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Abstract

In this study, a third derivative trigonometrically fitted Simpson’s method is developed and
applied to approximate the solution of Volterra Integro-Differential Equations (VIDEs) via
the multistep collocation method. The VIDEs are first transformed to IVPs by the Leibnitz
rule of differentiating integral. A continuous third derivative trigonometrically fitted method
is constructed with the trigonometric basis function from which both the main and the com-
plementary discrete formulas are generated. The two discrete formulas are then applied as
simultaneous integrators in a block by block form to solve the VIDEs. Whereas numerical
properties of the proposed method are investigated, its accuracy is demonstrated through some
standard examples.

Keywords: Volterra integro-differential equations (VIDEs), block methods, continuous method,Leibnitz
rule, Trigonometrically fitted methods.
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1 Introduction
The Volterra Integro-Differential Equation (VIDE) is an equation, in which the unknown function
y(x) appears on one side as an ordinary derivative, and on the other side under the integral sign.
It is of the general form:

yn(x) = f(x) + λ

∫ x

0

k(x, t)y(t)dt (1.1)

where
k(x, t) is the kernel or nucleus of the integral equation, f(x) is the source function, λ is a constant
and n ≥ 1 with initial conditions y(0), y′(0), ..., yn−1(0) = y0, y1, ..., yn−1 for the determination of
the particular solution y(x).

Since its establishment by Vito Volterra, an italian mathematician and physicist , Volterra
integro-differential differential equation has been explored by many scientific researchers in numer-
ous fields such as heat transfer, neurosciences, diffusion process, neutron diffusion, biological species,
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biomechanics, economics, electrical engineering, electrodynamics, game theory, oscillation theory,
queuing theory, airfoil theory, elastic contact problems, fracture mechanics, combined infrared ra-
diation, molecular conduction nano-hydrodynamics, and glass-forming process. [1], [2]. There is
a host of solution techniques available in the literature, for solving Volterra Integro-differential
equations ranging from the traditional methods such as successive approximations and successive
substitutions to recently developed methods namely the Adomian decomposition method and its
modifications that are gaining popularity among scientists and engineers [3]. The traditional meth-
ods have shortcomings of huge computation, a high order of convergence, and problems of unrealistic
series solutions when dealing with physical problems [4]. The variational iteration method is a mod-
ified Lagrange multiplier method and was proposed by He (1997) to facilitate computational work
and yields solution faster than the Adomian method [5]. The Tau method introduced by Lanczos in
1938 has been employed in solving some nonlinear VIDEs of the first and second kind by [6]. There
the nonlinear VIDEs were converted to linear Volterra Integral Equations (VIEs) of the second kind
which were in turn solved by using a forward substitution method. Another method employed in
solving VIDEs is the Sinc-collocation method which involves the reduction of VIDEs to an explicit
system of algebraic equations as can be seen in [7], [8] .
Numerically, VIDEs are popularly solved by adapting quadrature methods for solving an integral
part and then applying numerical methods to solve the resulting differential equations. This is
mostly done when the kernel of integration is of separable type. The integral part of equation (1.1)
is then replaced by the calculation of the integral sum(see [9], [10], [11], [12], [13], [14], and [15]).
Despite the success achieved by the above-mentioned methods, they suffer from the increasing vol-
ume of calculations from one point to another. This study is motivated by the fact that Volterra
integro-differential equations can be transformed to initial value problems and thus develop a new
third derivative of the Simpson’s method with trigonometric coefficients to solve the equation (1.1)
wholly in a block by block fashion.
The paper is organized as follows: section 2 discusses the derivation of the proposed method, numer-
ical properties of the method, and related discussions are presented in section 3, section 4 presents
some numerical results, and section 5 highlights the conclusions.

2 Derivation of Method
This section considers the construction of a continuous block third derivative trigonometrically fitted
Simpson’s method (CTDTFSM) on the interval [xn, xn+2] to produce a discrete formula TDTFSM
and its complementary method in the form:

yn+2 − yn = h

2∑
j=0

βj(v)fn+j + h2
2∑
j=0

γj(v)gn+j + h3τ2(v)ln+2 (2.1)

where v = ωh, ω is the frequency, h is the stepsize, xn is a node point and βj , j = 0, 1, 2 and γj are
coefficients to be uniquely obtained.
Traditionally, y(n+j) is the approximate solution to the exact solution y(xn+j), j = 1, 2, and fn+j =
y′(xn + jh), gn+j = y′′(xn + jh), and ln+j = y′′′(xn + jh).

Assuming y(x) which is the exact solution within the interval [xn, xn+2] can be approximated
by a fitting function I(x, v) i.e.

y(x) ≈ I(x, v)

where I(x, v) is of the form

I(x, v) =

5∑
j=0

ajx
j + a6 sinωx+ a7 cosωx (2.2)

where aj , j = 0, 1, ..., 7 are coefficients to be uniquely determined.
It is required that the following eight conditions be satisfied by equation (2.2)
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I(xn+j) = yn+j , if j = 0

I ′(xn+j) = fn+j , if j = 0, 1, 2;

I ′′(xn+j) = gn+j , if j = 0, 1, 2;

I ′′′(xn+j) = ln+j , if j = 2.

(2.3)

The system of eight equations from equation (2.3) is solved to obtain aj using a computer
algebraic system (CAS) such as the Maple 16 package. The continuous equation is obtained by
substituting the values of aj , j = 0, 1, ..., 7 into equation (2.2). After some algebraic simplification,
the continuous equation takes the form of equation(2.4) given by

I(x, v) = yn + h

2∑
j=0

βj(v, x)fn+j + h2
2∑
j=0

γj(v, x)gn+j + h3τ2(v, x)ln+2 (2.4)

Equation (2.4) is thereafter evaluated at x = xn+2 yielding the main discrete formula for the
TDTFBSM in the form:

yn+2 = yn + h

2∑
j=0

βj(cos(v), sin(v))fn+j + h2
2∑
j=0

γj(cos(v), sin(v))gn+j + h3τ2(cos(v), sin(v))ln+2

(2.5)
The complementary discrete formula given in equation (2.6) is obtained by evaluating equation

(2.4) at x = xn+1 to get

yn+1 = yn + h

2∑
j=0

βj(cos(v), sin(v))fn+j + h2
2∑
j=0

γj(cos(v), sin(v))gn+j + h3τ2(cos(v), sin(v))ln+2

(2.6)
For emphasis, we write equations (2.5) and(2.6) in block form called the third derivative trigono-

metrically fitted block Simpson’s method (TDTFBSM) as follows

yn+2 = yn + h(β0(cos(v), sin(v))fn + β1(cos(v), sin(v))fn+1

+ β2(cos(v), sin(v))fn+2) + h2(γ0(cos(v), sin(v))gn

+ γ1(cos(v), sin(v))gn+1 + γ2(cos(v), sin(v))gn+2)

+ h3τ2(v, x)ln+2,

yn+1 = yn + h(β̂0(cos(v), sin(v))fn + β̂1(cos(v), sin(v))fn+1

+ β̂2(cos(v), sin(v))fn+2) + h2(γ̂0(cos(v), sin(v))gn

+ γ̂1(cos(v), sin(v))gn+1 + γ̂2(cos(v), sin(v))gn+2)

+ h3τ̂2(v, x)ln+2. (2.7)
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The coefficients of equation (2.7) are as given in the equations (2.8) and (2.9)


β0 =

(
−360 cos (2 v) + 28 v4 cos (v) − 72 v3 sin (v) + 252 v2 cos (v) − 1020 v sin (v) + 360

+10 v4 + 462 v2 − 21 v3 sin (2 v) − 210 v sin (2 v) + 4 v4 cos (2 v) + 6 v2 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

β1 =

(
64 v4 cos (v) − 384 v3 sin (v) − 720 − 960 v2 cos (v) + 960 v sin (v) − 144 v3 sin (2 v)

+960 v sin (2 v) + 16 v4 + 48 v2 − 528 v2 cos (2 v) + 16 v4 cos (2 v) + 720 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

β2 =

(
28 v4 cos (v) − 144 v3 sin (v) + 360 + 228 v2 cos (v) − 1380 v sin (v) − 75 v3 sin (2 v)

−30 v sin (2 v) + 4 v4 + 660 v2 − 168 v2 cos (2 v) + 10 v4 cos (2 v) − 360 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

γ0 =

(36 v2 − 135
)
cos (2 v) +

(
4 v3 − 114 v

)
sin (2 v) +

(
4 v4 + 120 v2

)
cos (v)

+
(
4 v3 − 312 v

)
sin (v) + 2 v4 + 114 v2 + 135


15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

γ1 =

(
64 v3 sin (v) + 192 v2 cos (v) − 192 v sin (v) + 180 + 40 v3 sin (2 v)

−264 v sin (2 v) + 4 v4 + 12 v2 − 4 v4 cos (2 v) + 156 v2 cos (2 v) − 180 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

γ2 =

(
−4 v4 cos (v) + 4 v3 sin (v) − 288 v2 cos (v) + 864 v sin (v) − 315

+10 v3 sin (2 v) + 198 v sin (2 v) − 2 v4 cos (2 v) − 324 v2 − 18 v2 cos (2 v) + 315 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

τ2 =

(
90 + 8 v3 sin (v) − 216 v sin (v) + 2 v3 sin (2 v) − 72 v sin (2 v)

+88 v2 cos (v) + 72 v2 + 20 v2 cos (2 v) − 90 cos (2 v)

)

15v

(
v3 cos (2 v) + 4 v3 cos (v) − 20 v2 sin (v) − 8 v2 sin (2 v) + v3

−23 v cos (2 v) − 16 v cos (v) − 48 sin (v) + 24 sin (2 v) + 39 v

)

(2.8)



β̂0 =

(
31 v4 cos (2 v) + 262 v4 cos (v) − 159 v3 sin (2 v) − 1038 v3 sin (v) + 55 v4 + 84 v2 cos (2 v)

−312 v2 cos (v) − 1740 v sin (2 v) − 2280 v sin (v) + 3108 v2 − 2880 cos (2 v) + 5760 cos (v) − 2880

)

120 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

β̂1 =

(
32 v4 cos (v) + 8 v4 cos (2 v) − 192 v3 sin (v) − 72 v3 sin (2 v) + 8 v4 − 480 v2 cos (v)

−264 v2 cos (2 v) + 480 v sin (v) + 480 v sin (2 v) + 24 v2 + 360 cos (2 v) − 360

)

15 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

β̂2 =

(25 v4 − 732 v2
)
cos (2 v) +

(
−225 v3 + 780 v

)
sin (2 v) +

(
−38 v4 + 2232 v2 − 5760

)
cos (v)

+
(
174 v3 − 7320 v

)
sin (v) + v4 + 1380 v2 + 5760


120 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

γ̂0 =

(279 v2 − 1020
)
cos (2 v) +

(
31 v3 − 876 v

)
sin (2 v) +

(
46 v4 + 120 v2 + 1920

)
cos (v)

+
(
−134 v3 − 408 v

)
sin (v) + 8 v4 + 681 v2 − 900


120 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

γ̂1 =

(
−23 v4 cos (2 v) + 128 v3 sin (v) + 230 v3 sin (2 v) − 7 v4 − 96 v2 cos (v) + 927 v2 cos (2 v)

+2016 v sin (v) − 1728 v sin (2 v) − 111 v2 + 3840 cos (v) − 1320 cos (2 v) − 2520

)

60 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

γ̂2 =

(
−2700 + 14 v4 cos (v) − 134 v3 sin (v) − 1512 v2 cos (v) + 4296 v sin (v) + 55 v3 sin (2 v)

+372 v sin (2 v) − 8 v4 cos (2 v) + 780 cos (2 v) + 63 v2 cos (2 v) + 1920 cos (v) − 1071 v2

)

120 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

)

τ̂2 =

(
4 v3 sin (v) + v3 sin (2 v) + 44 v2 cos (v) + 10 v2 cos (2 v)

−108 v sin (v) − 36 v sin (2 v) + 36 v2 − 45 cos (2 v) + 45

)

15 v

(
v3 cos (2 v) + 4 v3 cos (v) − 8 v2 sin (2 v) − 20 v2 sin (v) + v3

−23 v cos (2 v) − 16 v cos (v) + 24 sin (2 v) − 48 sin (v) + 39 v

) .

(2.9)

According to [16], the coefficients in equations (2.8) and (2.9) are subject to heavy cancellations
as v → 0. In this case, the Taylor series expansions of the coefficients which are stated to be up to
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o(v8) in equations (2.10) and (2.11) respectively, are preferred.


β0 =
2

5
+

17 v2

8820
+

949 v4

27165600
+

215 v6

339026688

β1 =
32

35
−

4 v2

2205
−

53 v4

1697850
−

2113 v6

3708104400

β2 =
24

35
−

v2

8820
−

101 v4

27165600
−

347 v6

5393606400

γ0 =
1

21
+

v2

1470
+

167 v4

13582800
+

6623 v6

29664835200

γ1 = −
16

105
+

4 v2

2205
+

19 v4

565950
+

41 v6

67420080

γ2 = −
19

105
−

v2

2205
−

v4

138600
−

73 v6

549348800

τ2 =
2

105
+

v2

4410
+

53 v4

13582800
+

2113 v6

29664835200
.

(2.10)

and


β̂0 =
31

80
+

241 v2

141120
+

3053 v4

108662400
+

625 v6

1356106752

β̂1 =
16

35
−

2 v2

2205
−

53 v4

3395700
−

2113 v6

7416208800

β̂2 =
87

560
−

113 v2

141120
−

1357 v4

108662400
−

41759 v6

237318681600

γ̂0 =
5

112
+

83 v2

141120
+

117 v4

12073600
+

37867 v6

237318681600

γ̂1 = −
17

70
+

67 v2

35280
+

841 v4

27165600
+

1961 v6

3955311360

γ̂2 = −
39

560
+

v2

47040
−

v4

15523200
−

4393 v6

237318681600

τ̂2 =
1

105
+

v2

8820
+

53 v4

27165600
+

2113 v6

59329670400
.

(2.11)

3 Properties of the TDTFBSM
In this section, the basic properties of the proposed method are examined. Such properties include
Local truncation error, Order, convergence, zero stability, and region of absolute stability.

3.1 Order and Local truncation error
The TDTFBSM as constructed in section 2 above can be written as

A1Yδ+1 = A2Yδ + h(A3Fδ+1 +A4Fδ) + h2(A5Gδ+1 +A6Gδ) + h3A7Lδ+1 (3.1)

where
Yδ+1 = (yn+1, yn+2)T ,Yδ = (yn−1, yn)T ,Fδ+1 = (fn+1, fn+2)T ,Fδ = (fn−1, fn)T Gδ+1 = (gn+1, gn+2)T ,
Gδ = (gn−1, gn)T and Lδ+1 = (ln+1, ln+2)T .

The coefficients of Ai, i = 1, ..., 7 are 2 × 2 matrices whose entries are functions of the frequency
and the stepsize.
According to [16], the linear difference operator L[y(x);ω, h] = y(xn+2) − yn+2 associated with
equation (3.1) is

L[y(x);ω, h] = A1Ȳδ+1 −A2Ȳδ − h(A3F̄δ+1 −A4F̄δ)− h2(A5Ḡδ+1 −A6Ḡδ)− h3A7L̄δ+1 (3.2)

where Ȳδ+1 = (y(xn + h), (xn + 2h))T , Ȳδ = (y(xn − h), (xn))T , F̄δ+1 = (y′(xn + h), y′(xn + 2h))T ,
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F̄δ = (y′(xn − h), y′(xn))T Ḡδ+1 = (y′′(xn + h), y′′(xn + 2h))T Ḡδ = (y′′(xn − h), y′′(xn))T

L̄δ+1 = (y′′′(xn + h), y′′′(xn + 2h))T .
The coefficients of Ai, i = 1, ..., 7 remains as in the equation (3.1)

Equation (3.2) is then expanded with Taylor series of all its components about the point xn and
we have the local truncation error as given below:

LTE1 = − h8

33075
(y8(x) + ω2y6(x)),

LTE2 = − 11h8

470400
(y8(x) + ω2y6(x)).

The block method is of the uniform order of accuracy seven and the error constants are − 1
33075 and

− 11
470400 respectively.

3.2 Zero Stability
Zero stability is the stability of the difference system (3.1) when the stepsize h→ 0 and this gives

A1Yδ+1 = A2Yδ (3.3)

The block method (3.1) is zero stable if the first characteristic polynomial ρ(R) stated by

ρ(R) = det(RA1 −A2) = 0

Using equation (3.1), A1 =

[
1 0

0 1

]
, and A2 =

[
0 1

0 1

]

|RA1 −A2| = 0∣∣∣∣∣ R −1

0 R− 1

∣∣∣∣∣ = 0

.
⇒ R(R− 1) = 0. Hence R = 0, 1 thus satisfying the condition:
|Rj | ≤ 1, j = 1and2 with the roots |Rj | = 1 the multiplicity does not exceed one, see [16]. Therefore,
TDTFBSM is zero stable.

3.3 Consistency and Convergency
The block method (3.1) is consistent because each of the methods has order p of seven which is
greater than one. i.e. p ≥ 1 and is also convergent as it has satisfied the conditions necessary for
convergence which are Zero stability and consistency according to [16].

3.4 Linear Stability
To analyze the linear stability of TDTFBSM, we apply the TDTFBSM to the test equations Y ′ =
λY , Y ′′ = λ2Y , Y ′′′ = λ3Y , taking z = λh, and v = ωh.

Yδ+1 = M(z; v)Yδ

where

M(z; v) =
A2 + zA4 + z2A6

A1 − zA3 − z2A5 − z3A7
.

The shaded part of the diagram below shows the region of stability of the TDTFBSM method

73

https://doi.org/10.6084/m9.figshare.22015772


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 68 - 78
https://doi.org/10.6084/m9.figshare.22015772

Figure 1: Region of Absolute Stability of TDTFBSM

4 Numerical Examples
This section deals with the presentation of solutions of some VIDEs that have been solved in the
literature with the mind of comparing the efficiency and accuracy of the new TDTFBSM and other
methods. All computations are carried out using written codes in Maple 16.

Example 4.1. Consider a first-order Volterra integro-differential equation:

y′(x) = 1−
∫ x

0

y(t)dt, y(0) = 0, 0 ≤ x ≤ 1 (4.1)

whose exact solution is given as y(x) = sinx
Given that the Leibnitz rule of differentiating an integral as

d

dx

∫ h(x)

g(x)

F (x, t)dt = F (x, h(x))
dh

dx
− F (x, g(x))

dg

dx
+

∫ h(x)

g(x)

∂F (x, t)

∂x
(4.2)

where
F (x, t) and ∂F (x,t)

∂x are continuous functions of x and t in the domain of α ≤ x ≤ β, t0 ≤ x ≤ t1;
and the limits of integration, h(x) and g(x) are defined functions having continuous derivatives for
α ≤ x ≤ β. see [1]
Then the VIDE in example (4.1) is converted by the Leibnitz rule (4.2), to an initial value problem
given as

y′′(x) = −y(x), y(0) = 0, y′(0) = 1, 0 ≤ x ≤ 1. (4.3)

Equation (4.3) is then reduced to a system of first-order equations and solved by using the new
TDTFBSM.The results obtained are compared with the Runge-Kutta-Fehberg and Boole’s rules
(RKF) in [9] and the two-point block one-step method with trapezoidal and Simpson’s 1/3 rule
(2PVIDE) in [10].

The results are as displayed in Table 1 and Figure 2 below:
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Table 1: Data for Example 4.1
Step length (h) 2PVIDE (Max. Err.) RKF FILIZ(Max. Err.) TDTFBSM(Max. Err.)

1
40 1.4219× 10−6 4.1910× 10−10 5.6861× 10−27
1
80 1.8018× 10−7 1.2697× 10−11 9.1059× 10−24
1

160 2.2675× 10−8 3.9047× 10−13 1.0154× 10−19

Figure 2: Discrete solution using TDTFBSM (Left), Maximum Error using TDTFBSM (Middle),
Efficiency curves using 2PVIDE,RKF(FILIZ),and TDTFBSM (Right)

Example 4.2. Consider a first-order Volterra integro-differential equation:

y′(x) = −
∫ x

0

y(t)dt, y(0) = 1, 0 ≤ x ≤ 1 (4.4)

whose exact solution is given as y(x) = cosx
Equation (4.4) is converted by (4.2), to an initial value problem given as

y′′(x) = −y(x), y(0) = 1, y′(0) = 0, 0 ≤ x ≤ 1. (4.5)

Equation (4.5) is then reduced to a system of first-order and solved by using the TDTFBSM.
We integrate using step lengths h = 1

2i , i = 3(1)7 and the errors are compared with those of the
fifth-order Adams-Bashforth-Moulton predictor-corrector (ABM5) and two point three-step block
(2P3BVIDE) methods as can be seen in [15].
The Table 2 and Figure 3 below display the comparison:

Table 2: Data for Example 4.2
Step length (h) ABM5 (Max. Err.) 2P3BVIDE(Max. Err.) TDTFBSM(Max. Err.)

1
40 2.8951× 10−7 5.7323× 10−8 8.9548× 10−27
1
80 3.6127× 10−8 5.5893× 10−9 2.4244× 10−23
1

160 4.3953× 10−9 2.2443× 10−10 2.0910× 10−19
1

320 5.4213× 10−10 1.3908× 10−11 1.8968× 10−15
1

640 6.7325× 10−11 8.6930× 10−13 1.0489× 10−11
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Figure 3: Discrete solution using TDTFBSM (Left), Maximum Error using TDTFBSM (Middle),
Efficiency curves using ABM5,2P3BVIDE, and TDTFBSM (Right)

Example 4.3. Consider a first-order Volterra integro-differential equation:

y′(x) = 1 +

∫ x

0

y(t)dt, y(0) = 0, 0 ≤ x ≤ 1 (4.6)

whose exact solution is given as y(x) = sinhx

Equation (4.6) is converted by equation (4.2), to an initial value problem given as

y′′(x) = y(x), y(0) = 0, y′(0) = 1, 0 ≤ x ≤ 1. (4.7)

Equation (4.7) is then reduced to a system of first-order equations, and solved using the proposed
method. A comparison of error is made with the results obtained by using the General Linear
Method (GLM) and Runge-Kutta (RK) methods both of third order in [14]. The results are as
displayed in Table 3 and Figure 4 below:

Table 3: Data for Example 4.3
h GLM RK TDTFBSM [t]

Error NFE Error NFE Error NFE [t]
1
10 2.4606× 10−6 34 6.9906× 10−6 34 3.7864× 10−12 28 [t]
1
40 1.6319× 10−8 124 1.0137× 10−7 124 2.2030× 10−16 103 [t]
1

100 8.3870× 10−10 304 6.4622× 10−9 304 3.5789× 10−19 253 [t]
1

200 9.7077× 10−11 604 8.0749× 10−10 604 8.0866× 10−18 503 [t]
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Figure 4: Discrete solution using TDTFBSM(Left), Maximum Error using TDTFBSM (Middle),
Efficiency curves using GLM,RK, and TDTFBSM (Right)

5 Conclusion
The proposed third derivative trigonometrically fitted block Simpson’s method is suitable for solving
linear VIDEs of the second kind. It is self-starting and performs better in comparison with the
existing methods in the reviewed literature in terms of having the lowest efficiency curves as can
be seen in the figures above.
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