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Abstract

In this paper, by using α-admissible mappings embedded in simulation functions, some fixed
point results are proved in the setting of a Hausdorff S-complete uniform space. The results
obtained generalizes and unifies some known results in the literature.
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1 Introduction
Many generalization of metric spaces abound in literature. The concept of uniform spaces was
introduced by Weil [1] while Bourbaki [2] provided the definition of a uniform structure in terms
of entourages. Aamri and El Moutawakil [3] provided the definition of A-distance and E-distance
and proved some results on common fixed point for some contractive and expansive maps in uni-
form spaces. Olisama et al. [4] introduced the concept of JAV -distance (an analogue of b-metric),
φp-proximal contraction, and φp-proximal cyclic contraction for non-self-mappings in Hausdorff
uniform spaces and proved best proximity point results for these contractive mappings. Recently,
Umudu et al. [5] generalized the results of Olisama et al. [4] by introducing Geraghty p-proximal
cyclic quasi-contraction and investigated the existence and uniqueness of best proximity point for
the contractions in uniform spaces.
As a generalization of the well known Banach contraction mapping, Khojasteh et al. [6] introduced
the notion of Z-contraction which is defined by means of a family of functions called simulation
functions and proved the existence and uniqueness of fixed point for the class of Z-contraction
mappings. Several results have been proved in this direction, see ( [6–8]).
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2 Preliminaries
The following definitions are fundamental to our work.

Definition 2.1 [2]. A uniform space (X,Γ) is a nonempty set X equipped with a uniform structure
which is a family Γ of subsets of Cartesian product X ×X which satisfy the following conditions:

(i) If U ∈ Γ, then U contains the diagonal ∆ = {(x, x) : x ∈ X}.

(ii) If U ∈ Γ, then U−1 = {(y, x) : (x, y) ∈ U} is also in Γ.

(iii) If U, V ∈ Γ, then U ∩ V ∈ Γ.

(iv) If U ∈ Γ and V ⊆ X ×X, which contains U, then V ∈ Γ.

(v) If U ∈ Γ, then there exists V ∈ Γ such that whenever (x, y) and (y, z) are in V , then (x, z) is
in U.

Γ is called the uniform structure or uniformity of U and its elements are called entourages.

Definition 2.2 [9]. Let (X,Γ) be a uniform space. A function p : X × X → R+ is said to
be an

(a) A - distance if, for any V ∈ Γ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for
some z ∈ X, then (x, y) ∈ V ;

(b) E - distance if p is an A - distance and p(x, z) ≤ p(x, y) + p(y, z),∀x, y, z ∈ X.

Definition 2.3 [4]. Let (X,Γ) be a uniform space. A function p : X ×X → R+ is said to be a

(c) JAV -distance if p is an A - distance and p(x, z) ≤ s[p(x, y) + p(y, z)],∀x, y, z ∈ X, s ≥ 1.

Note that the function p reduces to an E-distance if the constant s is taken as 1.

Example in [4] shows that a uniform space equipped with JAV distance function is a generalisation
of a uniform space equipped with an E-distance function.

Definition 2.4 [9]. Let (X,Γ) be a uniform space and p an A-distance on X.

(a) If V ∈ Γ, (x, y) ∈ V , and (y, x) ∈ V , x and y are said to be V -close. A sequence (xn) is a
Cauchy sequence for Γ if, for any V ∈ Γ, there exists N ≥ 1 such that xn and xm are V -close
for n,m ≥ N . The sequence (xn) ∈ X is a p-Cauchy sequence if for every ε > 0 there exists
n0 ∈ N such that p(xn, xm) < ε for all n,m ≥ N .

(b) X is said to be S-complete if for any p-Cauchy sequence {xn}, there exists x ∈ X such that
lim
n→∞

p(xn, x) = 0.

(c) f : X → X is p-continuous if lim
n→∞

p(xn, x) = 0 implies lim
n→∞

p(f(xn), f(x)) = 0.

(d) X is said to be p-bounded if δp(X) = sup{p(x, y) : x, y ∈ X} <∞.

To guarantee the uniqueness of the limit of the Cauchy sequence for Γ, the uniform space (X,Γ)
needs to be Hausdorff.

Definition 2.5 [2]. A uniform space (X,Γ) is said to be Hausdorff if and only if the intersec-
tion of all the V ∈ Γ reduces to the diagonal ∆ of X, ∆ = {(x, x), x ∈ X}. In other words,
(x, y) ∈ V for all V ∈ Γ implies x = y.

The concept of α-admissible mappings have been used in many works. Popescu [10] defined the
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concept of triangular α-orbital admissible mapping as an improvement of triangular α-admissible
mapping ( [11,12]).

Definition 2.6 [10]. Let T : X → X and α : X ×X → R+ be a function.

(a) T is called α-orbital admissible if α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

(b) T is called triangular α-orbital admissible if T is α-orbital admissible and α(x, y) ≥ 1 and
α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

The class of simulation function was introduced by Khojasteh et al. [6] as follows.

Definition 2.7 [6]. Let ς : [0,∞) × [0,∞) → R be a mapping, then ς is called a simulation
function if it satisfies the following conditions:

(ς1) ς(0, 0) = 0;

(ς2) ς(t, s) < s− t for all s > 0.

(ς3) If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 then lim sup
n→∞

ς(tn, sn) <

0.

The set of all simulation functions are denoted by Z.

Definition 2.8 [6] Let (X, d) be a metric space, T : X → X be a mapping and ς ∈ Z. Then T is
called a Z-contraction with respect to ς if the following is satisfied:

ς(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X.

Examples of the simulation function and Z-contraction are also provided in [6].

In this paper, we consider some fixed point results in uniform spaces for the class of Z-contraction
via admissible mappings embedded in simulation function as a generalization of some fixed point
results obtained in a metric space.

3 Main Results
We begin with the following definitions.

Definition 3.1. Let (X,Γ) be a uniform space such that p is an E-distance. Let T : X → X
be a self mapping, α : X ×X → R+ and ς ∈ Z. Then T is called an α-Z-contraction with respect
to ς if

ς (α(x, y)p(Tx, Ty), p(x, y)) ≥ 0 for all x, y ∈ X. (3.1)

Remark 3.2.

1. Suppose the uniform space is reduced to a metric space i.e Γ = {(x, y) ∈ X2 : d(x, y) < ε}
then the self mapping T is a α-Z contraction with respect to ς [8]

2. Suppose the uniform space is reduced to a metric space i.e Γ = {(x, y) ∈ X2 : d(x, y) < ε}
and α(x, y) = 1, then the self mapping T is a Z contraction with respect to ς [6].

Definition 3.3. Let (X,Γ) be a uniform space such that p is an E-distance. Let T : X → X be
a self mapping, α : X ×X → R+ and ς ∈ Z. Then T is called a generalized α-Z-contraction with
respect to ς if for all x, y ∈ X.

ς(α(x, y)p(Tx, Ty),M(x, y)) ≥ 0 (3.2)
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where M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
.

The following is the first main result.

Theorem 3.4. Let X be a S-complete Hausdorff uniform space such that p is an E-distance,
T : X → X a generalized α-Z-contraction with respect to ς and the following conditions are
satisfied:

(i) T is a triangular α-orbital admissible mapping.

(ii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

(iii) T is continuous.

Then T has a fixed point x∗ ∈ X.

Proof: By hypothesis (ii), there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Let x0 ∈ X such that
α(x0, Tx0) ≥ 1. Define a sequence {xn} ∈ X by letting xn+1 = Txn for all n ≥ 0. If xn = xn+1,
then T has a fixed point. Consequently, henceforth, we shall assume that xn 6= xn+1 for all n. And
so p(xn+1, xn) > 0 for all n ∈ N. Since T is α-orbital admissible, then

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively, we have

α(xn, xn+1) ≥ 1 for all n ∈ N ∪ 0. (3.3)

Using (3.2) and (3.3), for all n ∈ N

0 ≤ ς (α(xn, xn−1)p(Txn, Txn−1),M(xn, xn−1))

= ς (α(xn, xn−1)p(xn+1, xn),M(xn, xn−1))

< M(xn, xn−1)− α(xn, xn−1)p(xn+1, xn)

where

M(xn, xn−1) = max

{
p(xn, xn−1), p(xn, Txn), p(xn−1, Txn−1),

p(xn, Txn−1) + p(xn−1, Txn)

2

}
= max

{
p(xn, xn−1), p(xn, xn+1),

p(xn−1, xn+1)

2

}
≤ max

{
p(xn, xn−1), p(xn, xn+1),

p(xn−1, xn) + p(xn, xn+1)

2

}
= max{p(xn, xn−1), p(xn, xn+1)}.

If M(xn, xn−1) = p(xn, xn+1) for all n ∈ N, then

0 ≤ ς (α(xn, xn−1)p(xn+1, xn), p(xn, xn+1))

< p(xn, xn+1)− α(xn, xn−1)p(xn, xn+1) ≤ 0

which is a contradiction. Therefore, M(xn, xn−1) = p(xn, xn−1) for all n ∈ N and

0 ≤ ς (α(xn, xn−1)p(xn+1, xn), p(xn, xn−1)) (3.4)

< p(xn, xn−1)− α(xn, xn−1)p(xn, xn+1).

Consequently,

p(xn, xn+1) ≤ α(xn, xn−1)p(xn, xn+1) < p(xn, xn−1) (3.5)
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for all n ∈ N. Thus, the sequence {p(xn, xn+1)} is a decreasing sequence of positive real numbers
and so, there exists a non negative number r such that

lim
n→∞

p(xn, xn+1) = r. (3.6)

To prove that lim
n→∞

p(xn, xn+1) = 0, suppose on the contrary that r > 0. Now considering equations
(3.4), (3.5) and condition (ς3), we have

0 ≤ lim sup
n→∞

ς (α(xn, xn−1)p(xn+1, xn),M(xn, xn−1)) < 0

which is a contradiction. Therefore, r = 0. To show that the sequence {xn} is p-Cauchy. Assume
for contradiction that {xn} is not Cauchy. Then there exists ε > 0 such that, for all k > 0, we can
find n,m ∈ N with m(k) > n(k) > k with p(xn(k), xm(k)) ≥ ε. Let m(k) be the smallest number
satisfying the condition above. Thus, p(xn(k), xm(k)−1) < ε.
Therefore, using triangle inequality, we have

ε ≤ p(xn(k), xm(k))

≤ p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))

< ε+ p(xm(k)−1, xm(k)).

Letting k →∞ in the above inequality, we have

lim
k→∞

p(xn(k), xm(k)) = ε. (3.7)

Since |p(xn(k), xm(k)−1)− p(xn(k), xm(k))| ≤ p(xm(k), xm(k)−1), we have

lim
k→∞

p(xn(k), xm(k)−1) = ε. (3.8)

Likewise,

lim
k→∞

p(xm(k)−1, xn(k)−1) = lim
k→∞

p(xm(k), xn(k)−1) = ε. (3.9)

By condition (i), T is triangular orbital admissible and we have

α(xn(k)−1, xm(k)−1) ≥ 1, for all k ≥ 1. (3.10)

T is also a generalized α-Z-contraction with respect to ς and using (3.10) gives

0 ≤ ς(α(xn(k)−1, xm(k)−1)p(Txn(k−1), Txm(k)−1),M(xn(k)−1, xm(k)−1))

= ς(α(xn(k)−1, xm(k)−1)p(xn(k), xm(k)),M(xn(k)−1, xm(k)−1))

< M(xn(k)−1, xm(k)−1)− α(xn(k)−1, xm(k)−1)p(xn(k), xm(k))

where

M(xm(k)−1, xn(k)−1) = max{p(xm(k)−1, xn(k)−1), p(xm(k)−1, Txm(k)−1), p(xn(k)−1, Txn(k)−1),

p(xm(k)−1, Txn(k)−1) + p(xn(k)−1, Txm(k)−1)

2
}

Using (3.2),(3.7),(3.8) and (3.9)

lim
k→∞

M(xn(k)−1, xm(k)−1) = lim
k→∞

p(xn(k), xm(k)) = ε

Clearly, we deduce that

0 < p(xn(k), xm(k)) < α(xn(k)−1, xm(k)−1)p(xn(k), xm(k)) < M(xn(k)−1, xm(k)−1),
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and considering (ς3),

0 ≤ lim sup
k→∞

ς
(
α(xn(k)−1, xm(k)−1)p(xn(k), xm(k)),M(xn(k)−1, xm(k)−1)

)
< 0

is a contradiction. Therefore, {xn} is a Cauchy sequence. Since the uniform space, (X,Γ), is
complete, there exists w ∈ X such that

lim
n→∞

p(xn, w) = 0 (3.11)

Using (3.11) and the hypothesis that T is continuous, we have

lim
n→∞

p(Tw, xn+1) = p(Tw, Txn) = 0. (3.12)

By the uniqueness of the limit in a Hausdorff uniform space and using (3.12) we obtain that the
fixed point of T is w.

The continuity of T can be replaced by another condition.

Theorem 3.5. Let (X,Γ) be a S-complete Hausdorff uniform space such that p is an E-distance
and let T : X → X be a generalized α-Z-contraction with respect to ς. Suppose the following
conditions are satisfied:

(i) T is a triangular α-orbital admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n→∞,
then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point x∗ ∈ X.

Proof. Following the lines in the proof of Theorem 3.4, the sequence {xn} defined by xn+1 = Txn
for all n ≥ 1 converges to w ∈ X. To show that w is a fixed point of X, suppose that xn 6= w for all
positive integer n and p(Tw,w) > 0. By condition (iii), there exists a subsequence {xnk

} of {xn}
such that α(xnk

, w) ≥ 1 for all k ∈ N. By (3.2), we have

ς(α(xnk
, w)p(Txn(k), Tw),M(xnk

, w)) = ς(α(xnk
, w)p(xn(k)+1, Tw),M(xnk

, w)) ≥ 0

where M(xn(k), w) = max
{
p(xn(k), w), p(xn(k), xn(k)+1), p(w, Tw),

p(xn(k),Tw)+p(w,Txn(k))

2

}
.

By (ς2),

0 ≤ ς(α(xn(k), w)p(xn(k)+1, Tw),M(xn(k), w))

≤ M(xn(k), w)− α(xn(k), w)p(xn(k)+1, Tw)

This implies p(xn(k)+1, Tw) < M(xn(k), w).

Taking limits as k tends to infinity,

lim
k→∞

M(xn(k), w) = p(w, Tw)

and
lim
k→∞

p(xn(k)+1, Tw) = p(w, Tw).

Therefore, using (ς3) we obtain

0 ≤ lim sup
k→∞

ς(α(xnk
, w)p(xn(k)+1, Tw),M(xn(k), w)) < 0,
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which is a contradiction. Therefore, p(Tw,w) = 0 and w is fixed point of X.

To prove uniqueness of a fixed point result, consider the hypothesis.

(J) : For any two fixed points, x, y ∈ Fix(T ), then α(x, y) = 1, where Fix(T ) denotes the set
of fixed points of T .

Theorem 3.6. Adding condition (J) to the hypothesis of Theorem 3.4 (resp. Theorem 3.5),
we obtain that x∗ is the unique fixed point of T .

Proof. We assume by contradiction that there exists w1, w2 ∈ X such that w1 = Tw1 and
w2 = Tw2 where w1 6= w2. Then by hypothesis (J), α(w1, w2) = 1. Using (3.2) and (ς2), we have

0 ≤ ς(α(w1, w2)p(Tw1, Tw2),M(w1, w2))

= ς

(
α(w1, w2)p(w1, w2),max

{
p(w1, w2), p(w1, Tw1)p(w2, Tw2)

p(w1, Tw2) + p(w2, Tw1)

2

})
= ς(α(w1, w2)p(w1, w2), p(w1, w2))

< p(w1, w2)− α(w1, w2)p(w1, w2) = 0

which is a contradiction. Hence, w1 = w2.

Corollary 3.7. Let (X,Γ) be a S-complete Hausdorff uniform space such that p is an E-distance
and let T : X → X be an α-Z-contraction with respect to ς. Suppose the following conditions are
satisfied:

(i) T is a triangular α-orbital admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N
and xn → x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k ∈ N.

Then T has a fixed point x∗ ∈ X.

Proof. The proof follows from Theorem 3.4 and Theorem 3.5. if M(x, y) = p(x, y)

We give an example to illustrate Theorem 3.4.

Example 3.8. Let X = [0,∞) equipped with the usual metric and p be a E-distance defined
by

p(x, y) =

{
x, if x 6= y,
0, if x = y.

Then p is a E distance and X is a complete uniform space. Let a mapping T : X → X be
defined by T (x) = 1

3x for all x ∈ X, α : X ×X → [0,∞) by

α(x, y) =

{
1, if [0, 2],
0, if otherwise.

and ς(t, s) =
s

s+ 1
− t for all t, s ∈ [0,∞).

Then for all x, y ∈ X, Condition (iii) of Theorem 3.4 is satisfied with x1 = 1. Condition (iv)
of Theorem 3.4 is satisfied with xn = Tnx1 = 1

3n . Obviously, condition (ii) is satisfied. Let x, y be
such that α(x, y) ≥ 1. Then, x, y ∈ [0, 1], and so Tx, Ty ∈ [0, 1]. Moreover, α(y, Ty) = α(x, Tx) = 1
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and α(Tx, T 2x) = 1. Thus, T is triangular α-orbital admissible and hence (ii) is satisfied. Finally,
we shall prove that (i) is satisfied. If 0 ≤ x, y ≤ 1, then α(x, y) = 1, and we have

ς(p(Tx, Ty), p(x, y)) =
p(x, y)

1 + p(x, y)
− p(Tx, Ty)

=
x

1 + x
−
(x

3
− y

3

)
=

x

1 + x
−
(
x− y

3

)
≥ 0.

All conditions of Theorems 3.4 are satisfied, and hence T has a unique fixed point x∗ = 0.

Set Γ = {(x, y) ∈ X2 : d(x, y) < ε} in Corollary 3.7, then the following result in the literature
is obtained.

Corollary 3.9 [8]. Let (X,Γ) be a complete metric space and let T : X → X be an α-Z-
contraction with respect to ς. Suppose the following conditions are satisfied:

(i) T is a triangular α-orbital admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists an element x∗ ∈ X such that x∗ = Tx∗.
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