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Abstract

We present the dynamics of a SEIQR mathematical model with vaccination and preventive
control measure in the susceptible class. The basic reproduction number of the model dynamics
is obtained by using the next generation matrix method. The disease free equilibrium point
of the model is found to be locally asymptotically stable if R0 |ω=0< 1 and a unique endemic
equilibrium point exist if R0 |ω=0> 1. The disease free equilibrium point of the model is found
to be globally asymptotically stable if R0 |ω=0≤ 1 by using a suitable Lyapunov function. The
contribution of the model parameters on the basic reproduction number is also determined
through sensitivity analysis.
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1 Introduction
Mathematical models give an insight into the dynamics of a disease in a population and the factors
responsible for the spread of the disease with the help of mathematical equations to emulate real
life situations. The SIR (Susceptible, Infected, Recovered) mathematical model is the building
block of most epidemic model. It was first introduced in 1927 by Kermack and Mckendrick. The
fundamental parameters in the SIR model are the contact rate and recovery rate. However, the SIR
model is not sufficient to effectively capture the dynamics of most diseases and that is why it has
been extended to involve other compartments like exposed compartment, isolated compartment,
quarantined compartment etc for effective analysis [1, 2]. Cao and Zhou formulated a stochastic
SIRQ mathematical model with quarantined adjusted incidence by examining the qualitative be-
haviours [3]. Yan and Zou used a SEQIJR mathematical model to model SARS by finding the
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Fig.1.Flow chat of the model

optimal control strategies to manage the disease [4]. Quarantine/Isolation model can be used to
model novel diseases like COVID-19 as seen in [5–8].
SEIQR models also have applications in information technology. Mishra and Ja [9] used the SEIQRS
mathematical model to study the transmission of malicious objects in a computer network. Zheng
et al. [10] used a modified SEIQR model to study the effects of different quarantined rates on worm
propagation in mobile internet. It was established that a quarantined strategy that reduces viruses
spread will be of advantage to manufacturers to isolate equipment more effectively and reduce eco-
nomic losses.
In this research work, we use an expanded SEIQR mathematical model with vaccination and pre-
ventive effects captured in the model to analyze disease dynamics in a population and the impact
of key parameters on the basic reproduction number.

2 Model Formulation
The population is divided into five compartments: S represents the susceptible compartment; E
represents the exposed compartment; I represents the infectious compartment; Q represents the
quarantined compartment and R represents the recovered compartment. The susceptible population
is increased by recruitment at rate Λ and loss of immunity from the recovered class at rate ω. It
is reduced as a result of interaction with infectious population and vaccination at rate β and
v respectively which leads to an increase in the exposed and recovered population respectively.
We use φ denote the fraction of the population who make preventive efforts to prevent contact
with infectious people. The exposed population is reduced by migration to infectious class after
a complete incubation of the disease at rate α. The infectious population is reduced by effective
treatment at rate γ, progression to quarantine at rate σ and disease induced death at rate δ. The
quarantined class is is reduced by effective treatment at rate θ and disease induced death at rate
δQ. The recovered population is increased by effective treatment from the infectious class and
quarantined class. Every compartment is reduced by natural death at rate µ. The model is thus
described by the following systems of differential equations given below.
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dS

dt
= Λ − β(1 − φ)SI − (µ+ v)S + ωR (2.1)

dE

dt
= β(1 − φ)SI − (α+ µ)E (2.2)

dI

dt
= αE − (σ + µ+ δ + γ)I (2.3)

dQ

dt
= σI − (θ + δQ + µ)Q (2.4)

dR

dt
= γI + θQ+ vS − (µ+ ω)R (2.5)

The parameters used in the model (2.1) − (2.5) are described in Table 1.

Table 1. The description of the parameters of model.

Definition Symbols
Recruitment term of the susceptible humans Λ

Transmission rate contact rate β
Natural death rate µ

Progression rate from infectious stage to quarantined stage σ
Progression rate from exposed stage to infectious stage α

Disease induced death rate at infectious stage δ
Disease induced death rate at quarantined stage δQ

Effective treatment rate from infectious stage γ
Effective treatment rate from quarantined stage γ

Vaccination rate v
Loss of immunity rate ω

3 Results and discussions
3.1 Positivity of solutions

Theorem 1: (Positivity of solutions). Let R defined by {S(t), E(t), I(t), Q(t), R(t) ∈ R5
+} with initial

conditions S(0) ≥ 0, E(0) ≥ 0, I0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 then the solution of S(t), E(t), I(t), Q(t), R(t)
for system (2.1)− (2.5) are positive for t ≥ 0.

Proof: Equation (2.1) can be reduced to

dS

dt
≥ Λ− (µ+ v)S (3.1)

Solving (3.1) gives

S(t) ≥ Λ

(µ+ v)
+

(
S(0)− Λ

(µ+ v)

)
e−(µ+v)t ≥ 0

Similar procedure establishes the positivity of the solution of E(t), I(t), Q(t), R(t).

3.2 Invariant region

Theorem 2: (Invariant region). The feasible region R defined by {S(t), E(t), I(t), Q(t), R(t) ∈ R5
+ :

N(0) ≤ N(t) ≤ Λ
µ
} with initial conditions S(0) ≥ 0, E(0) ≥ 0, I0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 is positive

invariant for system (2.1)− (2.5).

Proof: N(t) = S(t) + E(t) + I(t) +Q(R) +R(t) represents the total human population.

dN

dt
= Λ− µN − δI − δQQ (3.2)

dN

dt
≤ Λ− µN (3.3)
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Solving (3.3) gives

0 ≤ 0N(t) ≤
(
N(0)e−µt +

Λ

µ
(1− e−µt)

)
As t→∞,

N(0) ≤ N(t) ≤ Λ

µ
(3.4)

The region where the model makes epidemiological sense is established and it is positively invariant and
globally attracting in R5

+ with respect to the system under consideration.

3.3 Disease-free equilibrium point

The disease-free equilibrium point of system is obtained by setting equations (2.1)− (2.5) to zero with
the condition that there is no infection in the population. It exists at the point

π0 =

(
Λ(µ+ ω)

(µ+ v)(µ+ ω)− vω , 0, 0, 0,
Λv

(µ+ ω)(µ+ v)− vω

)
(3.5)

3.4 Basic reproduction number

The next generation matrix approach by Driessche and Watmough [11] is applied to evaluate the basic
reproduction number. The nonlinear terms with the new infection F and the outflow term V are given by

F =

(
β(1− φ)SI

0

)

V =

(
(α+ µ)E

−αE + (σ + µ+ δ + γ)I

)
The partial derivative of F and V with respect to E and I at the disease free equilibrium point gives

F =

(
0 β(1−φ)Λ(µ+ω)

(µ+v)(µ+ω)−vω
0 0

)

V =

(
(α+ µ) 0
−α (σ + µ+ δ + γ)

)
R0 = ρ(FV−1) =

Λαβ(1− φ)(µ+ ω)

(α+ µ)(σ + µ+ δ + γ)[(µ+ v)(µ+ ω)− vω]

When ω = 0, the basic reproduction number becomes

R0 |ω=0=
Λαβ(1− φ)

(α+ µ)(σ + µ+ δ + γ)(µ+ v)

3.5 Local stability of disease free equilibrium

Theorem 3: (Local stability of disease free equilibrium). The disease-free equilibrium for the system
(2.1)− (2.5) is locally asymptotically stable if R0 |ω=0< 1 and unstable otherwise.

Proof: We shall consider the case when ω = 0. The Jacobian matrix evaluated at the disease-free
equilibrium is given by

J(π0) =


−(µ+ v) 0 −β(1−φ)Λ

(µ+v)
0 0

0 −(α+ µ) β(1−φ)Λ
(µ+v)

0 0

0 α −(σ + µ+ δ + γ) 0 0
0 0 α −(θ + δQ + µ) 0
0 0 γ θ −µ


Some of the roots of the characteristic equation are are −µ, −(µ+ v) and −(θ+ δQ + µ). The others roots
can be obtained from the sub matrix given below.(

−(α+ µ) β(1−φ)Λ
(µ+v)

α −(σ + µ+ δ + γ)

)
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The characteristic equation has negative root if the trace is negative and the determinant is positive.
Trace J(π0) = −(α+ µ)− (σ + µ+ δ + γ) < 0
Determinant of J(π0) = (α+ µ)(σ + µ+ δ + γ)(1−R0 |ω=0). It is positive if R0 < 1.
Hence, the disease-free equilibrium for the system (2.1)−(2.5) is locally asymptotically stable if R0 |ω=0< 1
and unstable otherwise.

3.6 Existence of endemic equilibrium

Theorem 4: (Existence of endemic equilibrium). The model (2.1)− (2.5) has an endemic equilibrium
when R0 |ω=0> 1.

Proof: Let E∗
end = (S∗, E∗, 1∗, Q∗, R∗) be a non trivial equilibrium of the model (2.1) − (2.5). The

model (2.1)− (2.5) at steady state becomes

S∗ =
Λ

(µ+ v)R0 |ω=0)

E∗ =
Λ(R0 |ω=0 −1)

(µ+ v)R0 |ω=0)

I∗ =
(µ+ v)(R0 |ω=0 −1)

ββ(1− φ)

Q∗ =
σ(µ+ v)(R0 |ω=0 −1)

β(1− φ)(θ + δQ + µ)

R∗ =
1

µ

[(
θσ

(θ + δQ + µ)
+ γ

)(
(µ+ v)(R0 |ω=0 −1)

β(1− φ)

)
+

Λv

(µ+ v)R0 |ω=0)

]

3.7 Global stability

Theorem 5: (Global stability of disease free equilibrium).The disease free equilibrium point of the
model (2.1)− (2.5) is globally asymptotically stable if R0 |ω=0≤ 1.

Proof: Consider the following linear Lyapunov function:

V = αE + (α+ µ)I

V̇ = α[β(1− φ)SI − (α+ µ)E] + (α+ µ)[αE − (σ + µ+ δ + γ)I]

Simplifying gives
V̇ ≤ (α+ µ)(σ + µ+ δ + γ)[R0 |ω=0 −1]I

It shows that V̇ ≤ 0 if R0 < 1 with equality if R0 |ω=0= 1 or I = 0. This shows that the largest invariant set
in {S(t), E(t), I(t), Q(t), R(t) ∈ R5

+} is the singleton π0. Therefore, by the Lasalle invariance principle [12],
every solution to system (2.1)− (2.5) with initial conditions in R5

+ approaches π0 as t→∞

3.8 Sensitivity analysis

The normalised forward sensitivity index of a variable x that depends on a parameter, P is defined as:

ΥP
x =

∂P

∂x
× x

P

Positive sensitivity index shows a direct proportionality with respect to the basic reproduction number
while negative index implies inverse proportionality. Sensitivity index of the basic reproduction number
with respect to the model parameters are computed below.

Table 2. Sensitivity Index.
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Fig.2.Exposed population trajectory

Parameter Υ
R0|ω=0
parameter

β 1
Λ 1
α µ

(α+µ)

v −v
(µ+v)

δ −δ
(σ+µ+δ+γ)

γ −γ
(σ+µ+δ+γ)

σ −σ
(σ+µ+δ+γ)

µ −µ[µ+v)(α+µ)+(σ+µ+δ+γ)(α+2µ+v)]
(µ+v)(α+µ)(σ+µ+δ+γ)

The greater the magnitude of the sensitivity index, the more sensitive R0 |ω=0 is with respect to that
parameter. From the sensitivity analysis, vaccination will play the biggest role in reducing the basic
reproduction number.

4 Numerical simulation

Numerical simulation is carried out using Maple software to show the trajectories of the population in
exposed infected, quarantined and recovered class subject to the given initial values. The following values
are used to establish theoretical results. S(0) = 1000, E(0) = 200, I(0) = 100, Q(0) = 0, R(0) = 0, β =
0.864, µ = 0.002, σ = 0.015, β = 0.1429, δ = 0.0018, γ = 0.0667, v = 0.01, ω = 0.002, δQ = 0.001. The
trajectories of the compartmental dynamics are shown below.
The simulations show that there is a sharp increase in the exposed class and infected class at the early
stages before a consistent decrease as more people move from the susceptible class due to more contact
with the infected population. The quarantined class experience a steady increase until it reaches its peak
before a steady decline to a particular level. The recovered class experience a steady gradual increase before
reaching a saturation point as more people move from exposed and infected class.
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Fig.3.Infected population trajectory

Fig.4.Quarantined population trajectory

Fig.5.Recovered population trajectory

21

https://doi.org/10.6084/m9.figshare.21758705


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 15 - 22
https://doi.org/10.6084/m9.figshare.21758705

6 Acknowledgements
The authors are grateful to the reviewers and the editor of this article for their input in making this research
work a success.

7 Conclusion
In this paper, we analyzed a SEIQR mathematical model with vaccination and preventive efforts. The
conditions for the local and global stability of the disease free equilibrium point are established. An endemic
equilibrium point exists if R0 |ω=0> 1. The impact of the model parameters on the basic reproduction
number were also determined through sensitive analysis. Vaccination and scaling up treatment efficacy will
go a long way to reducing the basic reproduction number.

References
[1] Badash, V.H., Porwal, P. & Tiwari. V.(2013). Mathematical Modelling and Role of Dynamics in

Epidemiology. International Journal of Computational Science and Mathematics. 5(1), 1-10.

[2] Tolles, J. (2020). Modelling Epidemics With Compartment Models. JAMA Guide to Statistics and
Methods. 323(24), 2515-2516.

[3] Cao, Z. & Zhou, S.(2018). Dynamical Behaviors of a Stochastic SIQR Epidemic Model with Quarantine-
Adjusted Incidence. Discrete Dynamics in nature and Society. Vol 2018, Article ID 3693428.

[4] Yan, X. & Zou, Y. (2006). Optimal Quarantine and Isolation Control in SEQIJR SARS Model. Inter-
national Conference on Control Automation, Robotics and Vision. 1-6.

[5] Zeb, A., Alzahrani,E., Erturk, V.S. and G. Zaman. (2020). Mathematical Model for Coronavirus
Disease 2019 (COVID-19) Containing Isolation Class. BioMed Research International. vol.2020 Article
ID 3452402.

[6] Daniel,D.O. (2020). Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of
Infection and the Need for Prevention Measure in Nigeria. J Infect Dis Epidemiol. 6:158.

[7] Peter, O.J., Qureshi, S., Yusuf, A., Al-Shomrani, M. and Idowu, A.A.(2021). A new mathematical
model of COVID-19 using real data from Pakistan. Results in Physics. 24:1-10.

[8] Nkague Nkamba, L., Mann Manyombe, M.L., Manga, T.T.and Mbang, J.(2020). Modeling Analysis
of a SEIQR Epidemic Model to Assess the impact of Undetecetd Cases and Containment Measures in
the COVID-19 Outbreak in Cameroon. London Journal of Research in Science: Natural and Formal.
20(4):97-112.

[9] Mishra, B.K. & Jha, N.(2010). SEIQRS model for transmission of malicious objects in a computer
networks. Applied Mathematical Modelling. 34(3):710-715.

[10] Zheng, Y., Zhu, J. & Lai, C.(2020). A SEIQR Model considering the Effects of Different Quarantined
Rates on Worm Propagation in Mobile Internet. Mathematical Problems in Engineering. Vol 2020,
Article ID 8161595.

[11] Driessche, P. & Watmough, J. (2002). Reproduction numbers and subthreshold endemic equilibria for
compartmental models of disease transmission. Mathematical biosciences. 180 (1), 29-48.

[12] LaSalle, J. (1976). The Stability of Dynamical Systems, Regional Conference Series in Applied Math-
ematics, SIAM, Philadelphia, USA.

[13] Mufutau, R. A. & Akinpelu, F. (2021). Sensitivity Analysis of Mathematical Modelling of Tuberculosis
Disease With Resistance to Drug Treatments. International Journal of Mathematical Sciences and
Optimization: Theory and Applications 6(2), 940 - 955.

22

https://doi.org/10.6084/m9.figshare.21758705

	Introduction
	Model Formulation
	Results and discussions
	 Numerical simulation
	Declaration of interest
	Acknowledgements
	Conclusion

