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Abstract

This study aimed at solving a nonhomogeneous linear first order initial value problem by means
of Laplace transform method in fuzzy environment. The conditions for a fuzzy function to be
H−differentiable and gH−differentiability are well established. Finally, example is constructed
to test the applicability or otherwise of the established results.
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1 Introduction
The study of fuzzy differential equation (FDE) has been extensively developed in recent years. FDE
is considered as a proven important topic based on theoretical points of view. The idea of fuzzy
number and fuzzy arithmetic were first introduced by Zadeh [1] and Dubois and Parade [2]. The
term “Fuzzy Differential Equation” was conceptualized in 1978 by Kandel and Byatt [3] and right
after two years, a larger version was published in [4]. The study of fuzzy differential in modelling
hydraulic differential servo cylinders and fuzzy sets and systems were extensively discussed in [5]
and [6] respectively. Fuzzy differential equations and initial value problem were extensively studied
by other authors

(
see [7], [8] & [9]

)
. Also problems involving simulation of continuous fuzzy sys-

tems as well as linear non homogeneous ODE in fuzzy environment can be found in [10] and [11]
respectively. Recently FDE has also used in many models such as HIV model [12], decay model [13],
predator-prey and population models [14], civil engineering [15], modeling hydraulic. See also [16]
and [17] for solutions of first order linear homogeneous ordinary differential equation by Laplace
transform, a fish population problem in [18], an imprecise barometric pressure problem discussed
in [19], an elementary application of population dynamics model in [20] and as well as arm race
model considered in [21].
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This paper presents a solution of nonhomogeneous first order linear fuzzy initial value problem
by applying fuzzy Laplace transform method and established conditions for a fuzzy function to be
H-differentiable and gH-differentiability respectively. Consider equation

dx

dt
= kx+ x0 (1.1)

with initial condition x(t0) = γ. Equation (1.1) is called fuzzy ordinary differential equation (FODE)
if any one of the following three cases holds:

i Only γ is a generalized fuzzy number (Type-I).

ii Only k is a generalized fuzzy number (Type-II).

iii Both k and γ are generalized fuzzy numbers (Type-III).

Let the solution of equation (1.1) be x(t) and its α−cut be x
(
t, α
)

=

[
x1
(
t, α
)
, x2
(
t, α
)]
.

If x1
(
t, α
)
≤ x2

(
t, α
)
,∀α ∈

[
0, ω

]
, 0 < ω ≤ 1, then x(t) is called strong solution otherwise x(t)

is called weak solution and in that case α−cut of the solution is given by

x
(
t, α
)

=

[
min x1

(
t, α
)
, x2
(
t, α
)
,max x1

(
t, α
)
, x2
(
t, α
)](

see 1001[21]

)
The α−level or level of confidence at level α of fuzzy set A of X is a crisp set Aα that contains all
the elements of X that have membership values in A greater than or equal to α i.e.

A =

(
x, µA

(
x
))
≥ α, x ∈ X,α ∈

[
0, 1

]
.

A ∈ F̃ is called a fuzzy number where R denotes the set of whole real numbers if

i Ã is normal i.e. x0 ∈ R exists such that µÃ(x) = 1.

ii ∀α ∈ (0, 1], Aα is a closed interval.

If A is a fuzzy number then Ã is a convex fuzzy set and if µÃ(x) = 1 then µÃ(x) is non decreasing for
x ≤ x0 and non-increasing for x ≥ x0. The membership function of a fuzzy number Ã

(
a1, a2, a3, a4

)
is defined by

µÃ(x) =


1, x ∈ [a1, a2] 6= φ

L(x), a1 ≤ x ≤ a2
R(x), a3 ≤ x ≤ a4

where L(x) denotes an increasing function and 0 < L(x) ≤ 1 , R(x) denotes a decreasing function
and 0 ≤ R(x) ≤ 1. A generalized fuzzy number is called a generalized triangular fuzzy number if it
is defined by Ã =

(
a1, a2, a3, ω

)
and its membership function is given by

µÃ(x) =



0, x ≤ a1

ω
x− a1
a2 − a1

, a1 ≤ x ≤ a2

ω
a3 − x
a3 − a2

, a2 ≤ x ≤ a3

0, x ≥ a3
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or µÃ(x) = max

(
min

(
ω
x− a1
a2 − a1

, ω, ω
a3 − x
a3 − a2

)
, 0

)

A generalize trapezoidal fuzzy number is a subset of R denoted as ÃGT =
(
a1, a2, a3, a4;ω

)
with

the following membership function as follows

µÃ(x) =



ω
x− a1
a2 − a1

, a1 ≤ x ≤ a2

ω, a2 ≤ x ≤ a3

ω
a3 − x
a3 − a2

, a3 ≤ x ≤ a4

0, x ≥ a4

To set conditions for fuzzy function to be H−differentiable and gH−differentiable respectively, let
f : (a, b) −→ RF̃ and t0 ∈ (a, b), if ∃ f ′(t0) ∈ RF̃ such that ∀ h > 0 sufficiently small, ∃ f ′(t0)
such that:

i f ′(t0) is H-differentiable, then f ′(t0) is called fuzzy derivative of f(t).

ii If f ′(t0) is gH-differentiable, then f ′(t0) is called generalized fuzzy derivative of f(t).

A function f : T −→ E is said to be Hukuhara differentiable at t0 ∈ T , if there exists an element
f ′(t0) ∈ E such that for all h > 0 sufficiently small. In other words, there exists

f(t0 + h)Hf(t0), f(t0)Hf(t0 − h), f(t0 + h)Hf(t0), f(t0)Hf(t0 − h)

lim
h→0+

f(t0 + h)Hf(t0)

h
= lim
h→0+

f(t0)H̄f(t0 − h)

h
= f ′(t0)

2 Methodology
To apply the Laplace transform method, we assume that the solution to equation (1.1) is piecewise
continuous on a given interval (a, b). In order to take the Laplace transform of equation (1.1), we
need to obtain the transform of the derivative of the function. The idea of a transform is that, it
turns a given function into another function. That is;

i The derivative D takes a differentiable function f
(
defined on some interval (a, b)

)
and

assigned to it a new function Df = f ′ .

ii The integral I takes a continuous function f
(
defined on some interval [a,b]

)
and assigned to

it a new function If(x) =
∫ x
a
f(t)dt .

iii The multiplication operatorMφ , which multiplies any given function f on the interval [a,b]
by a fixed function φ on [a,b], is a transform:Mφf(x) = φ(x).f(x) .

A key to the use of Laplace transform theory in differential equations is the way that L treats
derivatives. This means that

L

[
y

′
]

=

∫ ∞
0

e−pxy
′
(x)dx
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In general,

L

[
fn(t)

]
= snf(s)− sn−1f(0)− sn−2f

′
(0)− sn−3f

′′
(0)− sn−4f

′′′
(0)− ...− fn−1(0)

3 Results
This section presents the results we obtained for the generalized Hukahara differentiability by ap-
plying fuzzy Laplace transform method to a given equation. Therefore, consider a nonhomogeneous
equation

dx

dt
= kx± t2 (3.1)

where k is a constant with fuzzy initial condition x(to) = γ as it also appeared in equation (1.1)
above. Equation (3.1) is also called FODE if any one of the conditions (i) – (iii) for equation (1.1)
holds.

Let y
′
(t) =

(
y

′
(t, α), ȳ

′
(t, α)

)

L

[
f

(
t, y(t), y′(t)

)]
=

{
p2L

[
y(t)− pyo

]}
− zo (3.2)

Hence

L

[
f

(
t, y(t), y

′
(t), α

)]
= p2L

[
y(t, α)

]
− py

o
(α)− zo(α) (3.3)

L

[
f̄

(
t, y(t), y

′
(t), α

)]
= p2L

[
ȳ(t, α)

]
− pȳo(α)− z̄o(α) (3.4)

where

L

[
f

(
t, y(t), y

′
(t), α

)]
= min

{
f

(
t, u, v

)
, u ∈

(
y(t, α), ȳ(t, α)

)
, v ∈

(
y

′
(t, α), ȳ

′
(t, α)

)}
and

L

[
f̄

(
t, y(t), y

′
(t), α

)]
= min

{
f

(
t, u, v

)
, u ∈

(
y(t, α), ȳ

′
(t, α)

)
, v ∈

(
y

′
(t, α), ȳ(t, α)

)}

Therefore, the solution of equation (3.4) is obtained and therefore, presented below.

L

[
y(t, α)

]
= H1(p, α) (3.5)

L

[
ȳ(t, α)

]
= K1(p, α) (3.6)

Taking the inverse Laplace transform of equation (3.5) and (3.6), the following are obtained

y(t, α) = L−1
[
H1(p, α)

]
(3.7)
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and

ȳ(t, α) = L−1
[
K1(p, α)

]
(3.8)

where H1(p, α) and K1(p, α) are solved uing the assumption that the fuzzy linear function f is
given by

f

(
t, y(t), y

′
(t)

)
= ay(t) + by

′
(t) + c(t),

which is a crisp mapping and

H1(p, α) = L

[
y(t, α)

]
=

(p− b)y
0
(α) + zo(α) + L

[
c(t)

]
p2 − bp− a

(3.9)

K1(p, α) = L

[
ȳ(t, α)

]
=

(p− b)ȳo(α) + zo(α) + L

[
c(t)

]
p2 − bp− a

(3.10)[
f

′
(t)

]
α

=

[
f

′

2(to, α), f
′

1(to, α)

]

L

[
f

(
t, y(t), y′(t)

)]
= L

[
ay′(t) + by′′(t)

]
= aL

[
y′(t)

]
+ bL

[
y′′(t)

]
= a

[
sf(s)− f(0)

]
+ b

[
sf(s)− sf(0)− f ′(0)

]
= (a+ b)sL

[
y(t, α)

]
− (a− bs)y

0
(α)− by′(α)

As a result of equations (3.2) and (3.3) we obtain,

(a+ b)pL

[
y(t, α)

]
− (a− bp)y

0
(α)− by′(α) = p2L

[
y(t, α)

]
− py0(α)− z0(α) (3.11)

solving equation (3.4) we arrive at

(a+ b)pL

[
y(t, α)

]
− p2L

[
y(t, α)

]
= by′(α) + (a− bp)y

0
(α)− py0(α)− z0(α) (3.12)

Rearranging equation (3.5) we have,

L

[
y(t, α)

]
=
by′(α) + (a− bp− p)y

0
(α)− z0(α)

ap+ bp− p2
, (3.13)

which is

(a+ b)pL

[
ȳ(t, α)

]
−
(
a− b

)
pȳ0(α)− bȳ′(α) = p2L

[
ȳ(t, α)

]
− pȳ0(α)− z̄0(α), (3.14)
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Also we solve equation (3.7) to obtain

L

[
ȳ(t, α)

]
=
bȳ′(α) + (a− bp− p)ȳ0(α)− z̄0(α)

ap+ bp− p2
, (3.15)

Therefore,

Ha1(t, α) =
by′(α) + (a− bp− p)y

0
− z0(α)

ap+ bp− p2
(3.16)

Ka1(t, α) =
bȳ′(α) + (a− bp− p)ȳ0(α)− z̄0(α)

ap+ bp− p2
(3.17)

and finally,

apL

[
y(t, α)

]
+ bpL

[
y(t, α)

]
− aȳ0(α) + bpȳ0(α)− bȳ′(α) = p2L

[
y(t, α)

]
− py

0
(α)− z0(α) (3.18)

Rearranging equation (3.18) we have

(a+ b)pL

[
y(t, α)

]
− p2L

[
y(t, α)

]
= bȳ′(α) + aȳ0(α)− bpȳ0(α)− py

0
(α)− z0(α), (3.19)

(ap+ bp− p2)L

[
y(t, α)

]
=

(
a− bp− p

)
y
0
(α) + bȳ′0(α)− z0(α), (3.20)

L

[
ȳ(t, α)

]
=

(
a− bp− p

)
y
0
(α) + bȳ′0(α)− z0(α)

ap+ bp− p2
(3.21)

Similarly,

L

[
y(t, α)

]
=

(
a− bp− p

)
ȳ0(α) + bȳ′0 − z̄0(α)

ap+ bp− p2
(3.22)

Therefore,

Hb1(t, α) =

(
a− bp− p

)
y
0
(α) + bȳ′0 − z0(α)

ap+ bp− p2
(3.23)

Kb1(t, α) =

(
a− bp− p

)
ȳ0(α) + bȳ′0 − z̄0(α)

ap+ bp− p2
(3.24)

Based on what we obtained above therefore, an example is constructed below to test the applicability
or otherwise the established results. Consider the first order FODE

dx

dt
= 3p2 + t
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where p2 is a constant. To solve this type of equation we need to consider the following four cases
as indicated in this paper.

Case I: Assume that if f(x) and f ′(x) are (i)-differentiable, then applying equation (3.23) to
f(x) and f ′(x) respectively gives the following results to

L

[
f ′(x)

]
= pL

[
f(x)

]
(−)f(0) and

L

[
f ′′(x)

]
= pL

[
f ′(x)

]
(−)f ′(0).

Combining the two identities yields the result,

L

[
f ′′(x)

]
= p

{
pL

[
f(x)

]
(−)f(0)

}
(−)f ′(0)

=

{
p2L

[
f(x)

]
(−)pf(0)

}
(−)f ′(0)

Case II: Assume that f(x) is (i)-differentiable and f ′(x) is (ii)-differentiable, then applying equa-
tion (3.24) to f(x) and f ′(x) respectively results to

L

[
f ′(x)

]
= pL

[
f(x)

]
(−)f(0) and

L

[
f ′′(x)

]
=
(
− f ′(0)

)
(−)(−p)Lf ′(x) .

Combining these identities yields the desired result,

L

[
f ′′(x)

]
=

(
− f ′(0)

)
(−)(−p)

{
pL

[
f(x)

]
(−)f(0)

}

=
(
− f ′(0)

)
(−)

{
− p2L

[
f(x)

]
(−)
(
− pf(0)

)}

Case III: If f(x) is (ii)-differentiable and f ′(x) is (i)-differentiable, then applying equation (3.23)
to f(x) and f ′(x) respectively we have,

L

[
f ′(x)

]
=
(
− f(0)

)
(−)(−p)L

[
f(x)

]
and

L

[
f ′′(x)

]
= pL

[
f ′(x)

]
(−)f ′(0)

Again combining the two identities we obtain,

L

[
f ′′(x)

]
= p

{(
− f(0)

)
(−)(−p)L

[
f(x)

]}
(−)f ′(0)

= −
{(
− pf(0)

)
(−)(−p2)L

[
f(x)

]}
(−)f ′(0)
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Lastly,

Case IV: If both f(x) and f ′(x) are (ii)-differentiable and then equation (3.23) & (3.24) is applied
to them respectively, the result obtained is presented thus;

L

[
f ′(x)

]
=
(
− f(0)

)
(−)(−p)L

[
f(x)

]
and

L

[
f ′′(x)

]
=
(
− f ′(0)

)
(−)(−p)L

[
f ′(x)

]
Combining these identities we have,

L

[
f ′′(x)

]
=

(
− f ′(0)

)
(−)(−p)

{(
− f(0)

)
(−)(−p)L

[
f(x)

]}

= −
(
f ′(0)

)
(−)

{
pf(0)(−)p2L

[
f(x)

]}

4 Conclusion
It is of importance here to state that the example constructed and solved based on the results we
established in this work has further justified our claims and the possibilities of solving linear non-
homogeneous first order ODE in fuzzy environment by means of fuzzy Laplace transform method.
All the conditions considered and referred to are well satisfied and the results obtained are valid
for the solution of generalized fuzzy initial valued problem of linear nonhomogeneous type.
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