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Abstract

This work presents a dynamic and systematic step-by-step method for constructing solitary
wave solutions for non-dissipative nonlinear evolution and wave equations from the real expo-
nential solutions of the underlying linear equations. The work reviewed the direct algebraic
method initially proposed by Hereman et. al. (1985) and employed the methodology in solving
Benjamin - Bona - Mahony (RLW) equation and Joseph - Egri (TRLW) equation. By the
method which involves using a traveling frame of reference to convert the PDE into an ODE
and solving the ODE by algebraic processes; we obtained solutions for the Benjamin - Bona -
Mahony and the Joseph - Egri equations. This method was found to be efficient in constructing
a single solitary wave solution for non-dissipative evolution equations. The results obtained in
this paper are in agreement with those obtained using other methods.
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MSC2010: 76D07.

1 Introduction
Hereman et.al. (1985) proposed a direct algebraic method for solving nonlinear wave and evolution
equations and demonstrated its applicability to the KdV and Burgers Equations. The method
tries to construct single solitary wave solutions for non-dissipative nonlinear partial differential
equations (PDE’s). However, for over a decade, the method has been largely neglected, prob-
ably because it has been difficult to understand or due to the complexity of the methodology.
This paper presents a more detailed physically transparent, straightforward step-by-step technique,
with necessary justifications for every step for constructing such single solitary wave solutions for
non-dissipative nonlinear partial differential equations (PDE’s) and shows its applicability to other
nonlinear wave and evolution equations using Benjamin - Bona - Mahony (RLW) and Joseph - Egri
(TRLW) equations as examples. Some work has been done on nonlinear wave equations. The Reg-
ularized Long-Wave (RLW) equation of Benjamin - Bona - Mahony is a very important equation.
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As reported by Dereli [1] , the equation was first proposed by Peregrine to describe the undular
bore development and later studied by Benjamin, Bona & Mahony [2] as an improvement of the
Korteweg-de Vries equation (KdV equation) for modelling long surface gravity waves of small am-
plitude - propagating uni-directionally in 1+1 dimensions. Benjamin et.al. [2] showed the stability
and uniqueness of solutions to the Benjamin - Bona - Mahony, BBM equation. This contrasts with
the KdV equation, which is unstable in its high wavenumber components. Furthermore, while the
KdV equation has an infinite number of integrals of motion, the BBM equation has only three [2].
The BBM equation possesses solitary wave solutions of a peculiar form. In 1977, Joseph and Egri
proposed a further modification to the KdV equation. The equation became known as Joseph -
Egri equation (or Time Regularized Long Wave equation - TRLWE) [3]. According to Hereman
et.al. [4], the equation has a solitary wave solution. A number of research work has been done
on non-linear wave equations using varying methods and approach [5–12]. Method of reduction of
PDE to ODE to obtain solution has also been studied by [13,14]. The rest of the paper is organized
as follows: Section 2 discusses equations (essential mathematical tools) used in the work. Section
3 presents the methodology. Section 4 is the application and results obtained. Section 5 concludes
the work.

2 MATHEMATICAL TOOLS
In this section we present the RLW equation and the TRLW equation as Mathematical tools for
this work. We also give a step-by-step approach to the improved methodology proposed in the
work.

2.1 Benjamin - Bona - Mahony (RLW) Equation
The Benjamin - Bona - Mahony equation, also known as the Regularized Long-Wave (RLW) equa-
tion is the partial equation

ut + ux + uux − uxxt = 0.

A major mathematical tool is the solitary wave solution of the BBM equation which is of the form:

u = 3
c2

1− c2
sech2 1

2

(
cx− ct

1− c2
+ δ

)
,

where sech is the hyperbolic secant function and δ is a phase shift (by an initial horizontal dis-
placement)

2.2 Joseph - Egri (TRLW) Equation
Another important Mathematical tool is the TRLW equation, (a modification of the KdV equation)
given as follows:

U + Ut + UUx + Uxtt = 0.

This equation is useful for the following reasons:
The system is conservative since it can be derived from the Lagrangian density

L =
1

2
θxθt +

1

2
θ2
x +

1

2
θ3
x −

1

2
θ2
xt

where θx = U
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For large wavenumbers | k |, the infinitesimal-wave phase speed falls off like 1
|k| , in accord with

physical intuition. Since the equation is of second order in t, both U and Ut can be independently
specified for t = 0. The equation became known as Joseph - Egri (or Time Regularized Long Wave
equation - TRLWE) [3]. According to Hereman et.al. [4] the equation has a solitary wave solution:

u(x, t) =
3

α
(v − 1)sech2

[√
v − 1

2v
(x− vt) + δ

]

3 METHODOLOGY
Here, we present the methodology used in this work. The process of the solution is given below:

(i) Starting with the non-linear equation in 1+1 dimensions with x and t as the space and time co-
ordinates respectively, we introduced a travelling frame of reference by ε = x− vt. This transforms
the given non-linear PDE in u(x, t) into an ODE in φ(ε) ∆

= u(x, t). Then,

(ii) We integrated the ODE with respect to ε as many times as possible avoiding integral equations.

(iii) We substituted φ = c1 + φ̂ to obtain the most general solitary solution, possibly having a
constant term, c1.

(iv) Then we considered the linear part of the equation in φ̂, by setting the coefficient(s) of the non-
linear term(s) equal to zero or simply neglecting them. By setting φ̂ = ekε in the linear equation,
the values of k and the constant term c1 are obtained, by setting the φ̂ - independent part equal to
zero. Then we substituted these values back into the equation formed in (iii) above.

(v) For mathematical convenience, we normalized a few coefficients of the nonlinear terms by a
single scaling transformation of φ̂ into φ̃.

(vi) Then we solved the nonlinear equation in φ̃. First by expanding φ̃ in terms of the har-
monics of the decaying exponential solution of the linear equation. By setting g(x) = e−kε and
φ̃ =

∑∞
n=1 ang

n(ε), and applying
Cauchy’s rule for products, the recursion relation for an’s is obtained.

(vii) We now solved the recursion relation to find the general form of the coefficients an. This
we did through direct algebraic process/computation.

(viii) We substituted the coefficients, an, obtained from the recursion relation described above,
into φ̃ obtained above, and used the scaling factor φ = c1 + φ̂, to obtain the solution φ.

(ix) Finally, we returned to the original dependent variable u and the independent variables x
and t. An exact and solitary wave solution of the nonlinear PDE is obtained. Further insight is
given to the forgoing steps demonstrating its application. For the application we use both the RLW
and the Joseph - Egri equation (TRLW).
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4 APPLICATION
The application is in two parts. The method of solution described in section 3 are applied to both
RLW and TRLW.

4.1 Benjamin - Bona - Mahony (RLW) Equation
The Benjamin - Bona - Mahony (RLW) equation is given below as:

ut + ux + αuux − u2xt = 0

We present a solution using the approach/methodology given in section 3.

ut + ux + αuux − u2xt = 0 (4.1)

To solve equation (4.1), we begin by transforming it into an ODE using the travelling frame of
reference

ε = x− vt, φ(ε)
∆
= u(x, t)

ut = −vφε, ux = φε (4.2)

Similarly,

uxx = u2x = φ2ε

u2xt = (u2x)t = −vφ3ε

Substituting (4.2) into (4.1), equation (4.3) is obtained.

− vφε + φε + αφφε + vφ3ε = 0 (4.3)

Integrating (4.3) with respect to ε we have

−v
∫
φεdε+

∫
φεdε+ α

∫
φφεdε+ v

∫
φ3εdε = 0

⇒ −vφ+ φ+
α

2
φ2 + vφ2ε + c1C = 0, (4.4)

where c1C is the constant of integration.
Substituting

φ = c1 + φ̂ (4.5)

into (4.4), we have

−v(c1 + φ̂) + (c1 + φ̂) +
α

2
(c1 + φ̂)2 + v(c1 + φ̂)2ε + c1C = 0

(−v + 1 + αc1)φ̂+ vφ̂2ε +
α

2
φ2 − vc1 + c1 +

α

2
c21 + c1C = 0 (4.6)

Considering the linear part of equation (4.6), by ignoring the nonlinear part and setting the φ̂ -
independent part equal to zero (0) as follows:

i.e. (−v + 1 + αc1)φ̂+ vφ̂2ε = 0

But, φ̂ = ekε, φ̂2ε = k2ekε

∴ (−v + 1 + αc1)e
kε + vk2ekε = 0
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−v + 1 + αc1 + vk2 = 0

∴ k2 =
v − 1− αc1

v

From setting the φ̂ - independent part equal to zero, we get

−vc1 + c1 +
α

2
c21 + c1C = 0

∴ −v + 1 +
α

2
c1 + C = 0

c1 =
2(v − 1− C)

α
(4.7)

Hence,

k2 =
1

v

[
v − 1− α

(
2(v − 1− C)

α

)]
=

1

v
[v − 1− 2v + 2 + 2C]

∴ k =

√
1− v + 2C

v
(4.8)

Substituting (4.7) in (4.6), we get(
−v + 1 + α

[
2(v − 1− C)

α

])
φ̂+ vφ̂2ε +

α

2
φ̂2 = 0

(v − 1− 2C)φ̂+ vφ̂2ε +
α

2
φ̂2 = 0 (4.9)

Here we normalize the coefficient of the nonlinear term by the scaling

φ̂ =
2

α
(1 + 2C − v)φ̃ (4.10)

Then, putting (4.10) in (4.9) yields

2

α
(v − 1− 2C)(1 + 2C − v)φ̃+ v

[
2

α
(1 + 2C − v)φ̃

]
2ε

...+
α

2

[
2

α
(1 + 2C − v)φ̃

]2

= 0

⇒ (1 + 2C − v)φ̃− vφ̃2ε − (1 + 2C − v)φ̃2 = 0 (4.11)

From (4.8),
vk2 = 1 + 2C − v

Substituting into (4.11) leads to
vk2φ̃− vφ̃2ε − vk2φ̃2 = 0

⇒ k2φ̃− φ̃2ε − k2φ̃2 = 0 (4.12)

We now expand φ̃ in terms of the harmonics of the decaying exponential solution of the linear
equation.

i.e. g(x) = e−kε

φ̃ =

∞∑
n=1

ang
n(ε) =

∞∑
n=1

ane
−nk(ε)
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φ̃ε = −k
∞∑
n=1

nang
n(ε)

φ̃2ε = k2
∞∑
n=1

n2ang
n(ε)

φ̃2 =

[ ∞∑
n=1

ang
n(ε)

]2

=

∞∑
n=1

n−1∑
l=1

alan−lg
n(ε)

by Cauchy’s rule.
Substituting these expansions into (4.12), it is easy to see that equation (4.12) becomes

k2
∞∑
n=1

ang
n(ε)− k2

∞∑
n=1

n2ang
n(ε)− k2

∞∑
n=1

n−1∑
l=1

alan−lg
n(ε) = 0

[
(1− n2)an −

n−1∑
l=1

alan−l

]
k2
∞∑
n=1

gn(ε) = 0

(n2 − 1)an +

n−1∑
l=1

alan−l = 0, n ≥ 2, (4.13)

The recursion relation (4.13) is solved to find the general form of the coefficient an.
For n = 2,

(22 − 1)a2 +

1∑
l=1

ala2−l = 0

∴ 3a2 + a1a1 = 0

a2 = −1

3
a2

1 = −62

3

(a1

6

)2

a2 = −12
(a1

6

)2

= 6(2)(−1)2+1
(a1

6

)2

For n = 3,

(32 − 1)a3 +

2∑
l=1

ala3−l = 0

∴ 8a3 + a1a2 + a2a1 = 0

a3 = −1

4
a1

(
−1

3
a2

1

)
=

1

12
a3

1 = 6(3)(−1)3+1
(a1

6

)3

For n = 4,

a4 = −24
(a1

6

)4

= 6(4)(−1)4+1
(a1

6

)4
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From the above, a1 is arbitrary and pattern can be clearly seen as:

an = 6n(−1)n+1
(a1

6

)n
, a1 > 0

Then the coefficient an are substituted into the equation for φ to obtain the solution .

From (4.5),
φ = c1 + φ̂

But, c1 =
2(v − 1− C)

α

∴ φ =
2

α
(v − 1− C) + φ̂

Also from (4.10),

φ̂ =
2

α
(1 + 2C − v)φ̃

∴ φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v)φ̃

But, φ̃ =

∞∑
n=1

ang
n(ε)

∴ φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v)...

∞∑
n=1

ang
n(ε)

=
2

α
(v − 1− C) + 2

α
(1 + 2C − v)...

∞∑
n=1

6n(−1)n+1
(a1

6

)n
gn

Let a = a1
6

∴ φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v)

∞∑
n=1

6n(−1)n+1(ag)n (4.14)

The power series
∑∞
n=1 6n(−1)n+1(ag)n is convergent for ag < 1

Using the well-known power series

1

1− x
=

∞∑
n=0

xn, | x |< 1

Differentiating both sides with respect to x we have

d

dx

(
1

1− x

)
=

d

dx

( ∞∑
n=0

xn

)
d

dx
(1− x)−1 =

d

dx

∞∑
n=0

xn

1

(1− x)2
=

∞∑
n=1

nxn−1

29
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We multiply both sides by x
x

(1− x)2
=

∞∑
n=1

nxn

and substitute (−ag) for x
−ag

(1 + ag)2
=

∞∑
n=1

n(−ag)n

−ag
(1 + ag)2

=

∞∑
n=1

n(−1)n+1(ag)n (4.15)

Substituting (4.15) into (4.14), we have

φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v) 6ag

(1 + ag)2

Since g(x) = e−kε, this leads to equation (4.16)

φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v) 6ae−kε

(1 + ae−kε)2
(4.16)

Subsequently from (4.16), we can obtain equation (4.17) as follows:

φ =
2

α
(v − 1− C) + 12

α
(1 + 2C − v)

[
a

ekε
÷
(
1 +

a

ekε

)2
]

=
2

α
(v − 1− C) + 12

α
(1 + 2C − v)× aekε

a2(1 + 1
ae
kε)2

=
2

α
(v − 1− C) + 12

α
(1 + 2C − v)×

1
ae
kε

(1 + 1
ae
kε)2

=
2

α
(v − 1− C) + 12

α
(1 + 2C − v)× eln( 1

a )+kε

(1 + eln ( 1
a )+kε)2

(4.17)

Also since
sechx =

2ex

1 + e2x

Hence,
1

4
sech2x =

e2x

(1 + e2x)2

Let x =
1

2

(
ln

(
1

a

)
+ kε

)
Then,

1

4
sech2 1

2

[
ln

(
1

a

)
+ kε

]
=

eln( 1
a )+kε(

1 + eln( 1
a )+kε

)2

Substituting this into (4.17), the solution u(x, t) is obtained

φ =
2

α
(v − 1− C) + 3

α
(1 + 2C − v)sech2

[
1

2
ln

(
1

a

)
+

1

2
kε

]

Let ∂ =
1

2
ln

(
1

a

)
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φ =
2

α
(v − 1− C) + 3

α
(1 + 2C − v)sech2

[
∂ +

1

2
kε

]
Also

k =

√
1− v + 2C

v
=

(
1 + 2C − v

v

) 1
2

and ε = x− vt

∴ u(x, t) =
2

α
(v − 1− C) + 3

α
(1 + 2C − v)sech2

[
1

2

(
1 + 2C − v

v

) 1
2

(x− vt) + ∂

]
In a special case that C = v − 1,

u(x, t) =
3

α
(v − 1)sech2

[
1

2

(
v − 1

v

) 1
2

(x− vt) + ∂

]

The solution is therefore given as: [box=]equation* u(x,t)=3
α(v−1)sech2

[
1
2 (

v−1
v )

1
2 (x−vt)+∂

]

4.2 Joseph - Egri (TRLW) Equation
In this section, we present a solution to the Joseph - Egri (TRLW) equation using the method
described in section 3. The TRLW equation is given below:

ut + ux + αuux + ux2t = 0

Solution

ut + ux + αuux + ux2t = 0 (4.18)

We transform (4.18) into an ODE using the travelling frame of reference

ε = x− vt, φ(ε) , u(x, t)

ux = φε (4.19)

Similarly, utt = u2t = v2φ2ε

ux2t = (ux)2t = v2φ3ε

Substituting (4.19) in (4.18), we get

− vφε + φε + αφφε + v2φ3ε = 0. (4.20)

Integrating (4.20) with respect to ε, we have

−v
∫
dφ

dε
dε+

∫
dφ

dε
dε+ a

∫
φ
dφ

dε
dε+ v2

∫
dφ2ε

dε
dε = 0

− vφ+ φ+
a

2
φ2 + v2φ2ε + c1C = 0, (4.21)

where c1C is the constant of integration.

By substituting
φ = c1 + φ̂ (4.22)
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into equation (4.21), it can be seen that (4.21) leads to (4.23).

−v(c1 + φ̂) + (c1 + φ̂) +
a

2
(c1 + φ̂)2 + v2(c1 + φ̂)2ε + c1C = 0

−vc1 − vφ̂+ c1 + φ̂+
a

2
c21 + ac1φ̂+

a

2
φ̂2 + v2φ̂2ε + c1C = 0

(−v + 1 + αc1)φ̂+ v2φ̂2ε +
a

2
φ̂2 − vc1 + c1 +

α

2
c21 + c1C = 0 (4.23)

Considering the linear part of the equation (4.23) by ignoring the nonlinear part and setting the
φ̂-independent part equal zero as follows

i.e. (−v + 1 + αc1)φ̂+ v2φ̂2ε = 0

But φ̂ = ekε, φ̂2ε = k2ekε

∴ (−v + 1 + αc1)e
kε + v2k2ekε

∴ k2 =
v − 1− αc1

v2

From setting the φ̂ - independent part to zero, we get

−vc1 + c1 +
α

2
c21c1C = 0

c1 = 2
(v − 1− C)

α
(4.24)

k2 =
1

v2

[
v − 1− α

(
2(v − 1− C)

α

)]
=

1− v + 2C

v

∴ k =

√
1− v + 2C

v2
(4.25)

Substituting (4.24) into (4.23), we get(
−v + 1 + α

(
2

[
v − 1− C

α

]))
φ̂+ v2φ̂2ε +

α

2
φ̂2 = 0

(v − 1− 2C)φ̂+ v2φ̂2ε +
α

2
φ̂2 = 0 (4.26)

We normalize the coefficient of the nonlinear term by the scaling

φ̂ =
2

a
(1 + 2C − v)φ̃ (4.27)

It can be easily shown that substituting (4.27) into (4.26) will lead to equation (4.28)

2

α
(v − 1− 2C)(1 + 2C − v)φ̃+ v2

[
2

α
(1 + 2C − v)φ̃2ε

]
+
a

2

[
2

α
(1 + 2C − v)φ̃2

]
= 0

(1 + 2C − v)φ̃− v2φ̃2ε − (1 + 2C − v)φ̃2 = 0 (4.28)

From (4.25),
v2k2 = 1 + 2C − v

∴ v2k2φ̃− v2φ̃2ε = v2k2φ̃2 = 0
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⇒ k2φ̃− φ̃2ε − k2φ̃2 = 0 (4.29)

Expanding φ̃ in terms of the harmonics of the decaying exponential solution of the linear equation,
the following is obtained

i.e g(x) = e−kε

φ̃ =

∞∑
n=1

ang
n(ε) =

∞∑
n=1

ane
−nk(ε)

φ̃ = −k
∞∑
n=1

nang
n(ε),

φ̃2ε = k2
∞∑
n=1

n2ang
n(ε)

φ̃2 =

[ ∞∑
n=1

ang
n(ε)

]2

=

∞∑
n=1

n−1∑
l=1

alan−lg
n(ε)

by Cauchy’s rule.

Substituting these expansions into (4.29), it is easy to see that equation (4.30) results

k2
∞∑
n=1

ang
2(ε)− k2

∞∑
n=1

n2ang
n(ε)− k2

∞∑
n=1

n−1∑
l=1

alan−lg
n(ε) = 0

k2an

∞∑
n=1

gn(ε)− k2n2an

∞∑
n=1

gn(ε)− k2
n−1∑
l=1

alan−l

∞∑
n=1

gn(ε) = 0

(n2 − 1)an +

n−1∑
l=1

alan−l

∞∑
n=1

gn(ε) = 0, n ≥ 2 (4.30)

The recursion relation (4.13) is solved to find the general form of the coefficient an

For n = 2,

(22 − 1)a2 +

1∑
l=1

ala2−l = 0

∴ a2 = −12
(a1

6

)2

= 6(2)(−1)2+1
(a1

6

)2

For n = 3,

(32 − 1)a3 +

2∑
l=1

ala3−l = 0

a3 =
1

12
a3

1 = 6(3)(−1)3+1
(a1

6

)3

For n = 4,

(42 − 1)a4 +

3∑
l=1

ala4−l = 0
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a4 = −24
(a1

6

)4

= 6(4)(−1)4+1
(a1

6

)4

The pattern can be clearly seen as:

an = 6n(−1)n+1
(a1

6

)n
, a1 > 0

Substituting the coefficient of an into the equation for φ, the solution is obtained.
Using equation (4.22),

φ = c1 + φ̂

and for, c1 =
2(v − 1− c)

α
,

we have φ =
2

α
(v − 1− C) + φ̂

Also, from (4.27)

φ̂ =
2

α
(1 + 2C − v)φ̃

Substituting into the equation above, we have

φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v)φ̃

But, φ̃ =

∞∑
n=1

ang
n(ε)

∴ φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v)

∞∑
n=1

6(n)(−1)n+1
(a1

6

)n
gn

Let a = a1
6

Then φ =
2

a
(v − 1− C) + 2

a
(1 + 2C − v)

∞∑
n=1

6(n)(−1)n+1(ag)n (4.31)

The power series
∑∞
n=1 6(n)(−1)n+1(ag)n is convergent for ag < 1

Using well-known power series
1

1− x
=

∞∑
n=0

xn, |x| < 1

And differentiating both sides with respect to x yields equation (4.32)

1

(1− x)2
=

∞∑
n=0

nxn−1

= 0x0−1 +

∞∑
n=1

nxn−1

1

(1− x)2
=

∞∑
n=1

nxn−1

Multiplying both sides by x
x

(1− x)2
=

∞∑
n=1

nxn
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Substituting (ag) for x, we have
ag

(1− ag)2
=

∞∑
n=1

n(ag)n (4.32)

Substituting (4.32) in (4.31), we obtain

φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v) 6ag

(1 + ag)2

Putting g(x) = e−kε in the equation above, it is easily seen that (4.33) is obtained

∴ φ =
2

α
(v − 1− C) + 2

α
(1 + 2C − v) 6ae−kε

(1 + ae−kε)2
(4.33)

φ =
2

α
(v − 1− C) + 12

α
(1 + 2C − v)

1
ae
kε(

1 + 1
ae
kε
)2

φ =
2

α
(v − 1− C) + 12

α
(1 + 2C − v) eln( 1

a )+kε(
1 + eln( 1

a )+kε
)2 (4.34)

Recalling that

sechx =
2ex

1 + e2x

and squaring both sides, we have

1

4
sech2x =

e2x

(1 + e2x)2

Let x =
1

2

(
ln

(
1

a

)
+ kε

)
Then,

1

4
sech2 1

2

[
ln

(
1

a

)
+ kε

]
=

eln( 1
a )+kε

(1 + eln( 1
a )+kε)2

Substituting this into (4.34), to obtain

φ =
2

α
(v − 1− C) + 12

α
(1 + 2C − v)1

4
sech2 1

2

[
ln

(
1

α

)
+ kε

]
φ =

2

a
(v − 1− C) + 3

a
(1 + 2C − v)sech2

[
1

2
ln

(
1

a

)
+

1

2
kε

]
Let ∂ =

1

2
ln(

1

a
)

Then,

φ =
2

α
(v − 1− C) + 3

α
(1 + 2C − v)sech2

[
∂ +

1

2
kε

]
Recall that k =

√
1− v + 2C

v2

and ε = x− vt

∴ u(x, t) =
2

α
(v − 1− C) + 3

α
(1 + 2C − v)sech2

[
1

2

(
1 + 2C − v

v2

) 1
2

(x− vt) + ∂

]
In a special case that C = v − 1, we have [box=]equation* u(x,t)= 3

α(v−1)sech2

[
1
2 (

v−1
2v )

1
2 (x−vt)+∂

]
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5 CONCLUSION
We have expanded the methodology proposed by Hereman et.al. [15] to include necessary details
that simplifies the process of obtaining solutions for easy comprehension. We applied this method
to other equations not discussed by Hereman et.al. [15]. We found the method very efficient in the
construction of solitary wave solution for non-dissipative nonlinear evolution and wave equations.
Benjamin-Bona-Mahony (RLW) equation and Joseph Egri (TRLW) equation were used as examples.

The results obtained are similar to the ones obtained by other methods. For the Benjamin
-Bona-Mahony (RLW) equation, our solution is the same as the one indicated by Hereman et.al. [4]
and similar to the ones obtained by Irk [16] and Bona et.al. [17] through numerical methods. The
solution of the Time Regularized Long-Wave (Joseph-Egri) equation is the same as presented by
Hereman et.al. [4].
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