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Abstract

In this paper, strong convergence theorems for approximation of a common fixed point of
countably family of nonexpansive mappings in strictly convex reflexive real Banach space with
uniformly Gâteaux differentiable norm are proved. Consequently, strong convergence theorems
for approximation of a common fixed point of countably infnite family of k-strictly pseudo-
contractive mappings are proved in strictly convex q-uniformly smooth real Banach spaces.
Numerical example is generated to demonstrate workability of an algorithm developed. Our
theorems extend, improve and generalize some existing results.
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1 Introduction
Let C be a nonempty subset of a real normed space, E. A mapping T : C → E is said to be non-
expansive if ∀ x, y ∈ C, ‖Tx − Ty‖ ≤ ‖x − y‖. Most published results on nonexpansive mappings
centered on existence theorems for fixed points of these mappings; and iterative approximation of
such fixed points. DeMarr [1] in 1963 studied the problem of existence of common fixed point for
a family of nonlinear nonexpansive mappings. He proved the following theorem:

Theorem DM. Let E be a real Banach space and C be a nonempty compact convex subset of E.
If Ω is a nonempty commuting family of nonexpansive mappings of C into itself, then the family Ω
has a common fixed point in C.

In 1965, Browder [2] proved the result of DeMarr in a uniformly convex real Banach space, requiring
that C be only bounded closed convex and nonempty. For other fixed point theorems for families
of nonexpansive mappings, the reader may consult any of the following references: Belluce and
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Kirk [3], Lim [4] and Bruck [5].

In 1973, Bruck [6] considered the study of structure of the fixed-point set F (T ) = {x ∈ C : Tx = x}
of nonexpansive mapping T and established several results.

Kirk [7] introduced an iterative process given by

xn+1 = α0xn + α1Txn + α2T
2xn + ...+ αrT

rxn, (1.1)

where αi ≥ 0, α0 > 0 and
r∑
i=0

αi = 1, for approximation of fixed points of nonexpansive mappings

on convex subset of uniformly convex real Banach spaces. Maiti and Saha [8] worked and improved
on the results of Kirk [7].

Considerable research efforts have been devoted to developing iterative methods for approximating
common fixed points (when such fixed points exist) of families of several classes of nonlinear map-
pings (see e.g. [9–16]).

Let C be a bounded closed convex nonempty subset of a real Banach space E. Let Ti : C → C, i =
1, 2, ..., r be a finite family of nonexpansive mappings and let

S = α0I + α1T1 + α2T2 + ...+ αrTr, (1.2)

where αi ≥ 0, α1 > 0 and
r∑
i=0

αi = 1. Then the family {Ti}ri=1 such that the common fixed

point set F := ∩ri=1F (Ti) 6= ∅ is said to satisfy condition A (see e.g. [8, 17, 18]) if there exists a
nondecreasing function φ : [0,+∞) → [0,+∞) with φ(0) = 0, φ(ε) > 0 ∀ ε ∈ (0,+∞), such that
‖x− Sx‖ ≥ φ

(
d(x, F )

)
∀ x ∈ C, where d(x, F ) = inf{‖x− z‖ : z ∈ F}.

Liu et al. [17] introduced the following iteration process:

x0 ∈ C, xn+1 = Sxn, n ≥ 0, (1.3)

and showed that {xn}n≥0 defined by (1.3) converges to a common fixed point of {Ti}ri=1 in Banach
spaces, provided that {Ti}ri=1 satisfy condition A. The result of Liu et al. [17] improves the corre-
sponding results of Kirk [7], Maiti and Saha [8], Senter and Doston [14] and those of a host of other
authors. However, the assumption that the family {Ti}ri=1 satisfies condition A is strong.

Let E be a reflexive and strictly convex real Banach space with a uniformly Gâteaux differentiable
norm. Let Ti : E → E, i = 1, 2, ..., r be nonexpansive mappings and {xn}n≥0 be a sequence in E
defined iteratively by (1.3) and suppose that J−1 : E∗ → E is weakly sequentially continuous at

0, where J is the normalized duality mapping (see section 2 of this paper). If F :=

r⋂
i=1

F (Ti) 6= ∅,

then Jung [19] proved that, under this situation, {xn}n≥0 converges weakly to a common fixed
point of {Ti}ri=1. In [20], Gossez and Lami Dozo proved that for any normed linear space E, the
existence of a weakly sequentially continuous duality mapping implies that the space E satisfies
Opial’s condition (that is, for all sequences {xn} in E such that {xn} converges weakly to some
x ∈ E, the inequality lim inf

n→∞
‖xn − y‖ > lim inf

n→∞
‖xn − x‖ holds for all y 6= x, see e.g. [21]). It is well

known that Lp spaces, 1 < p < +∞, p 6= 2, do not satisfy Opial’s condition. Consequently, the
results of Jung [19] are not applicable in Lp spaces 1 < p < +∞, p 6= 2.

In our discussion so far, the operators considered remain self mappings of closed convex nonempty
subset of real Banach spaces. If, however, the operators are nonself mappings (as is the case in
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several applications), the iterative methods discussed above may fail to be well defined. Several au-
thors have studied various classes of nonself mappings. In most cases, authors dwell on the existence
and iterative approximation of fixed points of nonself nonlinear mappings (see e.g., [21–37]). For
more on recent research developments involving nonexpansive mappings, the reader may see Alam
et al. [38], Aleomraninejad et al. [39], Berinde [40] and [41], Khatoon et al. [42], Pragadeeswarar
and Gopi [43], Shrama et al. [44], and the references therein.

Moreover, Aibinu and Kim [45], and Zhao et al. [46] studied implicit viscosity approximation meth-
ods for solution of nonlinear operator equations invloving nonexpansive mappings. Bian et al. [47]
studied generalized implicit iterative process for approximation of fixed points of nonexpansive
mappings. Jiang et al. [48] introduced and studied hybrid implicit iteration process for a finite
family of nonself nonexpansive mappings in unifromly convex Banach space. It is important to
note that in application, explicit iterative algorithms are preferred, and are easier to utilize than the
implicit ones. Assuming that C is closed convex nonempty subset of a real reflexive and strictly
convex Banach space E which has a uniformly Gâteaux differentiable norm and suppose further
that every nonempty closed convex bounded subset of C has the fixed point property for nonexpan-
sive mappings, Chidume et al. [49] studied an explicit iterative process which converges strongly to
a common fixed point of a finite family of non-self nonexpansive mappings.

It is our aim in this paper to introduce an explicit iterative sequence for approximation of a com-
mon fixed point of a countably infinite family of nonself nonexpansive mappings in Banach spaces.
As a result, we obtain strong convergence theorems for approximation of a common fixed point
of countably infnite family of nonself k-strictly pseudocontractive mappings in strictly convevex
q-uniformly smooth real Banach spaces. The corresponding results of Chidume et al. [49] and that
of a host of other authors are extended from consideration of finite family of nonexpansive map-
pings to the case of countably infinite family of nonexpansive mappings. Our theorems improve,
generalize, unify and extend several results recently announced.

2 Preliminaries.
Let E be a real normed space with dual E∗. The normalized duality mapping is the mapping
J : E → 2E

∗
defined ∀ x ∈ E by

Jx = {f∗ ∈ E∗ :
〈
x, f∗

〉
= ‖x‖2, ‖f∗‖ = ‖x‖},

where
〈
., .
〉
denotes the generalized duality pairing between members of E and E∗. It is well known

that if E∗ is strictly convex then J is single-valued. In what follows, the single-valued normalized
duality mapping will be denoted by j.

Let (E, ‖.‖) be a real normed space. The norm ‖.‖ is said to be uniformly Gâteaux differentiable if
for each y ∈ S = {x ∈ E : ‖x‖ = 1}, the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists uniformly for x ∈ S. It is well known that Lp spaces, 1 < p < ∞, have uniformly Gâteaux
differentiable norm (see e.g. [12, 50]). Furthermore, if E has a uniformly Gâteaux differentiable
norm, then the duality mapping is norm-to-weak∗ uniformly continuous on bounded subsets of E.

Let C be a nonempty subset of a Banach space E. For x ∈ C, the inward set of x, IC(x), is defined
by

IC(x) = {x+ λ(u− x) : u ∈ C, λ ≥ 1}.
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A mapping T : C → E is called weakly inward if Tx ∈ IC(x), ∀ x ∈ C, where IC(x) denotes the
closure of the inward set. Every self-map is trivially weakly inward. If C is convex (see e.g. [51]),
then the weakly inward condition has been shown to be equivalent to the flow invariance condition
in the theory of differential equations given by

lim
t→0

d
(
x− t(I − T )x,C

)
t

= 0, x ∈ C (2.1)

Let C be a nonempty closed convex subset of E and let P be a mapping of E onto C. Then P is
said to be sunny if P

(
Px+ t(x− Px)

)
= Px ∀ x ∈ E and t > 0. A mapping P of E into E is said

to be a retraction if P 2 = P. If a mapping P is a retraction, then Px = x ∀ x ∈ R(P ), where R(P )
denotes the range of P . A subset C of E is said to be sunny nonexpansive retract of E if there
exists a sunny nonexpansive retraction of E onto C and it is said to be a nonexpansive retract of
E if there exists a nonexpansive retraction of E onto C. If E = H, where H denotes a Hilbert
space, the metric projection PC is a sunny nonexpansive retraction from H to any closed convex
nonempty subset of H. This, however, is not true for larger Banach spaces since nonexpansivity of
projections PC characterizes Hilbert spaces. On the other hand, a sunny nonexpansive retraction
can play a similar role in a Banach space as a projection does in Hilbert spaces. In [52] page 382,
one will observe that if a real Banach space E is uniformly convex and an operator A ⊂ E × E is
m-accretive, then cl(D(A)) is a nonexpansive retract of E, where cl(D(A)) denotes the closure of
domain of the operator A. For more on nonexpansive retractions and what they look like outside
Hilbert spaces, one may see for example [6, 49,53–57].

In the sequel, the following Lemmas and Theorem shall be used.

Lemma 2.1 (see e.g., Xu [58–60]). Let {λn}n≥1 be a sequence of non-negative real numbers satis-
fying the condition

λn+1 ≤ (1− αn)λn + σn, n ≥ 0,

where {αn}n≥0 and {σn}n≥0 are sequences of real numbers such that {αn}n≥1 ⊂ [0, 1],

∞∑
n=1

αn =

+∞. Suppose that σn = o(αn), n ≥ 0 (i.e., lim
n→∞

σn
αn

= 0) or
∞∑
n=1

|σn| < +∞, then λn → 0 as

n→∞.

Lemma 2.2. Let E be a real normed linear space. Then the following inequality holds: For all
x, y ∈ E, ∀ j(x+ y) ∈ J(x+ y) we have that

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
.

Lemma 2.3 (Compare with Theorem 1 of Morales and Jung [61]). Let C be a nonempty closed
convex subset of a real reflexive and strictly convex Banach space E which has uniformly Gâteaux
differentiable norm and T : C → E a weakly inward nonexpansive mapping with F (T ) 6= ∅. Suppose
{tn}n≥1 is a sequence in (0, 1) such that lim

n→∞
tn = 0; and u ∈ C is arbitrary, then there exists a

path {zn}n≥1 satisfying
zn := tnu+ (1− tn)Tzn

which converges strongly to a fixed point of T .

Lemma 2.4 (Compare with Lemma 3 pg. 257 of Bruck [6]). Let C be a nonempty closed and convex
subset of a real strictly convex Banach space E. Let {Tj}j≥1 be a sequence of nonself nonexpansive

mappings Tj : C → E such that F :=
∞⋂
j=1

F (Tj) 6= ∅. Then the mapping T :=

∞∑
j=1

ξjTj : C → E is

nonexpansive and F (T ) =

∞⋂
j=1

F (Tj), where {ξj}j≥1 is a sequence in (0, 1) such that
∞∑
j=1

ξj = 1.
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Proof. Observe that the mapping T is well defined since for x ∈ C and x∗ ∈ F,

‖Tjx‖ ≤ ‖Tjx− Tjx∗‖+ ‖Tjx∗‖ ≤ ‖x− x∗‖+ ‖x∗‖;

thus,
∞∑
j=1

ξjTjx converges absolutely for each x ∈ C. It is easy to see that T is nonexpansive and

maps C into E. Next, we claim that F (T ) =

∞⋂
j=1

F (Tj). The inclusion
∞⋂
j=1

F (Tj) ⊂ F (T ) is obvious.

We prove the reverse inclusion only. Suppose that Tx0 = x0. Then

‖x0 − x∗‖ = ‖Tx0 − x∗‖ =
∥∥∥ ∞∑
j=1

ξjTjx0 − x∗
∥∥∥

=
∥∥∥ ∞∑
j=1

ξj(Tjx0 − x∗)
∥∥∥ ≤ ∞∑

j=1

ξj‖Tjx0 − x∗‖. (2.2)

But Tjx∗ = x∗ and Tj is nonexpansive ∀ j ≥ 1, so ‖Tjx0 − x∗‖ ≤ ‖x0 − x∗‖.

Since
∞∑
j=1

ξj = 1, (2.2) implies that

∥∥∥ ∞∑
j=1

ξjTjx0 − x∗
∥∥∥ = ‖x0 − x∗‖ and ‖Tjx0 − x∗‖ = ‖x0 − x∗‖ ∀ j ≥ 1. (2.3)

Since E is strictly convex and each ξj > 0 while
∞∑
j=1

ξj = 1, (2.3) implies Tjx0 − x∗ = Tmx0 − x∗

for all j,m ∈ N, i.e., Tjx0 = Tmx0 for all j,m ∈ N. Hence,

x0 = Tx0 =

∞∑
j=1

ξjTjx0 =

∞∑
j=1

ξjTmx0 = Tmx0 ∀ m ∈ N.

Thus, x0 ∈ ∩∞m=1F (Tm). This completes the proof.�

Lemma 2.5. Let C be a nonempty closed convex subset of a reflexive and strictly convex real Banach
space E which has a uniformly Gâteaux differentiable norm. Suppose C is a sunny nonexpansive
retract of E with P as a sunny nonexpansive retraction. Let Tj : C → E, j ≥ 1 be a sequence of

weakly inward nonexpansive mappings such that F =

∞⋂
i=1

F (Tj) 6= ∅. Let T :=

∞∑
j=1

ξjTj , then T is

weakly inward nonexpansive mapping and F (T ) = F (PT ).

Proof. First, we show that T is weakly inward. Let ε > 0 be given and let z ∈ C. Then
for any j ∈ {1, 2, ...} we have from (4) that there exists δjε > 0 such that if t ∈ (0, δjε) then
d
(
z − h(I − Tj)z, C

)
< 1

2 tε. For such t, there exists ωjt ∈ C, j = 1, 2, ... such that

‖z − t(I − Tj)z − ωjt‖ ≤ d(z − t(I − Tj)z, C) +
1

2
tε,

i.e., ‖z − t(I − Tj)z − ωjt‖ ≤ tε and that for every j ≥ 1 we have that
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lim sup
t→0

||z − t(I − Tj)z − wjt||
t

≤ ε. Thus, using the fact that
∞∑
j=1

ξj = 1 we have

lim
t→0+

d(z − t(I − T )z, C)

t
= lim

t→0+

d
( ∞∑
j=1

ξj(z − t(I − Tj)z), C
)

t

≤ lim sup
t→0+

d
( ∞∑
j=1

ξjωjt, C
)

+

∞∑
j=1

ξj‖z − t(I − Tj)z − ωjt‖

t

≤ lim sup
t→0+

d
( ∞∑
j=1

ξjωjt, C
)

t
+ ε

Observe that d
( ∞∑
j=1

ξjωjt, C
)

= 0 since by convexity of C,
∞∑
j=1

ξjωjt ∈ C. It, therefore, follows

that lim
t→0+

d(z − t(I − T )z, C)

t
= 0 ∀ z ∈ C. Hence, T is weakly inward. Next, we show that

F (T ) = F (PT ). Clearly, F (T ) ⊂ F (PT ). It suffices to show that F (PT ) ⊂ F (T ). Suppose for con-
tradiction that F (PT ) is not a subset of F (T ). Let x0 ∈ F (PT )\F (T ), where F (PT )\F (T ) denotes
the complement of F (T ) relative to F (PT ). Since T is weakly inward there exists u ∈ C such that
Tx0 = x0 + λ(u − x0) for some λ > 0 and x0 6= u. Observe that if x0 = u then Tx0 = x0, a con-
tradiction. Now, since P is sunny nonexpansive, we have P (PTx0 + t(Tx0 − PTx0)) = x0 ∀ t ≥ 0.
But PTx0 = x0. This implies that P (tTx0 + (1 − t)x0) = x0 ∀ t ≥ 0. Since T is weakly inward,
there exists t0 ∈ (0, 1) such that u = t0Tx0 + (1 − t0)x0. Besides, Pu = u since u ∈ C, it implies
that u = Pu = x0, a contradiction, since x0 6= u. Hence, F (PT ) ⊂ F (T ). This completes the proof.
�

Note that Lemma 2.5 is a modification of corresponding result of Chidume et al. [49]. It ia
presented here to accommodate countably infinite family of nonself nonexpansive mappings which
clearly generalizes a single nonself nonexpansive mapping as is the case in [49].

3 Main Results
For the rest of this paper, {αn}n≥1 is a real sequence such that {αn}n≥1 ⊂ [0, 1] and satisfies

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=1

αn =∞ and either (iii) lim
n→∞

|αn − αn−1|
αn

= 0 or (iii)′
∞∑
n=1

|αn−αn−1| <

∞. The sequence {ξj}∞j=1 is a sequence of positive real numbers such that
∞∑
j=1

ξj = 1.

We now state and prove our main theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of a strictly convex reflexive real Banach
space E which has a uniformly Gâteaux differentiable norm. Suppose C is a nonexpansive retract
of E with P as the nonexpansive retraction. Let Tj : C → E, j ≥ 1 be a sequence of nonself

nonexpansive mappings such that F =

∞⋂
j=1

F (Tj) 6= ∅. For arbitrary u, x1 ∈ C, let {xn}n≥1 be

iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.1)
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where T :=
∑
j≥1

ξjTj. Suppose that F (T ) = F (PT ), and there exists n0 ∈ N such that for all n ≥ n0,

‖xn − PTxn‖ 6= 0, then {xn}n≥1 converges strongly to a common fixed point of {Tj}∞j=1.

Proof. Clearly, by Lemma 2.4, T is well defined, nonexpansive and F (T ) =
∞⋂
j=1

F (Tj). Let q ∈ F (T ),

then, from (3.1), we obtain by induction that

‖xn − q‖ ≤ max{‖x1 − q‖, ‖u− q‖}

for all n ∈ N ∪ {0}; hence {xn}n≥0 and {PTxn}n≥0 are bounded. This implies that for some
M0 > 0,

‖xn+1 − PTxn‖ = αn‖u− PTxn‖ ≤ αnM0 → 0 as n→∞.

Moreover, from (3.1) we abtain that

‖xn+1 − xn‖ = ‖αnu+ (1− αn)PTxn − αn−1u− (1− αn−1)PTxn−1‖
= ‖(αn − αn−1)(u− PTxn−1) + (1− αn)(PTxn − PTxn−1)‖
≤ (1− αn)‖xn − xn−1‖+ |αn − αn−1|M0.

Two cases arise:

Case 1: Condition (iii) of Remark 3 is satisfied. In this case, ‖xn+1−xn‖ ≤ (1−αn)‖xn−xn−1‖+

σn, where σn = αnβn; βn = |αn−αn−1|M0

αn
, so that σn = o(αn) (since lim

n→∞

|αn − αn−1|
αn

= 0).

Case 2: Condition (iii)′ of Remark 3 is satisfied. In this case, ‖xn+1 − xn‖ ≤ (1 − αn)‖xn −

xn−1‖+ σn, where σn = |αn − αn−1|M0, so that
∞∑
n=0

σn <∞.

In either case, we obtain (by Lemma 2.1), that lim
n→∞

‖xn+1 − xn‖ = 0. This implies lim
n→∞

‖xn −
PTxn‖ = 0 (since ‖xn − PTxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − PTxn‖ → 0 as n → ∞). Since
there exists n0 ∈ N such that for all n ≥ n0, ‖xn − PTxn‖ 6= 0, then for all n ≥ n0, setting
tn := ‖xn − PTxn‖

1
2 , we obtain (since lim

n→∞
‖xn − PTxn‖ = 0) that there exists n1 ≥ n0 such that

for all n ≥ n1, tn ∈ (0, 1).

Now, for all n ≥ n1, define the mapping Gn : C → C (for z ∈ C) by

Gnz := tnu+ (1− tn)PTz.

It is easy to see that for all n ≥ n1, Gn is a contraction; and so has a unique fixed point zn ∈ C.
Thus, for all n ≥ n1,

zn := tnu+ (1− tn)PTzn.

Using Lemma 2.3, we obtain that there exists z∗ ∈ F (PT ) such that zn → z∗ as n→∞.

Observe that for all n ≥ n1,

zn − xn = tn(u− xn) + (1− tn)(PTzn − xn).
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Thus, by Lemma 2.2, we have that

‖zn − xn‖2 ≤ (1− tn)2‖PTzn − xn‖2 + 2tn
〈
u− xn, j(zn − xn)

〉
≤ (1− tn)2

(
‖PTzn − PTxn‖+ ‖PTxn − xn‖

)2
+2
(
‖zn − xn‖2 +

〈
u− zn, j(zn − xn)

〉)
≤ (1 + t2n)‖zn − xn‖2 + 2tn

〈
u− zn, j(zn − xn)

〉
+‖PTxn − xn‖

(
2‖zn − xn‖+ ‖PTxn − xn‖

)
.

This implies that, 〈
u− zn, j(xn − zn)

〉
≤

[ tn
2

+
‖PTxn − xn‖

2tn

]
M.

for some M > 0. Thus, 〈
u− zn, j(xn − zn)

〉
≤Mtn.

This implies that

lim sup
n→∞

〈
u− zn, j(xn − zn)

〉
≤ 0. (3.2)

Moreover, we have that〈
u− zn, j(xn − zn)

〉
=

〈
u− z∗, j(xn − z∗)

〉
+
〈
u− z∗, j(xn − zn)− j(xn − z∗))

〉
+
〈
z∗ − zn, j(xn − zn)

〉
. (3.3)

Thus, since {xn}n≥0 is bounded, we have that
〈
z∗ − zn, j(xn − zn)

〉
→ 0 as n → ∞. Also,

〈
u −

z∗, j(xn−zn)−j(xn−z∗)
〉
→ 0 as n→∞ since the normalized duality mapping j is norm-to-weak∗

uniformly continuous on bounded subsets of E. Thus as n → ∞, we obtain from (3.2) and (3.3)
that

lim sup
n→∞

〈
u− z∗, j(xn − z∗)

〉
≤ 0. (3.4)

Now, put
µn := max{0,

〈
u− z∗, j(xn − z∗)

〉
}.

Then, 0 ≤ µn ∀ n ≥ 0. It is easy to see that µn → 0 as n → ∞ since by (3.4), if ε > 0 is given,
there exists nε ∈ N such that

〈
u − z∗, j(xn − z∗)

〉
< ε ∀ n ≥ nε. Thus, 0 ≤ µn < ε ∀ n ≥ nε. So,

lim
n→∞

µn = 0.

Next, we obtain from the recursion formula (3.1) that

xn+1 − z∗ = αn(u− z∗) + (1− αn)(PTxn − z∗).

It follows that

‖xn+1 − z∗‖2 ≤ (1− αn)2‖PTxn − z∗‖2 + 2αn
〈
u− z∗, j(xn+1 − z∗)

〉
≤ (1− αn)‖xn − z∗‖2 + 2αnµn+1

= (1− αn)‖xn − z∗‖+ γn,

where γn = 2αnµn+1. Therefore, γn = o(αn) and by Lemma 1, we obtain that {xn}n≥0 con-
verges strongly to z∗ ∈ F (PT ). Again, by hypothesis, F (PT ) = F (T ), and by Lemma 2.4,

F (T ) =
∞⋂
i=1

F (Tj). Hence, {xn}n≥1 converges strongly to the common fixed point of the family

{Tj}∞j=1. This completes the proof. �
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Corollary 3.1. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Suppose C is a nonexpansive
retract of E with P as the nonexpansive retraction. Let Tj : C → E, j = 1, 2, ..., r be r nonself

nonexpansive mappings such that F =

r⋂
i=1

F (Tj) 6= ∅, for some r ∈ N. For arbitrary u, x1 ∈ C, let

{xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.5)

where T =

r∑
j=1

ηjTj and {ηj}rj=1 is a finite collection of positive numbers such that
r∑
j=1

ηj = 1.

Suppose that F (T ) = F (PT ), and there exists n0 ∈ N such that for all n ≥ n0, ‖xn − PTxn‖ 6= 0,
then {xn}n≥1 converges strongly to a common fixed point of {Tj}rj=1.

Proof: The mapping T =

r∑
j=1

ηjTj is clearly nonexpansive. Following the argument of the proof

of Lemma 2.4 we get that F (T ) =
r⋂
i=1

F (Tj). The rest follows as in the proof of Theorem 3.1. This

completes the proof. �
In the following theorem, the assumption F (T ) = F (PT ) is dispensed with.

Theorem 3.2. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Suppose C is a sunny non-
expansive retract of E with P as the sunny nonexpansive retraction. Let Tj : C → E, j ≥ 1 be a

sequence of nonself nonexpansive mappings satisfying weakly inward condition with
∞⋂
i=1

F (Tj) 6= ∅.

For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.6)

where T =

∞∑
j=1

ξjTj . Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn − PTxn‖ 6= 0,

then {xn}n≥1 converges strongly to a common fixed point of {Tj}∞j=1.

Proof. By Lemma 2.5, T is weakly inward and F (T ) = F (PT ). The rest of the proof follows as in
the proof of Theorem 3.1. �

If in Theorem 3.2, we assume that every nonempty closed convex subset of C has the fixed point

property for nonexpansive mappings, the requirement that
∞⋂
i=1

F (Tj) 6= ∅ may not be required. In

fact, we have the following theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Suppose C is a sunny non-
expansive retract of E with P as the sunny nonexpansive retraction. Let Tj : C → E, j ≥ 1 be a
sequence of nonself nonexpansive mappings satisfying weakly inward condition. Suppose that every
nonempty closed convex subset of C has the fixed point property for nonexpansive mappings. For
arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.7)

where T =

∞∑
j=1

ξjTj . Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn − PTxn‖ 6= 0,

then {xn}n≥1 converges strongly to a common fixed point of of {Tj}∞j=1.
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Proof. By Lemma 2.5, T is weakly inward and F (PT ) = F (T ). Thus, Theorem 13.5 of Geobel

and Kirk [68] implies that F (T ) 6= ∅ and since by Lemma 2.4, F (T ) =

∞⋂
i=1

F (Tj), we obtain that

∞⋂
i=1

F (Tj) 6= ∅. The rest of the proof follows as in the proof of Theorem 3.1. �

If in Theorem 3.1, {Tj}j≥1 is a collection of self mappings then the nonexpansive retraction P
becomes the identity operator I defined on E. Moreover, each Tj , j ≥ 1 is authomatically weakly
inward. Thus, we have the following corollary.

Corollary 3.2. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Let Tj : C → C, j ≥ 1 be a

sequence of nonexpansive self mappings with
∞⋂
i=1

F (Tj) 6= ∅. For arbitrary u, x1 ∈ C, let {xn}n≥1 be

iteratively generated by

xn+1 = αnu+ (1− αn)Txn, n ≥ 1, (3.8)

where T =

∞∑
j=1

ξjTj . Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn − Txn‖ 6= 0,

then {xn}n≥1 converges strongly to a common fixed point of {Tj}∞j=1.

Corollary 3.3. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Let Tj : C → C, j ≥ 1 be a
sequence of nonexpansive self mappings. Suppose that every nonempty closed convex subset of C
has the fixed point property for nonexpansive mappings. For arbitrary u, x1 ∈ C, let {xn}n≥1 be
iteratively generated by

xn+1 = αnu+ (1− αn)Txn, n ≥ 1, (3.9)

where T =

∞∑
j=1

ξjTj . Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn − Txn‖ 6= 0,

then {xn}n≥1 converges strongly to a common fixed point of {Tj}∞j=1.

If in Theorems 3.2 and 3.3, we consider finite family of nonexpansive mappings, then we get the
following corollaries:

Corollary 3.4. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Suppose C is a sunny nonex-
pansive retract of E with P as the sunny nonexpansive retraction. Let Tj : C → E, j = 1, 2, ..., r
be r nonself nonexpansive mappings satisfying weakly inward condition, for some r ∈ N with
r⋂
i=1

F (Tj) 6= ∅. For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.10)

where T :=

r∑
j=1

ηjTj ; and {ηj}rj=1 a finite collection of positive real numbers such that
r∑
j=1

ηj = 1.

Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn−PTxn‖ 6= 0, then {xn}n≥1 converges
strongly to a common fixed point of {Tj}rj=1.

Corollary 3.5. Let C be a nonempty closed convex subset of a reflexive and strictly convex real
Banach space E which has a uniformly Gâteaux differentiable norm. Suppose C is a sunny nonex-
pansive retract of E with P as the sunny nonexpansive retraction. Let Tj : C → E, j = 1, 2, ..., r be
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r nonself nonexpansive mappings satisfying weakly inward condition, for some r ∈ N. For arbitrary
u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1, (3.11)

where T :=

r∑
j=1

ηjTj ; and {ηj}rj=1 a finite collection of positive real numbers such that
r∑
j=1

ηj = 1.

Suppose that every nonempty closed convex subset of C has the fixed point property for nonexpansive
mappings; and suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn − PTxn‖ 6= 0, then
{xn}n≥1 converges strongly to a common fixed point of {Tj}rj=1.

4 Convergence theorem for countably infinite family of strictly
pseudocontractive mappings

Let E be a normed space. A mapping T with domain D(T ) and range R(T ) in E is called k-strictly
pseudocontractive if there exists a real constant k > 0 such that for all x, y ∈ D(T ) there exists
j(x− y) ∈ J(x− y) such that〈

Tx− Ty, j(x− y)
〉
≤ ‖x− y‖2 − k‖x− y − (Tx− Ty)‖2. (4.1)

Without loss of generality we may assume that k ∈ (0, 1). If I denotes the identity operator, then
(4.1) can be re-written as〈

(I − T )x− (I − T )y, j(x− y)
〉
≥ k‖(I − T )x− (I − T )y)‖2. (4.2)

In Hilbert spaces, (4.1) (or equivalently (4.2)) is equivalent to the inequality

‖Tx− Ty‖2 ≤ ‖x− y‖2 + β‖(I − T )x− (I − T )y‖2, where β = (1− k) < 1.

In the sequel, we shall need the following lemma.

Lemma 4.1. (See e.g. [59]) Let E be a q-uniformly smooth real Banach space for some q > 1, then
there exists some positive constant dq such that

‖x+ y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ dq‖y‖q ∀ x, y ∈ E, ∀ jq(x) ∈ Jq(x).

Now, if E is a q-uniformly smooth real Banach space; and T : D(T )→ E is a k-strictly pseudocon-
tractive mapping, then for the map Tλ := (1− λ)I + λT ) : D(T )→ E (where I is the identity map
of D(T ) and λ > 0), we obtain by Lemma 4.1 that:

‖Tλx− Tλy‖q = ‖x− y − λ
(

(I − T )x− (I − T )y
)
‖q

≤ ‖x− y‖q − qλ
〈
(I − T )x− (I − T )y, jq(x− y)

〉
+dqλ

q‖(I − T )x− (I − T )y‖q

≤ ‖x− y‖q − λ(kq − dqλq−1)‖Ax−Ay‖q,

where A = (I − T ). If λ is such that 0 < λ <
(
kq
dq

) 1
q−1

, we have that the mapping Tλ is a nonex-
pansive. It is also easy to see that the fixed point set of Tλ and T coincide.

Thus, we have the following theorem

Theorem 4.2. Let C be a nonempty closed convex subset of a strictly convex q-uniformly smooth
real Banach space E. Suppose C is a nonexpansive retract of E with P as the nonexpansive re-
traction. Let Tj : C → E, j ≥ 1 be a sequence of nonself k-striclty pseudocontractive mappings
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such that F =

∞⋂
j=1

F (Tj) 6= ∅. Let {λj}∞j=1 be such that 0 < λj <
(
qα
dq

) 1
q−1

, j = 1, 2, ... and define

Tλj = (1− λj)I + λjTj . For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1. (4.3)

where T :=
∑
j≥1

ξjTλj . Suppose that F (T ) = F (PT ); and suppose that there exists n0 ∈ N such

that for all n ≥ n0, ‖xn −PTxn‖ 6= 0, then {xn}n≥1 converges strongly to a common fixed point of
{Tj}∞j=1.

Proof. Since q-uniformly smooth real Banach spaces are reflexive and have uniformly Gâteaux
differentiable norm (see e.g., [66]), the proof follows as in the proof of Theorem 3.1 since Tλj

is

nonexpansive for each j ∈ N and
∞⋂
j=1

F (Tλj
) =

∞⋂
j=1

F (Tj).

Theorem 4.3. Let C be a nonempty closed convex subset of strictly convex q-uniformly real Banach
space E. Suppose C is a sunny nonexpansive retract of E with P as the sunny nonexpansive
retraction. Let Tj : C → E, j ≥ 1 be a sequence of nonself k-striclty pseudocontractive mappings

satisfying weakly inward condition. Let {λj}∞j=1 be such that 0 < λj <
(
qα
dq

) 1
q−1

, j = 1, 2, ... and
define Tλj

= (1− λj)I + λjT. For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu+ (1− αn)PTxn, n ≥ 1. (4.4)

where T :=
∑
j≥1

ξjTλj
. Suppose that there exists n0 ∈ N such that for all n ≥ n0, ‖xn−PTxn‖ 6= 0,

then {xn}n≥1 converges strongly to a common fixed point of {Tj}∞j=1.

Proof. The proof follows as in the proof of Theorem 3.3 since Tλj
is nonexpansive for each j ∈ N

and
∞⋂
j=1

F (Tλj
) =

∞⋂
j=1

F (Tj) and it is well known that since E is q-uniformly smooth Banach space,

every nonempty closed convex subset of C has the fixed point property for nonexpansive mappings
(see e.g. [63, 64]).

The addition of bounded error terms to our recursion formulas leads to no further generalization.
If f : K → K is a contraction mapping and u is replaced by f(xn), n ∈ N in the recursion

formulas of theorems presented in this paper, then what some authors now call viscosity iteration
process will be obtained. Observe that all the theorems in this paper carry over trivially to the
so-called viscosity process. One simply replaces u by f(xn), repeats the argument of this paper,
using the fact that f is a contraction map. So, consideration of viscosity iteration process in the
cases under study lead to no further generalization.

It is of interest to note that the family {Tj}j∈N of nonself nonexpansive mappings in the theorems
obtained in this paper need not satisfy condition A. The main results of this paper are applicable, in
particular, in Lp spaces, 1 < p < +∞. The theorems obtained extend and improve the correponding
results of Liu et al [25], Maiti and Saha [8], Senter and Doston [14], Jung [47] and that of a host
of other authors in the sense that the results of these authors were obtained for finite family of
self nonexpansive mappings in uniformly convex real Banach spaces, while the main results of this
paper (see Theorems 3.1, 3.2 and 3.3) took into consideration approximation of common fixed point
of countably infinite family of nonself nonexpansive mappings in more general strictly convex and
reflexive real Banach spaces with uniformly Gâteaux differentiable norm. It is note worthy that
in all the results obtained in this paper, the so called condition A as imposed in the works of Liu
et al [25], Maiti and Saha [8], Senter and Doston [14] is dispensed with. Moreover, Theorems 4.2
and 4.3 are of independent interest, in the sense that they provided means of obtaining strong
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convergence results in strictly convex q-uniformly smooth real Banach spaces for approximation of
common fixed point of countably infinite family of nonself k-strickly pseudocontractive mappings
- a class of mappings more general than the class of nonexpansive mappings. Furthermore, as will
be seen in the numerical example provided below, choices of iterative parameters {αn}n≥1 used in
this paper are canonical, in the sense that for any n ∈ N, αn = 1

n+1 (for example) is a prototype
satisfying the conditions on our iterative parameters.

5 Numerical Example
We now give the following numerical example to show the applicability of algorithm (3.1) and con-
sider possible implications of remark 4.

Let E = R and C = [−1, 1]. We define the following sequence of nonexpansive mappings; for
j ∈ N, {Tj}∞j=1 as; 

T3j−2 = j sinx

T3j−1 = x cos(xj )

T3j = sinj x
2

(5.1)

Clearly, 0 ∈ F =
∞⋂
j=1

F (Tj). Let {ξj}∞j=1 = {2−j}∞j=1, and {αn}∞n=1 = { 1
n+1}

∞
n=1. We have the

tolerance of error given as TOLn := ‖xn+1 − xn‖2 < 10−7. We will examine the convergence of
algorithm (3.1) for 3 different cases; namely,

Case1 when u is arbitrarily chosen in (3.1).

Case2 when u in (3.1) is replaced with f(xn), n ∈ N, where f : [−1, 1] → [−1, 1] is a contraction
defined for all x ∈ [−1, 1] by f(x) = sinx.

Case3 when u in (3.1) is replaced with g(xn), n ∈ N, where g : [−1, 1] → [−1, 1] is a contraction
defined for all x ∈ [−1, 1] by g(x) = 1

1+x2 .

All the computations are performed using Spyder (Python 3.8) which is running on a personal
computer with an Intel(R) Core(TM) i5-4300 CPU at 2.50GHz and 8.00 Gb-RAM.
Also, in Table 1, CPU means the time in seconds it takes the computer prepossessing unit for
computation and Iter (n) means the number of iterations.

x0 = 0.85 x0 = 0.50
Algorithm (3.1) CPU iter (n) CPU iter (n)

u = 3.0 0.035978 84 0.037960 88
f(x) = sinx 0.008992 13 0.004000 8
g(x) = 1

1+x2 0.005998 10 0.011991 31

Table 1: Comparison of algorithm (3.1) with fixed u, f(x), and g(x).
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0.40

Figure 1: x0 = 0.85
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0.40

Figure 2: x0 = 0.5

Figure 3: The Graphs of ‖xn+1 − xn‖2 against n
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