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Abstract

The study of peristaltic motion is an area of increasing research interest in industrial, biological
and engineering interest. In this study, effects of slips on the peristaltic flow and heat transfer
of micropolar fluids in an asymmetric channel are investigated analytically. The developed
non-linear coupled partial differential equations are converted into non-linear coupled ordinary
differential equations using similarity transformation. The ordinary differential equations are
solved for the cases when the thermal viscosity parameter is zero and non-zero. Exact solutions
are gotten for the cases of linear and non-linear when the thermal viscosity parameter is zero
and non-zero, respectively. The obtain results depict that viscous and thermal slips enhances
the flow of the bolus as it is being transported through the digestive system. Also, the effect
of microrotation helps in reducing the pressure gradient for the flow.
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1 Introduction
Peristalsis is a series of wave-like muscle contractions that moves food to different processing sta-
tions in the digestive tract. It is coined from New Latin and is derived from the Greek peristellein,
"to wrap around". The process of peristalsis begins in the oesophagus when a bolus of food is
swallowed. The strong wave-like motions of the smooth muscle in the oesophagus carry food to the
stomach, where it is churned into a liquid mixture called the "chime". In much of a digestive tract
such as the human gastrointestinal tract, smooth muscle tissue contracts in sequence to produce
a peristaltic wave, which propels a ball of food (called a bolus while in the oesophagus and upper
gastrointestinal tract and chyme in the stomach) along the tract. Peristaltic movement comprises
relaxation of circular smooth muscles, then their contraction behind the chewed material to keep
it from moving backward, then longitudinal contraction to push it forward. peristalsis continues
in the small intestine where it mixes and shifts the chyme back and forth, allowing nutrients to
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be absorbed into the bloodstream through the small intestine walls which contain millions of villi
and micro-villi. Peristalsis concludes in the large intestine where water from the undigested food
material is absorbed into the bloodstream. Finally, the remaining waste products are excreted from
the body through rectum and anus. The circulation of lymph in the lymph capillaries as well as
valves in the capillaries is as a results of peristalsis since the human lymphatic system has no cen-
tral pump. The movement of sperm from the testicles to the urethra is peristalsis. The earthworm
is a limbless annelid-worm with a hydrostatic skeleton that moves by peristalsis. Its hydrostatic
skeleton consists of a fluid-filled body cavity surrounded by an extensible body wall. The worm
moves by radially constricting the anterior portion of its body, resulting in an increase in length via
hydrostatic pressure. This constricted region propagates posteriorly along the worm’s body. As a
result, each segment is extended forward, then relaxes and re-contacts the substrate, with hair-like
set preventing backwards slipping.
A peristaltic pump is a positive-displacement pump in which a motor pinches advancing portions
of a flexible tube to propel a fluid within the tube. The pump isolates fluid from machinery, which
is important if the fluid is abrasive or must remain sterile. Robots have been designed that use
peristalsis to achieve locomotion, as the earthworm uses it. Peristaltic pumps are used in a huge
number of industries. They can be used in printing inks and colourings, mining slurries, waste water
slurries, bleach, sodium bromide and lime slurry pumping. Peristaltic pumps also are excellent for
suction lift applications. As with all technologies, they evolve and improve. Early designs were
inhibited by the shoe design limitations and inferior rubber technology.

The theory of a micropolar fluid derives from the need to model the flow of fluids that contain
rotating micro-constituents. A micropolar fluid is the fluid with internal structures in which cou-
pling between the spin of each particle and the macroscopic velocity field is taken into account.
It is a hydro dynamical framework suitable for granular systems which consist of particles with
macroscopic size. Eringen [1] was the first pioneer of formulating the theory of micropolar fluids.
Various works on micropolar fluids ranging from applications of microrotation fluid, slip effect,
magneto-Micropolar fluid and many more have been carried out by [2–7]

The effect of magnetic field on peristaltic mechanisms is important in connection with certain
problems of the movement of the conductive physiological fluids, for example, the blood and blood
pump machines. A number of researchers have discussed the effects of magnetic field on the peri-
staltic flow [3–6, 11, 35, 42, 43]. There are few attempts in which the effects of variable viscosity in
the peristaltic mechanisms are considered. Mention may be made to the interesting works of [4,13].
The variable viscosity is considered to be a function of space (height). In a typical situation most
of the fluids have temperature dependent viscosity and this property varies significantly when large
temperature difference exists. Massoudi and Christie [10] studied the effects of variable viscosity for
a simple pipe flow of a third grade fluid. Later on Pakdermirli and Yilbas [34] and Pantokratos [35]
considered the temperature dependent viscosity. The aim of the present paper is to investigate the
peristaltic flow of Micropolar fluid through a porous non-uniform channel with variable viscosities
and thermal conduction. The similarity transformation was used to transform the the governing
nonlinear coupled partial differential equations to nonlinear ordinary differential equations under
the assumption of long wave-length and low Reynolds number. Exact solutions were obtained for
axial velocity, microrotation component, wall shear stress, stream function and pressure gradient.
The effects of various physical parameters appear in the problem are discussed graphically.

2 Mathematical Formulation
Consider the flow of an unsteady, incompressible, viscous and electrically conducting micropolar
fluid through a non-uniform porous channel of uniform thickness under the action of an external
magnetic field Figure: 1. The upper and lower walls satisfy the convective conditions through
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temperature distributions. Let Y = h(X, t) denote the upper and lower wall of the channel is
considered to be induced by a sinusoidal wave train propagating with a wave speed c along the
length of the channel wall, such that

Figure 1: A Physical sketch of the problem

h(X, t) = a+ tan(θ)(X − ct) + bsin(
2π

λ
(X − ct)) (2.1)

where a is the half width of the channel at the inlet, λ is the wave length, b is the amplitude of
wave, θ is the angle between the axis of the channel and the walls, XandY represent the rectangular
co-ordinates with X measured the axis of the channel and Y the traverse axis perpendicular to X.
The system is stressed by an external transverse uniform constant magnetic field of strength and
hence total magnetic field induction vector is B(0, B0, 0) , where the induced magnetic field have
been neglected due to the assumption of weak electrical conductivity. The equations of motion
for unsteady flow through porous medium of an incompressible magneto-micro-polar fluid with
externally imposed magnetic field by neglecting the body couples are;

∇ ·V = 0 (2.2)

ρ

(
∂V
∂t̄

+ V · ∇ V
)

= −∇p + (µ̄+ κ)∇2V + κ
(
∇× Ω̄

)
+ J×B− (µ̄+ κ)

Kp
V (2.3)

ρj̄

(
∂Ω̄

∂t̄
+ V · ∇ Ω̄

)
= −2κΩ̄+κVp+(µ̄+ κ)∇2V×V−γ

(
∇×∇× Ω̄

)
+(α+β+γ)∇(∇·Ω̄) (2.4)

Along with the generalized ohm’s law J = σ(E + V · B). Where V = (ū, v̄, 0) is the velocity
vector, Ω̄ = (0, 0, N̄) the microrotation vector, p̄ the total fluid pressure, µ̄ is the dynamic viscosity,
∂
∂t̄ is the material time derivative, t̄ is the time, ρ̄ the fluid density, j̄ the micro gyration parameter,
J current density vector, σ electrical conductivity of the fluid and E is the electric field vector.
The present phenomenon can be transfer from laboratory frame to wave frame via the following
relations

x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c, v̄ = V̄ , w̄ = W̄ , p̄(x̄, ȳ) = p(X̄, Ȳ , t̄)

Where c is the speed of propagation of wave.
Using the assigned values of velocity field, we have the following expressions:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2.5)
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ρ
(
∂
∂t̄ + (ū+ c) ∂

∂x̄ + v̄ ∂
∂ȳ

)
(ū+ c) = − ∂p̄

∂x̄ + (µ+ k̄)
(
∂2

∂x2 + ∂2

∂y2

)
(ū+ c)+(

∂µ
∂x̄

∂
∂x̄ + ∂µ

∂ȳ
∂
∂ȳ

)
(ū+ c) + K̄ ∂N̄

∂ȳ − σB
2
0 (ū+ c)− (µ+K̄)

kp
(ū+ c)

(2.6)

ρ
(
∂
∂t̄ + (ū+ c) ∂

∂x̄ + v̄ ∂
∂ȳ

)
v = − ∂p̄∂ȳ + (µ+ k)

(
∂2

∂x2 + ∂2

∂y2

)
v̄

+
(
∂µ
∂x̄

∂
∂x̄ + ∂µ

∂ȳ
∂
∂ȳ

)
v̄ −K ∂w̄

∂x̄ −
(µ+K̄)

k̄p
v̄

(2.7)

ρj̄

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
w̄ = γ

∂2w̄

∂ȳ2
− K̄

(
2w̄ +

∂ū

∂ȳ

)
(2.8)

The energy equation is

ρCp

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
T̄ =

∂

∂x̄

(
k
∂T̄

∂x̄

)
+

∂

∂ȳ

(
k
∂T̄

∂ȳ

)
+Q0(T̄ − T0)

r

(2.9)

where Cp the specific heat, T̄ the temperature, µ
(
T̄
)
variable viscosity ,k the variable thermal

conductivity, Q0 the constant heat addition/absorption and T0 the temperature at the lower and
upper walls respectively. Introducing the following dimensionless variables,

x = x̄
λ , y = ȳ

a , u = ū
c , v = v̄

cδ , t = ct̄
λ , j = j̄

a2 , δ = a
λ , p = a2p

µ0cλ
, h = h̄

a , φ = b
a

w = aw
c , kp =

k̄p
a2 , k = k̄

µ0
, µ(θ) = µ(T̄ )

µ0
, k(θ) = k(T̄ )

k0
, θ = T̄−T0

T1−T0

(2.10)

Substituting equation (2.10) into equations (2.5) – (2.9) to obtain
From equation (2.5) we have;

c
λ
∂u
∂x + cδ

a
∂v
∂y = 0

c
λ

(
∂u
∂x + ∂v

∂y

)
= 0

∂u
∂x + ∂v

∂y = 0

From equation (2.6) we have;

ρc2

λ

(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
(u+ 1) = −µ0c

a2
∂p
∂x + µ0c

a2 (µ (θ) + k)
(
δ2 ∂2u

∂x2 + ∂2u
∂y2

)
+

µ0

a2

(
δ2 ∂θ
∂x

∂u
∂x + ∂µ(θ)

∂y
∂u
∂y

)
+ µ0

a2 k
∂w
∂y − σB

2
0c (u+ 1)− µ0c

a2
(µ(θ)+k)

kp
(u+ 1) + ρgα (T1 − T0) θ

(2.11)
Simplifying;

ρca2

µ0λ

(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
(u+ 1) = − ∂p

∂x + (µ (θ) + k)
(
δ2 ∂2u

∂x2 + ∂2u
∂y2

)
+(

δ2 ∂µ(θ)
∂x

∂u
∂x + ∂µ(θ)

∂y
∂u
∂y

)
+ k ∂w∂y −

σB2
0a

2

µ0
(u+ 1) + ρgαa2(T1−T0)

µ0c
θ − (µ(θ)+k)

kp
(u+ 1)

(2.12)

This implies;

Reδ
(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
(u+ 1) = − ∂p

∂x + (µ (θ) + k)
(
δ2 ∂2u

∂x2 + ∂2u
∂y2

)
+(

δ2 ∂µ(θ)
∂x

∂u
∂x + ∂µ(θ)

∂y
∂u
∂y

)
+ k ∂w∂y −Ha

2 (u+ 1)− (µ(θ)+k)
kp

(u+ 1) +Grθ

(2.13)

From equation (2.7) we have;
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ρ
(
c
λ
∂
∂t + (cu+ c)) ∂

λ∂x + cδv ∂
a∂y

)
cδv = −µ0cλ

a3
∂p
∂y + (µ0µ (θ) + µ0k)

(
∂2

λ2∂x2 + ∂2

a2∂y2

)
cδv

+
(
µ0

λ
∂µ(θ)
∂x

∂
λ∂x + µ0

a2
∂µ(θ)
∂y

∂
∂y

)
cδv − µ0

c
aλ

∂w
∂x −

(µ0µ(θ)+µ0k)
a2kp

cδv

(2.14)

Simplifying we have;

ρc2δ
λ

(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
v = −µ0cλ

a3
∂p
∂y + µ0cδ

a2 (µ (θ) + k)
(
δ2 ∂2v
∂x2 + ∂2v

∂y2

)
+µ0cδ

a2

(
δ2 ∂µ(θ)

∂x
∂v
∂x + ∂µ(θ)

∂y
∂v
∂y

)
− µ0c

aλ
∂w
∂x −

µ0cδ
a2

(µ(θ)+k)
kp

v

(2.15)

ρca
µ0λ2 aδ

(
∂
∂t + (u+ 1)) ∂

∂x + v ∂
∂y

)
v = − ∂p∂y + a

λδ (µ (θ) + k)
(
δ2 ∂2v
∂x2 + ∂2v

∂y2

)
+

a
λδ
(
δ2 ∂µ(θ)

∂x
∂v
∂x + ∂µ(θ)

∂y
∂v
∂y

)
− a2

λ2
∂w
∂x −

a
λδ

(µ(θ)+k)
kp

v

(2.16)

Re a
2

λ2 δ
(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
v = − ∂p∂y + δ2 (µ (θ) + k)

(
δ2 ∂2v
∂x2 + ∂2v

∂y2

)
+ a
λδ
(
δ2 ∂µ(θ)

∂x
∂v
∂x + ∂µ(θ)

∂y
∂v
∂y

)
− δ2 ∂w

∂x − δ
2 (µ(θ)+k)

kp
v

(2.17)

Reδ3
(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
v = − ∂p∂y + δ2 (µ (θ) + k)

(
δ2 ∂2v
∂x2 + ∂2v

∂y2

)
+

δ2
(
δ2 ∂µ(θ)

∂x
∂v
∂x + ∂µ(θ)

∂y
∂v
∂y

)
− δ2 ∂w

∂x − δ
2 (µ(θ)+k)

kp
v

(2.18)

From equation (2.8) we have;

ρCp

(
c(T1−T0)

λ
∂θ
∂t + c(T1−T1)

λ (u+ 1) ∂θ∂x + cδ(T1−T0)
a v ∂θ∂y

)
=

1
λ
∂
∂x

(
k0k (θ) T1−T0

λ
∂θ
∂x + 1

a
∂
∂y (k0k (θ)) (T1−T0)

a
∂θ
∂y

)
+Q0 (T1 − T0)

r
θr

(2.19)

ρCpc(T1−T0)
λ

(
∂
∂t + (u+ 1) ∂

∂x + v ∂
∂y

)
θ = k0(T1−T0)

λ2
∂
∂x

(
k (θ) ∂θ∂x

)
+

k0(T1−T0)
a2

∂
∂y

(
k (θ) ∂θ∂y

)
+Q0 (T1 − T0)

r
θr

(2.20)

ρCpca
2

k0λ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
θ =

a2

λ2

∂

∂x

(
k (θ)

∂θ

∂x

)
+

∂

∂y

(
k (θ)

∂θ

∂y

)
+
Q0 (T1 − T0)

r−1

k0
θr

(2.21)

ρca

µ0

µ0Cp
k0

a

λ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
θ = δ2 ∂

∂x

(
k (θ)

∂

∂x

)
+
∂

∂y

(
k (θ)

∂θ

∂y

)
+
Q0 (T1 − T0)

r−1

k0
θr

(2.22)

ρca

µ0

a

λ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
θ =

δ2k0

µ0Cp

∂

∂x

(
k (θ)

∂

∂x

)
+

k0

µ0Cp

∂

∂y

(
k (θ)

∂θ

∂y

)
+
Q0 (T1 − T0)

r−1
a2

µ0Cp
θr

(2.23)
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Reδ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
θ =

δ2

Pr

∂

∂x

(
k (θ)

∂θ

∂x

)
+

1

Pr

∂

∂y

(
k (θ)

∂θ

∂y

)
+ βrθ

r (2.24)

From eq. equation (2.9) we have;

ρa2j

(
c2

aλ

∂w

∂t
+
c2

aλ
(u+ 1)

∂w

∂x
+
c2δ

a2

∂w

∂y

)
=

c

a3
γ
∂2w

∂y2
−Kµ0

(
2c

a
w +

c

a

∂u

∂y

)
(2.25)

ρca

µ0
δj

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
w =

γ

µ0a2

∂2w

∂y2
−K

(
2w +

∂u

∂y

)
(2.26)

Reδ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
w = M

∂2w

∂y2
−K

(
2w +

∂u

∂y

)
(2.27)

where

Re = ρca
µ0
, H2

a =
σa2B2

0

µ0
, βr = Q0a

2

µ0Cp(T1−T0)1−r , Gr = ραga2(T1−T0)
µ0c

,

pr =
µ0cp
k0

,M = γ
µ0a2

(2.28)

Re is the Reynold’s number,Ha the magnetic parameter(Hartman number), Gr Grashof number,
Pr Prandtl number,M micropolar parameter and βr the rate of heat generation/absorption of order
r.
Assuming a long wavelength and low Reynolds number in equations (2.24) – (2.28) above and
neglecting high powers of δ, we obtain;
From equation (2.24) we have;

∂p

∂x
= (µ (θ) +K)

∂2u

∂y2
+
∂µ (θ)

∂y

∂u

∂y
+K

∂w

∂y
−
(
Ha2 +

µ (θ) +K

kp

)
(u+ 1) +Grθ (2.29)

From equation (2.25) we have;

∂p

∂y
= 0 (2.30)

1

Pr

∂

∂y

(
k (θ)

∂θ

∂y

)
+ βθr = 0 (2.31)

From equation (2.26) we have;

M
∂2w

∂y2
−K

(
2w +

∂u

∂y

)
= 0 (2.32)

Introducing the Reynold’s models along with linear variation of thermal conductivity

µ (θ) = 1− ε1θ and k (θ) = 1 + ε2θ (2.33)

Substituting for k(θ) and its associate derivatives in (2.27) to get;

k (θ)
∂2θ

∂y2
+
∂k (θ)

∂y

∂θ

∂y
+ βrPrθ

r = 0 (2.34)

(1 + ε2θ)
∂2θ

∂y2
+ ε2

(
∂θ

∂y

)2

+ βrPrθ
r = 0 (2.35)
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In order for us to solve the problem exactly, we made the assumption of thermal viscosity
parameter ε2 = 0 in (2.35), to obtain,

∂2θ

∂y2
+ βrPrθ

r = 0 (2.36)

where r = 0,1. . . n When r = 0, equation (2.36) becomes;

∂2θ

∂y2
+ β0Pr = 0 (2.37)

The associate boundary conditions;

θ′ (0) = 0, θ (h) = 1 (2.38)

Solving equation (2.37) with equation (2.38), we get

θ (y) = 1− β0Pr
2

(
y2 − h2

)
(2.39)

θ (0) = 0, θ (h) = 1 (2.40)

When r = 1
∂2θ

∂y2
+ β1Prθ = 0 (2.41)

Solving equation (2.42) together with equation (2.40), we get

θ (y) = sec(
√
β1Prh) cos(

√
β1Pry) (2.42)

For the case of ε2 6= 0,in equation (2.35) the problem will be solve by the method of differential
transform method which will be treated as the general case in this study.
On differentiating equation (2.32) w.r.t y we have

∂

∂y

(
(µ (θ) + k)

∂2u

∂y2

)
+

∂

∂y

(
∂µ (θ)

∂y

∂u

∂y

)
+ k

∂2w

∂y2
− ∂

∂y

(
Ha2 +

µ (θ) + k

kp

)
(u+ 1) +Gr

∂θ

∂y
= 0

(µ (θ) + k) ∂
3u
∂y3 + ∂µ(θ)

∂y
∂2u
∂y2 + ∂µ(θ)

∂y
∂2u
∂y2 + ∂2µ(θ)

∂y2
∂u
∂y + k ∂

2w
∂y2 −

(
Ha2 + µ(θ)+k

kp

)
∂u
∂y −

1
kp

∂µ(θ)
∂y (u+ 1) +Gr

∂θ
∂y = 0

(µ (θ) +K) ∂
3u
∂y3 + 2∂µ(θ)

∂y
∂2u
∂y2 + ∂2µ(θ)

∂y2
∂u
∂y +K ∂2N

∂y2 −
(
Ha2 + µ(θ)+K

kp

)
∂u
∂y −

1
kp

∂µ(θ)
∂y (u+ 1) +Gr

∂θ
∂y = 0

(2.43)
but µ (θ) = 1− ε1θ from Reynolds’ model,

(1 +K) ∂
3u
∂y3 − ε1

∂3u
∂y3 − 2ε1

∂θ
∂y

∂2u
∂y2 − ε1

∂u
∂y

∂2θ
∂y2 +K ∂2w

∂y2 −
(
Ha2 + 1+K

kp

)
∂u
∂y

+Gr
∂θ
∂y + ε1θ

∂u
∂y +

(
ε1
Kp

+Gr

)
∂θ
∂y + ε1

Kp
u ∂θ∂y = 0

Suppose ε1 = 0 eq. equation (2.35) becomes;

(1 +K)
∂3u

∂y3
+K

∂2w

∂y2
−
(
Ha2 +

1 +K

kp

)
∂u

∂y
+Gr

∂θ

∂y
= 0 (2.44)

From eq. equation (2.33), we obtain;

∂u
∂y = M

K
∂2w
∂y2 − 2w

∂2u
∂y2 = M

K
∂3w
∂y3 − 2∂w∂y

∂3u
∂y3 = M

K
∂4w
∂y4 − 2∂

2w
∂y2

(2.45)
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Substituting equation (2.45) into equation (2.44) to obtain;

(1 +K)

(
M

K

∂4w

∂y4
− 2

∂2w

∂y2

)
+K

∂2w

∂y2
−
(
Ha2 +

1 +K

Kp

)(
M

K

∂2w

∂y2
− 2w

)
+Gr

∂θ

∂y
= 0

(1 +K)
M

K

∂4w

∂y4
−2 (1 +K)

∂2w

∂y2
+K

∂2w

∂y2
−
(
Ha2 +

1 +K

Kp

)
M

K

∂2w

∂y2
+2

(
Ha2 +

1 +K

Kp

)
w+Gr

∂θ

∂y
= 0

M(1 +K)
∂4w

∂y4
−
(

(K + 2) +M

(
Ha2 +

1 +K

kp

))
∂2w

∂y2
+ 2K

(
Ha2 +

1 +K

Kp

)
w = −Gr

∂θ

∂y
K

(2.46)
Which simplifies to

A
∂4w

∂y4
+B

∂2w

∂y2
+ Cw = g (y) (2.47)

Where

A = M(1 +K), B = −{K (2 +K) +Mξ} , C = 2Kξ

and ξ = Ha2 + 1+K
Kp

, g (y) = −KGr ∂θ∂y
(2.48)

equation (2.47) is a 4th order linear homogeneous ODE whose solution are dependent on the
nature of θ(y).

If r = 0,
then

θ(y) = 1− β0Pr

2

(
y2 − h2

)
⇒ g (y) = GrKβ0Pry (2.49)

Thus, equation (2.47) becomes

A
∂4w

∂y4
+B

∂2w

∂y2
+ Cw = GrKβ0Pry (2.50)

Whose solution is;

w (y) = c1 cosh (λ1y) + c2 sinh (λ1y) + c3 cosh (λ2y) + c4 sinh (λ2y) +
Grβ0Pr

2ξ
y (2.51)

Where

λ1 =

√
−B +

√
B2 − 4AC

2A
and λ2 =

√
−B −

√
B2 − 4AC

2A

and c1, c2, c3 and c4 are arbitrary constants. substituting µ (θ) = 1− ε1θ , when ε1 = 0
From equation (2.29);

∂p

∂x
= (µ (θ) +K)

∂2u

∂y2
+
∂µ (θ)

∂y

∂u

∂y
+K

∂w

∂y
−
(
Ha2 +

µ (θ) +K

kp

)
(u+ 1) +Grθ

∂p

∂x
= (1 +K)

∂2u

∂y2
+K

∂w

∂y
− ξ (u+ 1) +Grθ

∂p

∂x
= (1 +K)

∂2u

∂y2
+K

∂w

∂y
− ξ (u+ 1) +Grθ

ξ (u+ 1) = (1 +K)
∂2u

∂y2
+K

∂w

∂y
+Grθ −

∂p

∂x
(2.52)
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Substituting eq. equations (2.45) and (2.46) into equation (2.51) to obtain;

u+ 1 =
M (1 +K)

Kξ

∂3w

∂y3
− K + 2

ξ

∂w

∂y
+
Gr
ξ

(
1− β0Pr

2

(
y2 − h2

))
− 1

ξ

∂p

∂x
(2.53)

Differentiating (2.50) with respect to y three times to get;

∂w

∂y
= c1λ1 sinh (λ1y) + c2λ1 cosh (λ1y) + c3λ2 sinh (λ2y) + c4λ2 cosh (λ2y) +

Grβ0Pr
2ξ

∂2w

∂y2
= c1λ

2
1 cosh (λ1y) + c2λ

2
1 sinh (λ1y) + c3λ

2
2 cosh (λ2y) + c4λ

2
2 sinh (λ2y)

∂3w

∂y3
= c1λ

3
1 sinh (λ1y) + c2λ

3
1 cosh (λ1y) + c3λ

3
2 sinh (λ2y) + c4λ

3
2 cosh (λ2y) (2.54)

Substituting (2.53) into equation (2.52) to obtain;

u (y) = M(1+K)
Kξ

[
λ3

1 {c1 sinh (λ1y) + c2 cosh (λ1y)}+λ3
2 {c3 sinh (λ2y) + c4 cosh (λ2y)}

]
−K+2

ξ

[
λ1 {c1 sinh (λ1y) + c2 cosh (λ1y)}+λ2 {c3 sinh (λ2y) + c4 cosh (λ2y)}+ Grβ0Pr

2ξ y
]

+Gr

ξ

(
1− β0Pr

2

(
y2 − h2

))
− 1

ξ
∂p
∂x − 1

Simplifying we have

u (y) = M(1+K)
Kξ

[
λ3

1 {c1 sinh (λ1y) + c2 cosh (λ1y)}+λ3
2 {c3 sinh (λ2y) + c4 cosh (λ2y)}

]
−K+2

ξ

[
λ1 {c1 sinh (λ1y) + c2 cosh (λ1y)}+λ2 {c3 sinh (λ2y) + c4 cosh (λ2y)}+ Grβ0Pr

2ξ y
]

+Gr

ξ

(
1− β0Pr

2

(
y2 − h2

))
− 1

ξ
∂p
∂x − 1

(2.55)

∂u
∂y = M(1+K)

Kξ

[
λ4

1 {c1 cosh (λ1y) + c2 sinh (λ1y)}+λ4
2 {c3 cosh (λ2y) + c4 sinh (λ2y)}

]
− 2+K

ξ

[
λ2

1

{
{c1 cosh (λ1y) + c2 sinh (λ1y)}+λ2

2 {c3 cosh (λ2y) + c4 sinhλ2y}
}]
− Grβ0Pr

ξ y

(2.56)
Considering the slip boundary conditions;

u± ς ∂u
∂y

= −1 at y = ± h (x) , w = 0 at y = ±h and ψ = 0 at y = 0

Where ς is the slip parameter.
Imposing (2.56) on (2.51), (2.54) and (2.55), we have;

c1 cosh (λ1h) + c2 sinh (λ1h) + c3 cosh (λ2h) + c4 sinh (λ2h) +
Grβ0Pr

2ξ
h = 0 (2.57)

c1 cosh (λ1h)− c2 sinh (λ1h) + c3 cosh (λ2h)− c4 sinh (λ2h)− Grβ0Pr
2ξ

h = 0 (2.58)

ξ1

{
[c1 sinh (λ1h) + c2 cosh (λ1h)] + αλ1 [c1 cosh (λ1h) + c2 sinh (λ1h)]

+ [c3 sinh (λ2h) + c4 cosh (λ2h)] + αλ2 [c3 cosh (λ2h) + c4 sinh (λ2h)]

}

−Grβ0Pr

2ξ2 (K + 2) + Gr

ξ −
Grβ0Prα

ξ h− 1
ξ
∂p
∂x = 0

(2.59)
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ξ1 [c1 cosh (λ1h)− c1 sinh (λ1h) + αλ1 (c2 sinh (λ1h)− c2 cosh (λ1h))]

+ξ2 [c4 cosh (λ2h)− c3 sinh (λ2h) + αλ2 (c4 sinh (λ2h)− c3 cosh (λ2h))]

Grβ0Pr

2ξ2 (K + 2) + Gr

ξ h−
1
ξ
∂p
∂x = 0

(2.60)

Solving equations (2.57)–(2.60) simultaneously to obtain;

c1 = c3 = 0, c2 =
1

2ξ2L

(
L1 + 2 sinh (λ1h) ξ

∂p

∂x

)
and c4 = − 1

2ξ2L

(
L2 + 2 sinh (λ1h) ξ

∂p

∂x

)
(2.61)

where;

ξ1 =
M (1 +K)

Kξ
λ3

1 −
2 +K

ξ
λ1 and ξ2 =

M (1 +K)

Kξ
λ3

2 −
2 +K

ξ
λ2 (2.62)

L = ξ1 [cosh (λ1h) + ςλ1 sinh (λ1h)] sinh (λ2h)− ξ2 [cosh (λ2h) + ςλ2 sinh (λ2h)] sinh (λ1h)

L1 = (cosh (λ2h) + ςλ2 sinh (λ2h))Grβ0Prhξξ2 + (ςβ0Prhξ + (K + 2)β0Pr − 2ξ)Gr sinh (λ2h)

L2 = (cosh (λ1h) + ςλ1 sinh (λ1h))Grβ0Prhξξ1 + (ςβ0Prhξ + (K + 2)β − 2ξ)Gr sinh (λ1h)
(2.63)

Substituting for c1, c2, c3 and c4 into their constituent equations, we obtain;

w (y) = 1
2ξ2L (L1 sinh (λ1y)− L2 sinh (λ2y)) + 1

Lξ
∂p
∂x (sinh (λ2h) sinh (λ1y)− sinh (λ1h) sinh (λ2y))

(2.64)

u (y) = 1
2ξ2L (L1ξ cosh (λ1y)− L2ξ2 cosh (λ2y))+Gr(K+2)

2ξ2 + Gr

ξ

(
1− β0Pr

2

(
y2 − h2

))
− 1

+ 1
Lξ

∂p
∂x (ξ1 sinh (λ2h) cosh (λ1y)− ξ2 sinh (λ1h) cosh (λ2y)− L)

(2.65)

and

ψ (y) = 1
2ξ2L

(
L1ξ1
λ1

sinh (λ1y)− L2ξ2
λ2

sinh (λ2y)
)

+Grβ0Pr(K+2)
2ξ2 y + Gr

ξ

[
y − β0Pr

2

(
y3

3 − h
2y
)]
− y

+ 1
Lξ

∂p
∂x

[
ξ1
λ1

sinh (λ2h) sinh (λ1y)− ξ2
λ2

sinh (λ1h) sinh (λ2y)− Ly
]

(2.66)
The volumetric rate of flow in the wave frame is given as;

q =

∫ h

−h
u (y) dy (2.67)

Which simplifies to;

q = 1
Lξ2

(
L1ξ1
λ1

sinh (λh)− L2ξ2
λ2

sinh (λ2h)
)

+ F
Lξ

∂p
∂x + Grβ0Pr(K+2)

ξ2 h+ 2Gr

ξ

(
h+ β0Pr

3 h3
)

(2.68)

where F = 2
((

ξ1
λ1
− ξ2

λ2

)
sinh (λ1h) sinh (λ2h)

)
− 2Lh

∂p
∂x = 1

F (q + 2h)Lξ − 1
Fξ

(
L1ξ
λ1

sinh (λ1h)− L2ξ2
λ2

sinh (λ2h)
)
−Gr

(
β0Pr(K+2)Lh

Fξ

)
− 2LξGr

F

(
h+ βrPr

3 h3
)

(2.69)
Case 2:

116

https://doi.org/10.52968/28308561


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 7, No. 2, pp. 107 - 132
https://doi.org/10.52968/28308561

If r = 1 in equation (2.36)

θ (y) = sec
(√

β1Prh
)

cos
(√

β1Pry
)

(2.70)

Thus,
g (y) = GrK

√
β1Pr sec

(√
β1Prh

)
sinh

(√
β1Pry

)
(2.71)

Thus, equation (2.51) becomes;

A
∂4N

∂y4
+B

∂2N

∂y2
+ CN = GrK

√
β1Pr sec

(√
β1Prh

)
sinh

(√
β1Pry

)
(2.72)

Whose solution is;

N (y) = c1 cosh (λ1y) + c2 sinh (λ1y) + c3 cosh (λ2y) + c4 sinh (λ2y)

+GrK
√
β0Pr

Z sec
(√
β0Prh

)
sin
(√
β0Pry

) (2.73)

Where Z = Aβ2
0 −Bβ0 + C

And equation (2.52) becomes on substitution of equation (2.53)

u+ 1 =
M (1 +K)

Kξ

∂3w

∂y3
− K + 2

ξ

∂w

∂y
+Gr sec

(√
β0Prh

)
cos
(√

β0Pry
)
− 1

ξ

∂p

∂x
(2.74)

Differentiating equation (2.73) 3 times to get

∂w
∂y = λ1 (c1 sinh (λ1y) + c2 cosh (λ1y)) + λ2 (c3 sinh (λ2y) + c4 cosh (λ2y))

+ 1
ZGrKβ1Pr

√
β1Pr sec

(√
β1Prh

)
cosh

√
β1Pry

∂2w
∂y2 = λ2

1 (c1 cosh (λ1y) + c2 sinh (λ1y)) + λ2
2 (c3 cosh (λ2y) + c4 sinh (λ2y))

− 1
ZGrKβ1Pr

√
β1Pr sec

(√
β1Prh

)
sinh

(√
β1Pry

)
∂3w
∂y3 = λ3

1 (c1 sinh (λ1y) + c2 cosh (λ1y)) + λ3
2 (c3 sinh (λ2y) + c4 cosh (λ2y))

− 1
ZGrK (β1Pr)

2√
β1Pr sec

(√
β1Prh

)
cosh

(√
β1Pry

) (2.75)

Substituting equation (2.75) into equation (2.74) to obtain;

u (y) = ξ1 (c1 sinh (λ1y) + c2 cosh (λ1y)) + ξ2 (c3 sinh (λ2y) + c4 cosh (λ2y))

+GrH cos
(√
β1Pry

)
− 1

ξ
∂p
∂x − 1

(2.76)

where

H =

(
M (1 +K)

Kξ
− K + 2

ξ

)
GrKβ1Pr sec

(√
β1Prh

)
Z

(1− β1Pr) (2.77)

∂u
∂y = ξ1λ1 [c1 cosh (λ1y) + c2 sinh (λ1y)] + ξ2λ2 [c3 cosh (λ2y) + c4 sinh (λ2y)]

−GrH
√
β1Pr sinh

(√
β1Pry

) (2.78)

Invoking the boundary conditions in equations equation (2.19) into equations (2.73), (2.76) and
(2.77) to obtain;

c1 cosh (λ1h) + c2 sinh (λ1h) + c3 cosh (λ2h) + c4 sinh (λ2h) +
1

Z
GrK

√
β1Pr tan

(√
β1Prh

)
= 0

(2.79)
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c1 cosh (λ1h)− c2 sinh (λ1h) + c3 cosh (λ2h)− c4 sinh (λ2h)− 1

Z
GrK

√
β1Pr tan

(√
β1Prh

)
= 0

(2.80)
ξ1 [(c1 sinh (λ1h) + c2 cosh (λ1h)) + ςλ1 (c1 cosh (λ1h) + c2 sinh (λ1h))]

+ξ2 [(c3 sinh (λ2h) + c4 cosh (λ2h)) + ςλ2 (c3 cosh (λ2h)) + c4 sinh (λ2h)]

+Grς
(
cos
(√
β1Prh

)
−
√
β1Pr sin

(√
β1Prh

))
− 1

ξ
∂p
∂x = 0

(2.81)

ξ1 [(c2 cosh (λ1h)− c1 sinh (λ1h))− ςλ1 (c1 cosh (λ1y)− c2 sinh (λ1y))]

+ξ2 [(c4 cosh (λ2y)− c3 sinh (λ2y))− ςλ2 (c3 cosh (λ2y))− c4 sinh (λ2y)]

+Grς
(
cos
(√
β1Prh

)
+
√
β1Pr sin

(√
β1Prh

))
− 1

ξ
∂p
∂x = 0

(2.82)

Solving equations equations (2.79)–(2.82) simultaneously to get;

c1 = c3 = 0, c2 =
1

LξZ

(
L1ξ + Z

∂p

∂x
sinh (λ2h)

)
and c4 = − 1

LξZ

(
L2ξ + Z

∂p

∂x
sinh (λ2h)

)
(2.83)

where;

L = ξ1 [cosh (λ1h) + ςλ1 sinh (λ1h)] sinh (λ2h) + ξ2 [cosh (λ2h) + ςλ2 sinh (λ2h)] sinh (λ1h)

L1 = Gr

(
K tan

(√
β1Prh

)√
β1Prξ2 {cosh (λ2h) + ςλ2 sinh (λ2h)}+

ςZ
{√

β1Pr sinh
(√
β1Prh

)
− cos

(√
β1Prh

)}
sinh (λ2h)

)

L2 = Gr

(
K tan

(√
β1Prh

)√
β1Prξ1 {cosh (λ1h) + ςλ1 sinh (λ1h)}+

ςZ
{√

β1Pr sinh
(√
β1Prh

)
− cos

(√
β1Prh

)}
sinh (λ2h)

)
Substituting equation (2.83) into equations (2.73) and (2.76) to obtain;
From equation (2.73) we have;

w (y) = 1
LZ (L1 sinh (λ1y)− L2 sinh (λy)) + GrK

√
β1Pr

Z sec
(√
β1Prh

)
sinh

(√
β1Pry

)
+
∂p/∂x
Lξ [sinh (λ2h) sinh (λ1y)− sinh (λ1h) sinh (λ2y)]

(2.84)

From equation (2.76) we have;

u (y) = 1
LZ (L1ξ1 cosh (λ1y)− L2ξ2 cosh (λ2y)) +

∂p/∂x
Lξ

(
ξ1 sinh (λ2h) cosh (λ1y)
−ξ2 sinh (λ2y)

)
+GrH cos

(√
β1Pry

)
− 1

ξ
∂p
∂x − 1

(2.85)

and

ψ (y) = 1
LZ

(
L1ξ1
λ1

sinh (λ1y)− L2ξ2
λ2

sinh (λ2y)
)

+
∂p/∂x
Lξ

(
ξ1
λ1

sinh (λ2h) sinh (λ1y)

− ξ2
λ2

sinh (λ2y)

)
+ GrH√

β1Pr
sinh

(√
β1Pry

)
−
∂p/∂x
ξ y − y

(2.86)

The volumetric rate of flow is given by

q =

∫ h

−h
u (y) dy (2.87)
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q =
2

LZ

(
L1ξ1
λ1

sinh (λ1h)− L2ξ2
λ2

sinh (λ2h)

)
+
∂p/∂x
Lξ

F +
2GrH√
β1Pr

sin
(√

β1Prh
)
− 2h (2.88)

where

F = 2

(
ξ1
λ1
− ξ2
λ2

)
sinh (λ1h) sinh (λ2h)− 2Lh (2.89)

∂p

∂x
=

(q + 2h)Lξ

F
− 2ξ

FZ

(
L1ξ1
λ1

sinh (λ1h)− L2ξ2
λ2

sinh (λ2h)

)
− 2GrHLξ

F
√
β1Pr

sin
(√

βrPrh
)

(2.90)

3 Graphical Results and Discussions
The analytical solutions for the axial velocity, micro rotation component, pressure gradient , volu-
metric flow rate and stream function with energy equation were obtained in the previous section for
the cases when r = 0 and 1. This section presents the results obtained graphically using some of the
parameters as [3,9,19,25,29,35]. Figure ?? represent the variations of axial velocity with the height
when x = 0 for different values of all parameters of interest. It can be seen from Figure ?? that an
increase in the magnetic parameter Ha(=

σa2B2
0

µ0
) reduces the speed of the fluid. It can be observe

that at the walls of the channel, the flow started reducing and is more pronounced at the centre of
the channel. This is as a result of the external magnetic force that was applied perpendicular to
the flow. Figure ?? shows the effect of slip parameters on the axial velocity and it can be seen that
the flow stratified increment near the channels as we increase the slip parameter and damping the
speed of flow at the centre of the channel. This evident of slips parameter is well pronounce near
the walls of the channel. Figure ?? describe the effect of porous permeability parameter (Kp) on
the axial velocity. It can be noticed from Figure ?? that as the Grashof number Gr(=

ραga2(T1−T0)
µ0c

)

is increasing, the velocity is damping while the reverse is notice for Prandtl number Pr(=
µ0cp
k0

) in
Figure ??.

The description of microrotation components were depicted in Figure ??. It will be noticed from
Figures. (??, ??, ??, ??) that the microrotation component increases as the governing parameters
were increasing while Figures. (??, ??) reduces. Figures. ?? and ?? show the effect of the governing
parameters on the shear stresses τxy and τyx at the lower and upper walls of the channel. It will
be notice that enhancing the magnetic parameter (Ha) and viscosity parameter (K) increases the
shear stress at both walls of the channel. The reduction in shear stress at the two walls sets in with
increment in porous permeability parameter (Kp), slip parameter (ς), Prandtl number (Pr) and
Grasphof number (Gr). The graphs of pressure rise against slip parameter for different Hartmann
number (magnetic parameter) explain that the pressure rise decreases as the magnetic parameters
is increasing as shown in Figures ?? and ??. Figure ?? and ?? reveal that the pressure rise ∆P
begins to drop as the Grasphof and Prandtl number increases.

Figures [?? - ??] describe the stream functions for different parameters of interest. The dis-
tribution of stream lines pattern in the presence of magnetic field are shown in Figure ?? in one
wave length. We observe that as the Hartmann number Ha increases the formation of bolus at the
wall decreases in size. It is interesting to note from Figure ?? that the trapped bolus decreases
in size and ultimately vanishes for increasing values of slip parameter ς. Thus, the magnetic field
strength and the slip effects helps to restrict the formation of the trapped bolus. Figure ?? gives
the distribution of streamlines for different diverging angle θ. We observe that as θ increases the
trapped bolus found to increase in size on both sides of the central line of the channel. However,
the porous permeability parameter Kp keeps to form more closed streamlines at the wall as shown
in Figure ??.
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4 Conclusions
In this paper, an attempt has been made to investigate the effects of slip velocity on the peristaltic
transport of physiological fluids represented by a micropolar fluid model passing through a non-
uniform porous channel. In this investigation, special emphasis has been paid to the study of
velocity distribution, the pumping characteristics and the trapping phenomena.
From the present analysis, one can make an important conclusion that it is possible to increase
pumping action (pressure gradient) as often as necessary by applying an external magnetic field
and that the bolus formation can be eliminated with a considerable extent. The wall shear stresses
τxy and τyx increase with the increase of Hartmann number Ha at the lower and upper walls. The
slip velocity at the wall has reducing effect on the formation of trapped bolus. Thus the results
presented here throws some light on problems associated with fluid movement in the gastrointestinal
tract, intra-uterine fluid motion induced by uterine contraction, as well as flow through small blood
vessels and intrapleural membranes.
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