workpiece to be turned, N = spindle speed in rpm 
 

 
Figure 2: Experimental set up 

 

 
 

Figure 3(a): PCD cutting tool inserts used on the experiment 

 
Figure 3(b): PCD cutting tool inserts used on the experiments 
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Figure 4: Surface Roughness Tester: - Tokyo Seimitsu Surfcom 130A 

 
3. Results and Discussions  
 
   The analysis is made using the popular software MINITAB 15 specifically used for design of experiment applications, Table 4 test 
data summary shows the experimental results for surface roughness, MRR and their S/N ratios based on the experimental 
parameter combinations.  
 

Table 4 Test Data Summary for Surface Roughness and Material Removal Rate 

 
Average 

 
TRa  = 1.812 

 
–4.999   

TMRR  = 136.875 
 

39.463 
 
   The mean response refers to the average value of the performance characteristic for each parameter at different levels. The 
average values of surface roughness for each parameter at levels 1, 2 and 3 are calculated. The main effects (raw data and S/N 
ratio) of the various process parameters when they change from the lower to higher levels can be visualized from the Figure 5 (a, 
b, c, d, e, f) shows the response graphs of surface roughness for this tool nose radius, tool rake angle, feed rate, cutting speed, 
cutting environment and depth of cut. It is clear from the Figure 5 (a, b, c, d, e, f) that the surface roughness is lowest at A2, B2, 
C2, D2, E1 and F2. Figure 5 (a-f) shows the effect of tool nose radius, tool rake angle, feed rate, cutting speed, cutting 
environment (dry, wet and cooled) and depth of cut on surface roughness in turning of UD-GFRP composites. The results 
indicated that the increase of tool nose radius reduce the surface roughness up to 0.8 mm as shown in Figure 5 (a). The surface 
roughness increased with increase in tool rake angle as shown in Figure 5 (b). The figure indicates that the surface roughness 
increased at higher feed rates and cutting speed as shown in Figure 5 (c & d). The reason being, the increase in the feed rate 
increases the heat generation and hence, tool wear, which resulted in the higher surface roughness. The increase in the feed rate 
also increases the chatter and it produces incomplete machining at faster traverse, which leads to higher surface roughness. At 
higher cutting speed debonding and fiber breakage are the reasons for poor surface roughness. The results indicated that the 
surface roughness increases with increase in cutting environment and depth of cut and is presented in Figure 5 (e & f).  

Expt.  
No. 

Ra Average  Ra   
(µm) 

S/N ratio (dB) MRR Average MRR 
(mm3/sec.) 

S/N ratio (dB)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

    18 

1.38/1.46/1.35 
1.67/1.36/1.33 
3.00/2.79/3.44 
1.31/1.47/1.32 
1.70/1.24/1.65 
2.05/2.93/2.22 
1.61/1.33/1.60 
1.67/1.79/1.45 
2.43/2.20/2.16 
1.38/1.83/1.43 
1.52/1.43/1.87 
2.24/1.90/1.76 
1.57/1.57/1.65 
1.40/1.86/1.63 
2.14/1.80/2.77 

2.12/1.940/1.90 
1.23/1.486/1.70 
1.98/1.973/2.28 

1.397 
1.453 
3.076 
1.366 

      1.530 
      2.400 

1.513 
1.636 
2.263 
1.547 
1.606 
1.966 
1.597 

     1.630 
2.237 
1.940 
1.486 
1.973 

-2.90665 
-3.29561 
-9.79513 
-2.72569 
-3.77191 
-7.71240 
-3.63048 
-4.31122 
-7.10695 
-3.86095 
-4.17870 
-5.91999 
-4.06671 
-4.30102 
-7.13000 
-5.77660 
-3.51783 
-5.97490 

8.6/8.5/8.7 
145.00/145.02/144.95 
327.58/347.03/347.23 
36.24/36.24/36.24 
249.90/249.96/249.88 
106.02/105.86/105.90 
125.00/124.98/124.98 
52.96/52.99/52.97 
144.97/144.97/145.02 
104.42/104.38/104.40 
125.00/125.00/125.00 
73.57/73.58/73.55 
18.39/18.39/18.39 
208.72/208.92/208.92 
250.09/250.09/250.05 
180.00/180.04/180.00 
18.38/18.38/18.38 
275.93/275.87/275.75 

              8.60 
144.99 
 340.61 

             36.24 
 249.91 
105.93 
124.99 
  52.97 
144.99 
 104.40 
125.00 
  73.57 
  18.39 
208.85 
250.08 
180.01 
  18.38 
275.85 

18.6888 
43.2268 
50.6354 
31.1838 
47.9558 
40.5001 
41.9373 
34.4811 
43.2266 
40.3740 
41.9382 
37.3336 
25.2916 
46.3968 
47.9615 
45.1061 
25.2869 
48.8135 
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(a)                                                                                      (b) 
 

   
 

                                                (c)                                                                                  (d) 
 

   
 

                                            (e)                                                                                     (f) 
 
Figure 5 Response and S/N ratio (a) effect of tool nose radius, (b) effect of tool rake angle, (c) effect of feed rate, (d) effect of 
cutting speed, (e) effect of cutting environment and (f) effect of depth of cut 
 
   The pooled version of ANOVA of the raw data and S/N ratio for surface roughness is given in Table 5(A) and 5(B). From Table 
5(A) and 5(B), it is clear that parameters C, D and F significantly affect both, the mean and variation, in the surface roughness 
value. The average of three measurements has been taken as the value of the Ra for the purpose of the analysis. The optimum 
value of surface roughness is predicted at the selected levels of significant parameters. The percent contributions of parameters as 
quantified under column P of Table 5(A) and 5(B) reveal that the influence of feed rate in affecting surface roughness is 
significantly larger than the cutting speed and depth of cut. The percent contributions of feed rate (54.399 %), cutting speed 
(10.119%) and depth of cut (5.355%) in affecting the variation of surface roughness are significantly larger (95 % confidence 
level) as compared to the contribution of the other parameters as shown by Table 5(A). 
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Table 5(A) Pooled ANOVA (Raw Data: Surface Roughness) 

 
SS = sum of squares, DOF = degrees of freedom, variance (V) = (SS/DOF), T = total, SS/ = pure sum of squares, P = percent 
contribution, e = error, Fratio = (V/error), Tabulated F-ratio at 95% confidence level 
 * Significant at 95% confidence level. 
 

Table 5 (B) S/N Pooled ANOVA (Raw Data: Surface Roughness) 

 
The average values of material removal rate for each parameter at levels 1, 2 and 3 are calculated. The main effects (raw data and 
S/N ratio) of the various process parameters when they change from the lower to higher levels can be visualized from the Figure 6 
(a, b, c, d, e, f). Figure 6 (a-f) shows that the response graph for material removal rate for parameters is highest at the (A2, B2, C3, 
D3, E3 and F3). The S/N ratio analysis also (Figure 6) suggests same levels of the parameters (A2, B2, C3, D3, E3 and F3) as the 
best levels for highest material removal rate of the unidirectional glass fiber reinforced plastic composite. The basic purposes of 
cutting fluid application are: (1) Cooling of the job and the tool to reduce the detrimental effects of cutting temperature on the job 
and the tool and (2) lubrication at the chip–tool interface and friction and thus the amount of heat generation. Figure 6 (a-f) shows 
the graph of material removal rate. The results indicated that the material removal rate increases with increase in tool nose radius, 
feed rate, cutting speed, cutting environment, depth of cut and moderate with increase in tool rake angle. The pooled version of 
ANOVA of the raw data and S/N ratio for material removal rate is given in Table 6(A) and 6(B). From Table 6(A) and 6(B), it is 
clear that parameters C, D and F significantly affect both, the mean and variation, in the material removal rate value.  
   The percent contributions of parameters as quantified under column P of Table 6(A) and 6(B) reveal that the influence of depth 
of cut in affecting material removal rate is significantly larger than the feed rate and cutting speed. The percent contributions of 
depth of cut (52.168%), feed rate (26.179%) and cutting speed (8.838%) in affecting the variation of material removal rate are 
significantly larger (95 % confidence level) as compared to the contribution of the other parameters as shown by Table 6(A).  
 

   
(a)                                                                                      (b) 

Figure 6. Response and S/N ratio (a) effect of tool nose radius, (b) effect of tool rake angle 
 

Source SS DOF V F ratio Prob. SS/ P (%) 
Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting  Environment(E) 
Depth of cut(F) 
                  T 

e (pooled) 

0.07114 
0.02324 
6.94648 
1.40654 
0.29613 
0.81130 

1 
2 
2 
2 
2 
2 

0.07114 
0.01162 
3.47324 
0.70327 
0.14807 
0.40565 

 
0.07039 

Pooled 
Pooled 
49.34* 
9.99* 

Pooled 
5.76* 

0.321 
0.848 
0.000 
0.000 
0.135 
0.006 

--- 
--- 

6.806 
1.266 

--- 
0.670 

--- 
--- 

54.399 
10.119 

--- 
5.355 

12.51133 
2.95649 

53 
42 

 12.51133 
3.731 

100.00 
29.821 

Source SS DOF V F ratio Prob. SS/ P (%) 
Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting Environment(E) 
Depth of cut(F) 

T 
e (pooled) 

0.0156 
0.0314 

46.5614 
8.3717 
1.1464 
4.7120 

1 
2 
2 
2 
2 
2 

0.0156 
0.0157 

23.2807 
4.1858 
0.5732 
2.3560 

 
0.4557 

Pooled 
Pooled 
51.09* 
9.19* 

Pooled 
5.17* 

0.859 
0.966 
0.000 
0.015 
0.350 
0.050 

--- 
--- 

45.65 
7.460 

--- 
3.801 

--- 
--- 

71.808 
11.735 

--- 
5.979 

63.5727 
2.7343 

17 
6 

 63.5727 
7.747 

100.00 
12.19 
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     (c)                                                                                                (d) 

 

   
(e)                                                                                           (f) 

Figure 6. Response and S/N ratio (c) effect of feed rate, (d) effect of cutting speed, (e) effect of cutting environment and (f) 
effect of depth of cut. 
 

Table 6(A) Pooled ANOVA (Raw Data: Material Removal Rate) 
  
 
 
 
 
 
 
 
 
 
 

SS = sum of squares, DOF = degrees of freedom, variance (V) = (SS/DOF), T = total, SS/ = pure sum of squares, P = percent 
contribution, e = error, Fratio = (V/error), Tabulated F-ratio at 95% confidence level, * Significant at 95% confidence level. 
 

Table 6(B) S/N Pooled ANOVA (Raw Data: Material Removal Rate 
 
 

 

 

 

 

 

4. Regression Analysis 
 
   Multiple linear regression equations were modeled for a relationship between process parameters in a bid to evaluate surface 
roughness and material removal rate for any combinations of factors levels in a range specified. The functional relationship 
between dependent output parameter with the independent variables under investigation could be postulated by Equation 4. 
 

                     Source SS DOF V F ratio Prob. SS/ P (%) 
Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting Environment(E) 
Depth of cut(F) 

T 
e (pooled) 

342 
1739     
129356 
45233 
5404 
253033 

  1 
  2 
  2 
  2 
  2 
  2 

342 
869 
64678 
22616 
2702 
126516 
 
1189 

Pooled 
Pooled 
54.41*    
19.03*    
Pooled 
106.43*   

0.595 
0.487 
0.000 
0.000 
0.116 
0.000 

--- 
--- 
126978 
42855 
--- 
253032 

--- 
--- 
26.179 
8.835 
--- 
52.168 

485034 
49927 

  53 
  42 

 485034 
63006 

100.00 
12.99 

                        Source    SS  DOF    V  F ratio   Prob.     SS/   P (%) 
Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting Environment(E) 
Depth of cut(F) 

T 
e (pooled) 

2.47     
5.27     
363.35   
216.91   
4.10     
803.17 

  1 
  2 
  2 
  2 
  2 
  2 

2.47     
2.63     
181.68    
108.46    
2.05     
401.58   
 
2.50 

Pooled 
Pooled 
72.69*    
43.40*    
Pooled 
160.68*   

0.359 
0.405 
0.000 
0.000 
0.484 
0.000 

--- 
--- 
358.35 
211.91 
--- 
798.17 

--- 
--- 
25.410 
15.026 
--- 
56.597 

1410.27 
15.00    

  17 
  6 

 1410.27 
42.5 

100.00 
3.01 
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Y = K (X1) a (X2) b (X3) c                                                                                                                                                                                       (4) 
 

Where Y is dependent output variable such as surface roughness and material removal rate X�, X� and X�, are independent 
variables such as feed rate, cutting speed and depth of cut. The constants a, b and c are the exponents of independent variables. To 
convert the above non linear equation into linear form, a logarithmic transformation is applied into the above equation and written 
as Equation 5. 
 

Log Y = log K + a. log(X1) + b. log(X2) + c.log (X3)                                                                                  (5) 
 

This is one of the most popularly used data transformation methods for empirical model building. Now the above equation is 
written as Equation 6. 
 

η = β0 + β1.x1 + β2.x2 + β3.x3                                                                                                                        (6) 
 
   Where, η is the true value of dependent surface roughness and material removal rate on a logarithmic scale, x1, x2 and x3 are 
respectively, the logarithmic transformation of the different parameters, while β0, β1, β2 and β3 are the corresponding parameters to 
be estimated. Due to the experimental error, the true response η = y-ε, where y is the logarithmic transformation of the measured 
surface roughness and material removal rate parameters and the ε is the experimental error. For simplicity the equation is rewritten 
as 
 
    Ŷ = b0 + b1x1 + b2x2 + b3x3                                                                                                                          (7) 
 
   Where Ŷ is the predicted surface roughness and material removal rate value after logarithmic transformation and b0, b1, b2 and b3 
are the estimates of the parameters, β1, β2 and β3, respectively. The values of b0, b1, b2 and b3 are found out by linear regression 
analysis, (second order model) which is conducted with MINITAB standard version software (MINITAB 15.0 for windows), using 
the experimental data. The first order model for surface roughness and material removal rate reveals lack of fitness due to high 
prediction errors for surface roughness and material removal rate. As a result, the below mentioned second order model has been 
developed and its form is given below.  
 

Ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b11x1
2 + b22x2

2 + b33x3
2                                                        (8) 

 
   Insignificant parameters are not taken into consideration as shown in Table 7. The developed empirical model by regression 
analysis for surface roughness (Ra) and material removal rate (MRR) is given below: 
 
Ra = 5.87 + 2.43 x1 + (- 4.65) x2 + 0.009 x3 + (- 0.129) x1x2 + 0.065 x1x3+ 0.152 x2x3 + 0.944 x1

2 + 1.20 x2
2 + 0.339 x3

2 

MRR= 0.005 + 1.52 x1 + 2.65 x2+ 1.08 x3 + (- 0.684) x1x2 + (- 0.347) x1x3 + (- 0.334) x2x3 + (- 0.325) x1
2 + (- 0.651) x2

2 + (- 
0.250) x3

2 

   Predicted output values for surface roughness and material removal rate are calculated with the help of above equation and the 
given coefficients as shown in Table 7. It has been seen that relative error of surface roughness and material removal rate are well 
within limits.  

 
Table 7 Empirical Expressions Developed by Second Order Model 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Predictor        Coefficient of 
   surface roughness 

Predictor        Coefficient of 
   material removal rate 

     bo 
     X1 
     X2 
     X3 
  X1 X2 
  X1 X3 
  X2 X3 
    X1

2 
    X2

2 
    X3

2 

              5.87 
              2.43 
            - 4.65 
              0.009 
            - 0.129 
              0.065 
              0.152 
              0.944 
              1.20 
              0.339 

       bo 
      X1 
      X2 
      X3 
    X1 X2 
    X1 X3 
    X2 X3 
      X1

2 
      X2

2 
      X3

2 

               0.005 
               1.52 
               2.65 
               1.08 
            - 0.684 
            - 0.347 
            - 0.334 
            - 0.325 
            - 0.651 
            - 0.250 
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   Thus, it can be stated that empirical equation build by using second-order model can be used. Relative error between predicted 
and measured observed values for surface roughness and material removal rate is calculated and presented in Table 8. The 
significance of predictors, shown in Table 7, is also analyzed further as shown in Table 8 
 

Table 8 Comparison between Experimental and Predicted Values of Surface Roughness and Material Removal Rate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Goodness of Fit for Surface Roughness and Material Removal Rate 
 
To test whether the discrepancies between the observed and expected frequencies can be attributed to chance, we use the statistic 
for test of goodness of fit for surface roughness and material removal rate as given by equation 9.          
                                                                                                                      
                                                                                                (9)       
 
  
Criterion: Chosen for either to accept or reject the null hypothesis is: 
If χ2 > 8.672 (tabulated values), reject the null hypothesis 
 
   Table 9 showed that χ2 = 0.0054 and 1.1078 for surface roughness and material removal rate respectively for 17 degrees of 
freedom where as degrees of freedom is given by: (rows-1) x (col-1) = (18-1) x (2-1) = 17 
Therefore the analysis of data does suggest perception is correct with 95 % confidence level. Otherwise, there is reason to believe 
that the program does give correct output as shown in Table 9. 
 
6. Confirmation Experiments  
 
   The experimental study is carried out to validate the earlier developed empirical expressions for surface roughness and material 
removal rate. Depth of cut is least significant for surface roughness and cutting speed is least significant for material removal rate 
as observed for ANOVA Table 5 (a) and 6 (a). So depth of cut and  cutting speed remained constant at 0.8 mm and 110.84 m/min 
respectively for validation and other parameter put the same level are shown in Table 2. 
   To verify the goodness of the predicted model, the observed values and their predictive values of the surface roughness and 
material removal rate are given in the Table 10. Table 10 also shows the prediction error of output parameters i.e. surface 
roughness and material removal rate. It has been seen that the maximum and minimum error percentage for surface roughness is 
8.235% and -7.509% and the maximum and minimum error percentage for material removal rate is 10.064% and -10.923%, which 
is very much satisfactory. Graphical comparison of actual and predicted values of surface roughness and material removal rate is 
shown in Figure 7 and Figure 8. 
 

 Surface Roughness Material Removal Rate 

Expt. No. Prediction 
Value 

Experimental  
Value % Error Prediction 

Value 
Experimental 

Value % Error 

      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
    10 
    11 
    12 
    13 
    14 
    15 
    16 
    17 
    18 

1.493 
1.364 
2.897 
1.333 
1.588 
2.339 
1.588 
1.656 
2.051 
1.714 
1.538 
1.999 
1.445 
1.675 
2.355 
1.999 
1.476 
2.000 

1.397 
1.453 
3.076 
1.366 
1.530 
2.400 
1.513 
1.636 
2.263 
1.547 
1.606 
1.966 
1.597 
1.630 
2.237 
1.940 
1.486 
1.973 

6.430 
-6.525 
-6.843 
-2.476 
3.652 
-2.608 
4.723 
1.208 

-10.336 
9.743 
-4.421 
1.651 

-10.519 
2.686 
5.011 
2.951 
-0.677 
1.350 

7.674 
151.705 
394.457 
37.670 

228.560 
96.161 

129.419 
54.954 

153.109 
108.893 
129.419 
77.446 
19.011 

188.799 
229.615 
168.655 
19.142 

247.742 

8.60 
144.99 
340.61 
36.24 

249.91 
105.93 
124.99 
52.97 

144.99 
104.40 
125.00 
73.57 
18.39 

208.85 
250.08 
180.01 
18.38 

275.85 

-12.067 
4.426 

13.651 
3.796 
-9.341 

-10.159 
3.422 
3.610 
5.303 
4.126 
3.414 
5.003 
3.266 

-10.620 
-8.913 
-6.733 
3.981 

-11.346 

∑
=

−
=

k

i i

ii

E
)EO(

1

2
2χ
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Table 9 Statistic for Test of Goodness of Fit Surface Roughness and Material Removal Rate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 *Test level of significance:  α   = 95% 
 

Table 10 Validation between Experimental and Predicted Results (Surface Roughness and Material Removal Rate) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Surface Roughness Material Removal Rate 
  Expt. 
   No. 

Observed 
Value 

Expected  
Value (Oi – Ei) 2 / Ei 

Observed 
Value 

Expected  
Value (Oi – Ei) 2 / Ei 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1.397 
1.453 
3.076 
1.366 
1.530 
2.400 
1.513 
1.636 
2.263 
1.547 
1.606 
1.966 
1.597 
1.630 
2.237 
1.940 
1.486 
1.973 

1.493 
1.364 
2.897 
1.333 
1.588 
2.339 
1.588 
1.656 
2.051 
1.714 
1.538 
1.999 
1.445 
1.675 
2.355 
1.999 
1.476 
2.000 

0.0061 
0.0058 
0.0110 
0.0008 
0.0021 
0.0015 
0.0035 
0.0002 
0.0219 
0.0162 
0.0030 
0.0005 
0.0159 
0.0012 
0.0059 
0.0017 
0.0001 
0.0003 

8.60 
144.99 
340.61 
36.24 

249.91 
105.93 
124.99 
52.97 

144.99 
104.40 
125.00 
73.57 
18.39 

208.85 
250.08 
180.01 
18.38 

275.85 

7.674 
151.705 
394.457 
37.670 

228.560 
96.161 

129.419 
54.954 

153.109 
108.893 
129.419 
77.446 
19.011 

188.799 
229.615 
168.655 
19.142 

247.742 

0.1117 
0.2972 
7.3506 
0.0542 
1.9943 
0.9924 
0.1515 
0.0716 
0.4305 
0.1853 
0.1508 
0.1939 
0.0202 
2.1294 
1.8239 
0.7644 
0.0303 
3.189 

Average   χ2 = 0.0054   χ2 = 1.1078 

 Surface Roughness Material Removal Rate 
Expt. No. Prediction 

Value 
Experimental 

Value % Error Prediction 
Value 

Experimental 
Value % Error 

      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
    10 
    11 
    12 
    13 
    14 
    15 
    16 
    17 
    18 

1.470 
1.380 
2.920 
1.305 
1.570 
2.350 
1.560 
1.670 
2.120 
1.700 
1.545 
1.989 
1.465 
1.645 
2.380 
1.992 
1.455 
2.100 

1.370 
1.435 
3.100 
1.350 
1.505 
2.415 
1.498 
1.640 
2.230 
1.560 
1.595 
1.950 
1.575 
1.625 
2.248 
1.945 
1.470 
2.050 

6.803 
-3.985 
-6.164 
-3.448 
4.140 
-2.766 
3.974 
1.796 
-5.189 
8.235 
-3.236 
1.515 
-7.509 
1.216 
5.546 
2.359 
-1.031 
2.381 

8.880 
152.605 
395.337 
35.670 

230.545 
95.110 

131.220 
56.990 

150.110 
110.793 
132.000 
75.246 
19.000 

192.703 
233.615 
166.230 
19.342 

251.144 

9.850 
143.000 
355.550 
34.240 

252.880 
103.000 
127.000 
54.970 

141.000 
106.20 

127.000 
71.370 
18.000 

204.550 
255.060 
178.000 
18.880 

272.850 

-10.923 
6.294 

10.064 
4.009 
-9.688 
-8.296 
3.216 
3.544 
6.069 
4.146 
3.788 
5.151 
5.263 
-6.148 
-9.180 
-7.080 
2.388 
-8.643 
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Figure 7: Comparison between Actual and Predicted Values of Surface Roughness 

 

 
Figure 8: Comparison between Actual and Predicted Values of Material Removal Rate 

 
7. Utility Concept  
 
   A customer evaluates a product on a number of diverse quality characteristics. To be able to make a rational choice, these 
evaluations on different characteristics should be combined to give a composite index. Such a composite index represents the 
utility of a product. The overall utility of a product measures the usefulness of that product in the eyes of the evaluator. The utility 
of a product on a particular characteristic measures the usefulness of that particular characteristic of the product. The overall utility 
of a product is the sum of utilities of each of the quality characteristics. Thus if xi is the measure of effectiveness of the attribute 
(characteristic) i and there are n attributes evaluating the outcome space, then the joint utility function can be expressed as (Bunn, 
1982):  
 
  U(x1, x2 , . . . , xn) = f[U1(x1), U2(x2), . . ., Un(xn)]                                                                                 (9)  
Where Ui (Xi) is the utility of the ith attribute  
 
The overall Utility function is the sum of individual utilities if the attributes are independent, and is given as follows: 

U(X1, X2 , . . . , Xn) = ∑=

n

i ii Xu
1

)(           (10)                    

 
The attributes may be assigned weights depending upon the relative importance or priorities of the characteristics. The overall 
utility function after assigning weights to the attributes can be expressed as: 
 

U(X1, X2 , . . . , Xn) = ∑=

n

i iii XuW
1

)(                                                                                  (11) 
Where Wi is the weight assigned to the attribute i. The sum of the weights for all the attributes must be equal to 1. If the composite 
measure (the overall utility) is maximized, the quality characteristics considered for evaluation of utility will automatically be 
optimized (maximized or minimized what so ever the case may be).  
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8. Determination of Utility Value  
 
A preference scale for each quality characteristic is constructed. To determine the utility value for a number of quality 
characteristics later these scales are weighted to obtain a composite number (overall utility). The weighting is done to satisfy the 
test of indifference on the various quality characteristics. The preference scale should be a logarithmic one (Gupta and Murthy 
1980). The minimum acceptable quality level for each quality characteristic is set out at 0 preference number and the best available 
quality is assigned a preference number of 9. If a log scale is chosen the preference number (Pi) is given by Eq. 12 (Gupta and 
Murthy, 1980).  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= '

i

i
i x

xAP log            (12)   

Where,  Xi = value of any quality characteristic or attribute i 
X'

i = just acceptable value of quality characteristic or attribute i 
A = constant 
The value of A can be found by the condition that if Xi = X* (where X* is the optimal or best value), then Pi = 9  
Therefore,  

                         

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'
iX

X
A

*

log

9
                                                                                               (13) 

Subject to the condition:  

                     ∑=
=

n

i iW
1

1                                                                                                                    (14) 

The overall utility can be calculated as follows: 
 

                      ∑=
=

n

i ii PWU
0

                                                                                                                 (15) 
 
   Among various quality characteristics type viz. smaller the better, higher the better, and nominal the better suggested by 
Taguchi, the Utility function would be higher the better type. Therefore, if the Utility function is maximized, the quality 
characteristics considered for its evaluation will automatically be optimized (maximized or minimized as the case may be). The 
stepwise procedure for carrying out multi-response optimization with Utility concept and Taguchi method is illustrated as 
 
1. Use the Taguchi matrix experimental design and analysis to find out the optimal value of each of the selected process 

responses. 
2. Construct a preference scale for each response based on their optimal value and minimum acceptable level (Eqs.12 & 13). 
3. Assign weights (Wi) based on the experience and customer preference, keeping in view that the total sum of weights is equal 

to 1 such that the (Eq. 14). 
4. Find overall utility values for different experimental trial conditions considering all the responses involved in multi-response 

optimization (Eq. 15). 
5. Use the values determined in step 4 as raw responses of different trial conditions of the experimental matrix. If trials are 

repeated, find S/N ratios (HB type), as the utility is a higher-the-better type characteristic (Roy, 1990). 
6. Analyze the results as per the standard procedure suggested by Taguchi (Roy, 1990). 
7. Find the optimal settings of process parameters for mean and S/N utility based on the analysis performed in step 6. 
8. Predict optimal values of different response characteristics for the optimal parametric setting that maximizes the overall 

utility as determined in step 7. 
9. Conduct confirmation experiments to verify the optimal results. 
 
   Based upon the methodology developed in the previous sections, following case have been considered to obtain the optimal 
settings of the process parameters of lathe turning for predicting the optimal values of combined responses. The two quality 
characteristics (Surface Roughness (Ra) and Material Removal Rate (MRR)) are included in utility response. Taguchi L18 
orthogonal array (OA) (Roy, 1990) has been adopted for conducting the experiments. Tool nose radius (A), tool rake angle (B), 
feed rate (C), cutting speed (D), cutting environment (E) and depth of cut (F) are selected as input parameters. Response 
parameters (quality characteristics) are Surface Roughness (Ra) and Material Removal Rate (MRR) when they are optimized 
individually; the summary of results is produced in Table 11. 
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Table 11 Optimal Setting and Values of Process Parameters (Individual Quality Characteristics optimization) 

 * C – feed rate, D – cutting speed and F – depth of cut 
 ** Subscripts represent levels of the process parameters. 
 
   The optimal settings of process parameters and the optimal values of Surface roughness and material removal rate (when they are 
optimized individually) have already been established by using Taguchi’s design of experiment.  
Following is the stepwise procedure for transforming experimental data into utility data. 
 
(i) Construction of preference scales 

 
(a) Surface Roughness (Ra)  
X* = optimum value of Ra (when optimized individually) = 1.311μm (Table 11)  
X/

i = maximum acceptable value of Ra = 3.0 μm (Table 4) assumed 
(All the Ra values in Table 4 are in between: 1.23 and 3.44 μm)  
Using these values and the Eq. 11 & Eq. 12, the following preference scale for Ra has been found:                                                         

 

            ⎟
⎠
⎞

⎜
⎝
⎛−=

03
log0725

.
x.P i

Ra                                                                                                    (16) 

 
(b) Material Removal Rate (MRR)  
X* = optimum value of material removal rate (when optimized individually) = 301.98 mm3/ sec.  (Table 11)  
X/

i = minimum acceptable value of material removal rate = 8 mm3/ sec.  (Table 4) assumed 
(All the material removal rate values in Table 4 are in between: 8.50 and 347.23 mm3/sec.)  
Using these values and the Eq. 11 & Eq. 12, the following preference scale for material removal rate has been found:  

 

⎟
⎠
⎞

⎜
⎝
⎛=

08
log7115

.
x.P i

MRR                                                                                                  (17) 

 
 (ii) Weights of quality characteristic  
 

It has been assumed that both the quality characteristics are equally important and hence an equal weight has been 
assigned. However, there is no constraint on the weights and it can be any value between 0 and 1 subjected to the 
condition specified in Equation 14 (Singh and Kumar, 2006).  
WRa = weights for Ra = 1/2  
WMRR = weights for MRR = 1/2 

 
(iii) Utility value calculation  

 
The following relation was used to calculate the utility function based upon the experimental trials: 

 
U (n, R) = PRa (n, R) x WRa + PMRR (n, R) x WMRR                                                                            (18) 

 
Where, n is the trial number (n = 1, 2, 3… 18) and R is the repetition number (R = 1, 2, 3). The calculated Utility values are shown 
in Table 12. 
 

 
 
 
 
 

Quality 
Characteristics 

Optimal Level of 
Process Parameters 

Significant Process Parameters (at  
95% confidence level) 

Predicted Optimal Value 
of Quality Characteristics 

Surface Roughness 
Material Removal Rate 

C2D2F2 
C3D3F3 

C, D, F 
C, D, F 

1.311 μm 
301.98 mm3/sec. 
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Table 12 Calculated Utility Data Based on Responses 
(a) Surface Roughness (b) Material Removal Rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.  Determination of Optimal Settings of Process Parameters  
 
   The data (utility values) have been analyzed both for mean response (mean of utility at each level of each parameter) and signal-
to-noise (S/N) ratio. Since utility is a higher-the-better (HB) type of quality characteristic, (S/N) HB has been used. The average 
and main response in terms of Utility values and S/N ratio (Tables 15 and 16) are plotted in Figure 9 (a-f). It can be observed from 
Figure 9 (a-f) that the 2nd level of tool nose radius (A2), 2nd level of tool rake angle (B2), 2nd level of feed rate (C2), 2nd level of 
cutting speed (D2), 2nd level of cutting environment (E2) and 2nd level of depth of cut (F2) are expected to yield a maximum values 
of the utility and S/N ratio within the experimental space.  
   The pooled version of ANOVA for utility data and S/N ratio are given in Tables 13 and 14 respectively. It can be noticed from 
Table 13 that the input parameters feed rate (C), cutting speed (D), cutting environment (E) and depth of cut (F) significant effect 
(at 95% confidence level) on the utility function. On the other hand, from Table 14 shows that the feed rate and depth of cut have 
significant effect on the S/N ratio of utility function. So, other insignificant parameters for S/N ratio can be taken as economy 
factor. The optimal values of utility and thus the optimal values of response characteristics in consideration are predicted at the 
above levels of significant parameters. 
 

Table 13 Pooled ANOVA (Raw Data: Surface Roughness and MRR)  

SS = sum of squares, DOF = degrees of freedom, variance (V) = (SS/DOF), T = total, SS/ = pure sum of squares, P = percent 
contribution, e = error, Fratio = (V/error), Tabulated F-ratio at 95% confidence level F0.05; 1; 42 = 4.08, F0.05; 2; 42 = 3.23, * Significant 
at 95% confidence level       

 
 
 
 

Trial No. Raw Data (Utility Values)  S/N Ratio (db) 
R1 R2 R3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4.312 
6.776 
4.603 
6.373 
7.364 
5.271 
6.790 
5.528 
4.732 
7.410 
7.104 
4.341 
4.553 
8.192 
6.098 
5.753 
5.882 
6.647 

3.997 
7.889 
5.062 
5.746 
8.082 
3.326 
7.831 
5.152 
5.284 
5.884 
7.442 
5.234 
4.553 
6.640 
7.038 
6.630 
4.691 
7.61 

4.452 
8.016 
3.934 
6.335 
7.512 
4.843 
6.828 
6.302 
5.384 
7.220 
5.976 
5.645 
4.277 
7.355 
5.692 
6.342 
4.127 
5.880 

12.5485 
17.4950 
12.9861 
15.7497 
17.9331 
12.4917 
17.0300 
14.9676 
14.1653 
16.5574 
16.5842 
13.9451 
12.9772 
17.2841 
15.1096 
15.8599 
13.5308 
16.3938 

Source SS DOF V F ratio Prob. SS/ P (%) 

Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting Environment(E) 
Depth of cut(F) 
 
                  T 

e (pooled) 

0.7805  
0.4346   
15.5603  
6.6768 
3.8117  
36.4492 
 

1 
2 
2 
2 
2 
2 

0.7805 
0.2173  
7.7802  
3.3384 
1.9058  
18.2246  

 
 
0.5069 

Pooled 
Pooled 
15.35* 
6.59* 
3.76* 

35.95* 

0.222 
0.654 
0.000 
0.003 
0.031 
0.000 

--- 
--- 

14.546 
5.663 
2.797 
35.435 

--- 
--- 

17.11 
6.66 
3.29 
41.67 

85.0045 
21.2914 

53 
42 

85.0045 
26.867 

100.00 
31.60 
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Table 14 S/N Pooled ANOVA (Raw Data: Surface Roughness and MRR)  

Tabulated F-ratio at 95% confidence level F0.05; 1; 6 = 5.99, F0.05; 2; 6 = 5.14 
 

Table 15 Main Effects of Utility (Raw Data: Surface Roughness and MRR) 

= 
Table 16 Average S/N Ratio values and main effects (Surface Roughness and MRR) 

 

 
(a) 

(b) 
 

     
(c)                                                                                (d) 

Figure 9: Utility value and S/N ratio (a) effect of tool nose radius, (b) effect of tool rake angle, (c) effect of feed rate, (d) effect of 
cutting speed 

Source SS DOF V F ratio Prob. SS/ P (%) 

Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting Environment(E) 
Depth of cut(F) 

T 
e (pooled) 

0.8434  
0.3861   
11.4733 
4.5265   
3.2354  
29.9230  

1 
2 
2 
2 
2 
2 

0.8434   
0.1930 
5.7367  
2.2632  
1.6177 
14.9615 
 
0.7717 

Pooled 
Pooled 

7.43* 
Pooled 
Pooled 

19.39* 

0.336 
0.786 
0.024 
0.129 
0.204 
0.002 

--- 
--- 

9.929 
--- 
--- 

28.379 

--- 
--- 

18.05 
--- 
--- 

51.58 
55.0179 
4.6303 

17 
6 

55.0179 
13.119 

100.00 
23.84 

 Nose radius 
(A) 

Tool rake angle 
(B) 

Feed rate 
(C) 

Cutting speed 
(D) 

Cutting 
Environment  (E) 

Depth of 
cut (F) 

Level 1 
Level 2 
Level 3 

Differences(Δ�) 

5.842 
6.082 

--- 
0.240 

5.850 
6.069 
5.966 
0.220 

5.849 
6.668 
5.368 
1.300 

5.592 
6.435 
5.858 
0.842 

6.139 
6.161 
5.586 
0.574 

4.805 
6.632 
6.449 
1.827 

 Nose radius 
(A) 

Tool rake angle 
(B) 

Feed rate 
(C) 

Cutting speed 
(D) 

Cutting 
Environment  (E) 

Depth of 
cut   (F) 

Level 1 
Level 2 
Level 3 

Differences(Δ)� 

15.01 
15.44 

--- 
0.43 

15.02 
15.34 
15.32 
0.32 

15.12 
16.25 
14.31 
1.95 

14.74 
15.92 
15.02 
1.18 

15.39 
15.65 
14.65 
1.00 

13.41 
16.27 
15.99 
2.86 



Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011, pp. 248-270 

 

266

 

    
(e)                                                                                 (f) 

 
Figure 9: Utility value and S/N ratio (e) effect of cutting environment, (f) effect of depth of cut. 

 
Table 17 Average values of various responses at optimal levels 

 
 
 
 
 
 
                                    *The average values are taken from experimental data. 
 
10. Optimal Values of Quality Characteristics (Predicted Means Surface Roughness) 
 
The average values of all the response characteristics at the optimum levels of significant parameters with respect to Utility 
function are recorded in Table 17. *The average values are taken from experimental data. 
The optimal values of the predicted means (μ) of different response characteristics can be obtained from the following equation: 
 
µRa = TRa + ﴾ C2− TRa) + ﴾ D2− TRa) + ﴾E2− TRa) + ﴾F2− TRa)     
 
C2 = second level of feed rate, D2 = second level of cutting speed, E2 = second level of Cutting environment cut,  
F2 = second level of depth of cut, TRa = Overall mean 
Where TRa = overall mean of surface roughness = 1.812 (Table 4)  

C2, D2, E2 and F2 are the mean values of surface roughness with parameters at optimum levels. C2 =1.557, D2 =1.672,  
E2 =1.767, F2 =1.706 (Table 17): 
Hence µRa = 1.266  
   A confidence interval for the predicted mean on a confirmation run can be calculated using the equation 19 and 20 respectively 
(Ross, 1996):  
 

eff

eea
POP n

VfFCI ) (1,
=                                                                                             (19) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

Rn
VfFCI

eff
eeaCE

11) (1,                                                    (20)        

Where Fα; (1, fe) = F0.05; (1; 42) = 4.08 (tabulated).  
α = risk = 0·05, 
fe = error DOF = 42 Table 5 (A) 
N = total number of experiments = 18 
Ve = error variance = 0.07039 Table 5 (A) 
Total DOF associated with the mean (µRa) = 11, Total trial =18, N=18×3 = 54, 
neff = effective number of replications  

Levels Surface Roughness (µm)  Material Removal Rate (mm3/sec.) 
C2 
D2 
E2 
F2 

1.557 
1.672 
1.767 
1.706 

133.35 
147.95 
122.98 
152.55 
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mean]  theof estimate  with theassociated DOF [Total1+
=

Nneff  

 
neff = 54 / (1 + 11) = 4.5  
R = number of repetitions for confirmation experiment = 3 
CIPOP = 0.253 
CICE =   0.399 

The 95% confidence interval of the population is: [µRa − CI] < µRa < [µRa + CI] i.e. 1.013 < µRa < 1.519 
The 95% confidence interval of the predicted optimal surface roughness is: [µRa − CI] < µRa < [µRa + CI] i.e. 0.867 < µRa < 1.665 
 
MRR: 
µMRR = TMRR + ﴾ C2− TMRR) + ﴾ D2− TMRR) + ﴾E2− TMRR) + ﴾F2− TMRR)     
Where TMRR = overall mean of material removal rate = 136.875 (Table 4)  
C2, D2, E2 and F2 are the mean values of material removal rate with parameters at optimum levels. C2 =133.35, D2 =147.95, E2 
=122.98, F2 =152.55 (Table 17): 
Hence µMRR = 146.205  
The following values have been obtained by the ANOVA: 

 
N = 54, fe = 42, Ve = 1189 Table 6 (A), neff = 4.5, R = 3, F0.05 (1, 42) = 4.08 

 
A confidence interval for the predicted mean on a confirmation run can be calculated using the equation 19 and 20 respectively. 

CIPOP = 32.833 
CICE =   51.889 

The 95% confidence interval of the population is:  
[µMRR − CI] < µMRR < [µMRR + CI] i.e. 113.372 < µMRR < 179.038 

The 95% confidence interval of the predicted optimal material removal rate is:  
[µMRR − CI] < µMRR < [µMRR + CI] i.e. 94.316 < µMRR < 198.094 

The optimal values of process variables at their selected levels are as follows:  
Parameter                                                        Level 
Feed Rate (C)                                                  2 (0.1 mm/ rev) 
Cutting Speed (D)                                           2 (110.84 m/ min) 
Cutting Environment (E)                                2 (Wet) 
Depth of Cut (F)                                             2 (0.8 mm) 

 
11. Confirmation Experiments 
 
   Three experiments are performed at optimal settings as suggested by Taguchi analysis of Utility data. The average value of surface 
roughness and material removal rate, while turning UD-GFRP with PCD tool is found to be 1.411µm and 195.033mm3/sec. This 
result is within the 95% confidence interval of the predicted optimal value of the selected machining characteristic (surface 
roughness and material removal rate). Hence the optimal settings of the process parameters, as predicted in the analysis, can be 
implemented. Shows the conformance of results obtained in ANOVA as well as the results obtained using confirmation. 
 
12. Genetic Algorithm (GA) 
 
   Genetic algorithms are search methods that employ processes found in natural biological evolution. These algorithms search or 
operate on a given population of potential solutions to find the optimum solution. To do this, the algorithm applies the principle of 
survival of the fittest to find better and better approximations. At each generation, a new set of approximations is created by the 
process of selecting individual potential solutions (individuals) according to their level of fitness in the problem domain and 
breeding them together using operators borrowed from natural genetics. This process leads to the evolution of populations of 
individuals that are better suited to their environment than the individuals that they were created from, just as in natural adaptation. 
   The GA generally includes the three fundamental genetic operations of selection, crossover and mutation. These operations are 
used to modify the chosen solutions and select the most appropriate offspring to pass on to succeeding generations. GAs consider 
many points in the search space simultaneously and have been found to provide a rapid convergence to a near optimum solution in 
many types of problems; in other words, they usually exhibit a reduced chance of converging to local minima. GA suffers from the 
problem of excessive complexity if used on problems that are too large. 
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   The GA works with a population of feasible solutions and, therefore, it can be used in multi-objective optimization problems to 
simultaneously capture a number of solutions (Kuriakose and Shunmugam, 2005). The non-dominate sorting Genetic Algorithm 
(NSGA-II) which was introduced by (Mandal, 2007). It is a powerful general purpose optimization tool to solve optimizing 
problems in mathematics and engineering. This algorithm is fast, but it has been as a controversial method and has been opposed 
due to some difficulty and complexity when it comes to computational approach. The Non-dominating Sorting GA-II (NSGA-II) is 
a fast, elitist multi-objective genetic algorithm that is widely used for generating the Pareto frontier. Its main advantage in solving 
multi-objective problems is that it leads the search toward the global Pareto front while maintaining diversity of the solution set 
along that front (Akundi et al., 2005). So, both single and multi-objective optimization genetic algorithms can be used in the given 
parametric combination. 
 
13. Conclusions 
 

• From the experimental results, it is evident that the surface roughness increases as feed rate increases.  
• From S/N ratio and response table, it is observed that the feed is the most influencing parameter for surface roughness. By 

increasing the feed, the surfaces roughness increases. The higher feed rate led cutting tool to traverse the work piece so 
rapidly that deteriorates the surface quality.  

• For achieving good surface finish on the unidirectional glass fiber reinforced plastic composite using polycrystalline 
diamond insert, larger tool nose radius, moderate tool rake angle, moderate feed rate, moderate cutting speed, 
environment (dry) and moderate depth of cut were preferred. The optimal parametric combination for polycrystalline 
diamond insert cutting insert was reported as A2, B2, C2-D2-E1 and F2. 

• Feed rate is the factor, which has great influence on surface roughness, followed by cutting speed. 
• From the ANOVA result, it is concluded that C – feed rate, D – cutting speed, F – Depth of cut, have significant effect on 

material removal rate A, B, E have no effect at 95% confidence level. It is found that depth of cut is more significant 
factor than other parameters, whilst cutting speed is the least significant parameter.  

• The second-order model for surface roughness and material removal rate has been developed from the observed data. The 
prediction error of output parameters i.e. surface roughness and material removal rate. It was found that the maximum and 
minimum error percentage for surface roughness is 8.235% and -7.509% and the maximum and minimum error 
percentage for material removal rate is 10.064% and -10.923%, which is very much satisfactory.  

• The multiple performance characteristics are surface roughness and material removal rate. On the basis of Taguchi approach and 
Utility concept, a model was developed to achieve this. Based on the ANOVA significant process parameters for multiple 
performances are depth of cut, feed rate, cutting speed and cutting environment has significant effect on the utility 
function. The percentage contribution of Depth of cut (41.67%), Feed rate (17.11%), Cutting speed (6.66%) and cutting 
environment (3.29%). It is found that the proposed model based on Taguchi approach and Utility concept is simple, 
useful and provides an appropriate solution for multi-response optimization problems. 

• The 95% confidence interval of the predicted optimal surface roughness is: [µRa − CI] < µRa < [µRa + CI] i.e. 0.867 < µRa < 
1.665 

• The 95% confidence interval of the predicted optimal material removal rate is: [µMRR − CI] < µMRR < [µMRR + CI] i.e. 
94.316 < µMRR < 198.094 

 
   The future scope of work includes the following: (1) the number of machining parameters can be extended and hence, the data 
base can be improved by extensive experimentation. (2)The same problem can be modeled and analyzed by a genetic algorithm. 
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Nomenclature 
 
B0, b1, b2, b3    
a, b, c              
x0, x1, x2, x3       
Ra                     
MRR 

Estimates of parameters 
Exponentially determined constant 
logarithmic transformations of machining parameters 
Surface Roughness 
Material Removal Rate 
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A 
B 
C 
D 
E 
F 
K 
η 
y    
ε      
Ŷ    
χ2 

Tool nose Radius / mm 
Tool Rake angle / Degree 
Feed rate / (mm/rev) 
Cutting speed / (m/min.) & rpm 
Cutting environment 
Depth of cut / mm 
Constant 
Surface Roughness & MRR response 
Measured  Surface Roughness & MRR 
Experimental error 
Estimated response based on second order model (µm & mm3/sec.) 
Chi-square 
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