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Abstract

In the present study, the flow of tangent hyperbolic fluid over a vertically elongated sheet
with double stratification and nonlinear thermal radiation effects is investigated. The model
is developed with nonlinear mixed convection of second-order via Boussinesq approximation,
a transverse magnetic field of uniform strength, viscous dissipation effects and temperature-
dependent thermal conductivity. The model equations are transformed from nonlinear partial
differential equations into ordinary differential equations through appropriate similarity trans-
formation quantities while the translated equations are solved with an iterative technique known
as the Spectral Local Linearization Method (SLLM). A comparison of the obtained results in
the current study with related existing studies in the literature shows perfect agreement under
some limiting constraints. The physical parameters’ effects on the dimensionless velocity, tem-
perature, skin friction coefficient and Nusselt number are clearly illustrated by various graphs.
In the analysis, it is found that an increase in the fluid material parameter decelerates the fluid
motion while the velocity appreciates with the mixed convection term. Similarly, the surface
heat transfer improves by raising the value of the temperature ratio parameter (nonlinear ther-
mal radiation) whereas there is a reduction in the heat transfer in the presence of the thermal
stratification parameter.

Keywords: Mixed convection; Tangent hyperbolic fluid; Nonlinear thermal radiation; Stratified
flow; Spectral Local Linearization Method.
MSC2010: 76D05, 76D07, 76N10.

1 Introduction
Due to their numerous applications in the fields of science, engineering, and technological progress,
non-Newtonian fluids have become indispensable in all spheres of human endeavor. For instance, the
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extrusion of polymers, the production of cosmetics, the extraction of crude oil, the production and
processing of food, and the production of drugs and pharmaceuticals [1]. Owing to the diversity
of fluid characteristics in nature, it is no longer feasible to include all of the properties of non-
Newtonian fluids in a single constitutive model; consequently, various models of non-Newtonian flu-
ids exist based on their physical attributes. Existing fluid models for non-Newtonian fluids include
the tangent hyperbolic fluid, Casson fluid, micropolar fluid, Jeffrey fluid, Maxwell fluid, Powell-
Eyring, Prandtl-Prandtl fluid, viscoelastic fluid, etc. The model for tangent hyperbolic fluid stands
out due to its simplicity and applicability, which has piqued the interest of numerous researchers.
It is a property of non-Newtonian fluids that viscosity degenerates with increasing shear rate, ac-
cording to Jabeen et al. [4]. Experiments with fluids such as ketchup, pigments, melts solution, and
polymers reveal such characteristics. In biological fluids (such as blood), the shear-thinning prop-
erty of circulating blood prevents coagulation from obstructing capillaries and arteries. In addition,
its constitutive equation was derived from the molecular kinetic theory, as opposed to the empirical
relations used in other fluid models. Due to these intriguing rheological properties, quite a few
researchers have applied tangent hyperbolic fluid models to various geometries with varying wall
conditions and hypotheses. Ullah et al. [5] examined numerically the MHD tangent hyperbolic fluid
transport model over a stretching sheet under the influence of suction/injection. The numerical
analysis reveals that fluid motion decreases as the power law index and Weissenberg number in-
crease. Mahdy [6] analyzed a continuous flow of hydromagnetic tangent hyperbolic fluid containing
minute nanoparticles over an elongated cylinder with variable wall temperature conditions and en-
tropy analysis. Salahuddin et al. (7) modeled the stagnation-point flow of tangent hyperbolic fluid
past an extending cylinder with varying thermal conductivity and viscosity. Ibrahim [8] reported
numerically on this phenomenon over an extending sheet with zero mass flux, thermal radiation,
heat convective boundary condition, and second-order slip.
In high-temperature manufacturing and engineering processes, such as those used in nuclear power
plants, hot rolling, heat exchangers, and electrical power generation, it’s crucial to have a precise
understanding of thermal radiation to develop efficient energy conversion devices. The development
of radiative heat flux in the energy equation can be either linear or nonlinear, depending on the
temperature intensity in the flow region. Adeniyan and Adigun [9,10] and Alao et al. [11] have shown
that the linear radiative heat flux is applicable when the temperature difference within the flow is
low, while the nonlinear type is necessary to predict accurately when the temperature difference is
large. Kumar et al. [12] have studied the effect of thermal radiative flux on the slip transport of
Carreau fluid mixed with nanoparticles, and their numerical investigation has demonstrated that
the heat transfer improves as the radiation and temperature ratio term increases. Rana et al. [13]
have investigated a similar concept in an unsteady reactive nanofluid flow past a linearly stretching
material towards a stagnation point. To numerically analyze the nonlinear thermal radiative effects
and entropy analysis over a stretchable sheet being influenced by variable properties of a micropolar
fluid, Fatunmbi and Adeniyan [14] have conducted a study. Gbadeyan et al. [15] have evaluated the
combined effects of nonlinear thermal radiation, variable thermal conductivity, and viscosity on the
movement of boundary layer Casson fluid past a convectively heated vertical porous plate, while
Yusuf et al. [16] have studied this phenomenon on a hybrid nanofluid. Most recently, Fatunmbi
et al. [17] have assessed the impact of viscous dissipation and nonlinear thermal radiation on the
flow and heat transfer of Eyring-Powell nanoliquid over a magnetized Riga plate with varying heat
conductivity.
The combined natural and forced convection is often referred to as mixed convection. There are
applications of such a phenomenon which include; drying processes, lubrication grooves, ocean and
reservoirs, cooling of fans and electronic appliances, solar power collectors, etc. Various authors
in the past have proposed linearity assumption for the density variation with temperature in the
buoyancy force term of the momentum equation. Meanwhile, the existence of a large temperature
difference between the surface and the ambient necessitates a nonlinear density variation with
temperature and concentration. Based on this, Fatunmbi et al. [18] examined such a concept
in a reactive tangent hyperbolic nanoliquid in the neighbourhood of a stagnation point over a
nonlinear stretching surface using the shooting technique. The motion of nonlinear mixed convection
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nanoliquid past an accelerated vertical cylinder is presented by Patil et al. [19] in the presence of
viscous dissipation. Alsaedi et al. [20] analytically evaluated hydromagnetic Eyring-Powell nonlinear
mixed convection flow with the impact of Joule heating and viscous dissipation. It was reported
that the growth in the mixed convective variable enhanced the velocity due to the dominance of the
buoyancy force over the viscous force. None of these studies however has been conducted to examine
the impact of fluid stratification despite the applications of such a phenomenon. Stratification
in fluids happens due to density variation between two fluid layers and can arise as a result of
differences in salinity, temperature, or a combination of both. The formation or deposition of
layers in a vertical route which is often encountered in various natural, engineering as well as in
industrial activities and atmospheres can be described by this term. In practical situations where
there is a simultaneous occurrence of heat and mass transfer, the investigation of dual stratification
of fluids becomes very useful. Given various applications, Mukhopadhyay et al. [21] engaged Lie
group analysis to study stratified boundary layer flow of a Newtonian fluid in a porous moving sheet
having a power-law stretching velocity. The authors’ report reveals that thermal stratification cools
the boundary layer flow region. Daniel et al. [22] scrutinized the impact of thermal stratification
on the transport of an electrically conducting nanoliquid past a nonlinear elongated plate with
radiation and nonuniform variable thickness. Their study shows that heat transfer at the surface
improves while the surface temperature declines with a rise in the thermal stratification term. Reddy
and Sreedevi [23] applied Galerkin Finite Element Technique (GFET) to investigate the influence
of double stratification in a reactive and thermally radiating flow and heat transfer of nanofluid
along a porous stretchable sheet. Decayed temperature and concentration profiles are recorded
for the influence of thermal and solutal stratification respectively. The investigation of double
stratification in the stagnation-point flow of third-grade fluid over a nonlinear stretchable sheet
characterized by uneven thickness was analytically carried out by Hayat et al. [24]. Their analysis
showed that heat transfer was diminished by stronger thermal stratification parameter. Such a
concept can also be found in Refs [25–27]. However, there has not been any report on the double
stratification effects using the tangent hyperbolic fluid with nonlinear thermal radiation and variable
thermal conductivity despite such applications. Therefore, the present study aims to investigate the
transport characteristics of a quadratic mixed convective tangent hyperbolic fluid over a vertically
stretched sheet with thermal and solutal stratification. The thermal field is modelled to contain
the influence of nonlinear thermal radiation, viscous dissipation, Joulean heating and temperature-
dependent thermal conductivity. The motivation for this study emanates from the engineering and
manufacturing applications of the various parameters emerging from the controlling equations as
highlighted in the above literature review. The main equations have been effectively tackled using
Spectral Local Linearization Method while the contributions of the emerging physical parameters
on the dimensionless velocity, temperature, and concentration as well as on the surface drag force
and heat transfer analysis have been shown using graphs and tables for application purposes.

2 Problem Formulation
Consider a quadratic mixed convection flow, heat and mass transfer of a tangent hyperbolic fluid
characterized by double stratification and nonlinear thermal radiation. The following assumptions
are fixed for the development of the problem in the present study.

• The flow is steady, two-dimensional (x, y, 0), incompressible and laminar flow.

• The temperature within the flow is high such that nonlinear thermal radiation is applicable.

• The thermal conductivity is linearly dependent on the temperature. Viscous dissipation and
Joule heating effects are incorporated into the energy equation.

• The flow is directed towards the x-axis in the vertical coordinate with stretching velocity
indicated as uw = bx, where b > 0 is the stretching rate whereas the y-axis is normal to the
direction of flow.
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• An external magnetic field of uniform strength is applied parallel to the y-axis whereas the
impact of the induced magnetic field is ignored owing to the small size of the magnetic
Reynolds number.

• The temperature and concentration of the sheet are higher than that of the free stream,
i.e. Tw > T∞ and Cw > C∞

Fig. 1: Flow Configuration

The general form of the nonlinear density variation with temperature and concentration as given
by Mandal and Mukhopadhyay [28] as well as Mahanthesh and Mackolil [29] are:

ρ (T ) = ρ (Tw) +

(
∂ρ

∂T

)
w

(T − Tw) +

(
∂2ρ

∂T 2

)
w

(T − Tw)
2

+ . . . ,

ρ (C) = ρ (Cw) +

(
∂ρ

∂C

)
w

(C − Cw) +

(
∂2ρ

∂C2

)
w

(C − Cw)
2

+ . . . ,

Considering the terms up to the second order in each of the above relations respectively results to

∆ρ

ρ
= −h1 (T − Tw)− h2(T − Tw)

2
,

∆ρ

ρ
= −h3 (C − Cw)− h4(C − Cw)

2
,

where h1, h2, h3 and h4 are coefficient of linear thermal expansion, coefficient of nonlinear thermal
expansion, coefficient of linear solutal expansion and coefficient of nonlinear solutal expansion in
that order. The relations above are referred to as nonlinear density temperature and concentration
respectively [28–30].

2.1 The Governing Equations
Given the highlighted assumptions above, together with the boundary layer approximations, the
governing boundary layer equations for the flow, heat and mass transport of a quadratic mixed
convection tangent hyperbolic fluid are specified as follows. (see Refs [31–33]).

∂u

∂x
+
∂v

∂y
= 0 (2.1)

ϑ (1− n)
∂2u

∂y2
+ ϑ
√

2nΥ
∂2u

∂y2

∂u

∂y
− σB2

0

ρ
u+ g

[
h1 (T − T∞) + h2(T − T∞)

2

+h3 (C − C∞) + h4(C − C∞)
2

]
=

(
u
∂u

∂x
+ v

∂u

∂y

)
(2.2)
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(
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+
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∂

∂y

(
T 3 ∂T

∂y

)
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u
∂T

∂x
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∂T

∂y

)
(2.3)

u
∂C

∂x
+ v

∂C

∂y
=Db

∂2C

∂y2
(2.4)

The variation of the thermal conductivity with temperature is taken as [34,35]:

k=k∞

[
1 + ε

(T − T∞)

(Tw − T∞)

]
. (2.5)

Given the governing Eqs. (1-4) together and the dynamics of stratification, the under-listed are the
associated boundary conditions:

u = uw = bx, v = 0,T = Tw (x) = T0 + c1x, C = Cw (x) =C0 + d1x when y= 0,

u→ u0 , T → T∞ (x) = T0 + c2x,C → C∞ (x) = C0 + d2x as y →∞
(2.6)

In the above governing equations, ε indicates the thermal conductivity term which depends on the
nature of the fluid, k∞ denotes the upstream thermal conductivity, and k? mean absorption coeffi-
cient whereas ϑ, Db Cw, Tw, g, Υ, C∞, T∞, u, v sequentially defines the kinematic viscosity, mass
diffusivity, wall concentration, wall temperature, gravitational acceleration, velocity in x-direction,
velocity in the y direction. In the boundary conditions, c1, c2, d1, and d2 describe dimensionless
constants. Likewise, B0, µ, ρ, h1, h2, h3, h4, cp, n, σ

? respectively describes magnetic field
strength, dynamic fluid viscosity, fluid density, coefficient of linear thermal expansion, coefficient of
nonlinear thermal expansion, coefficient of linear concentration expansion, coefficient of nonlinear
concentration expansion, specific heat at constant pressure, power law index, Stefan-Boltzmann
constant and T0(C0) connotes reference temperature (concentration). Due to the influence of ther-
mal stratification the nonlinear radiation term in the energy equation (2.3) is modified as a result
of (T − T∞) and (Tw − T0). The temperature T becomes T = T∞

(
1 +

(
1

Sθ+θw

)
θ
)
where Sθ and

θw are thermal stratification and temperature ratio terms respectively.
The under-listed dimensionless variables are introduced into the main equations.

η=
√

b
ϑy, ψ=

√
bϑxf (η) , θ (η) = T−T∞

Tw−T0
,Rd =

16σ?T 3
∞

3k?k∞
, Re=uwx

ϑ , u = bxf
′(η),

φ (η) = C−C∞
Cw−C0

, u=∂ψ
∂y , v=− ∂ψ

∂x , Sθ = c2
c1
, Sφ = d2

d1
, β1=h2(Tw−T0)

h1

w= T0

Tw−T 0

(
or T0
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)
, G= (Tw−T0)

T∞
, P r=

cp
k∞
,M=

σB2
0

bρ , Grx= gγ1(Tw−T∞)x3

ϑ2 , Sc= ϑ
DB

,

Gcx= gh3(Cw−C0)x3

ν2 , λ =Grx
Re2x

, N=Gcx
Grx

,We=Υ
√

2b3x2

ϑ , β2=h4(Cw−C0)
h3

Ec=
u2
w

Cp(Tw−T∞) .

(2.7)

The substitution of quantities in (2.7) into the governing Eqs. (1 – 4) and the boundary conditions
(2.5) lead to automatic satisfaction of Eq. (2.1) and consequently produces the nonlinear ordinary
differential equations listed in Eqs. (8 – 10).

2.2 The Transformed Equations
((1− n) + nWef ′′) f ′′′ + ff ′′ − f ′2 −Mf ′ + λθ (1 + β1θ) + λ φN (1 + β2φ) = 0, (2.8)

1

Pr

[
1 + εθ +Rd

(
1 +

(
1

Sθ + θw

)
θ

)3
]
θ
′′

+ 3Rd

(
1 +

(
1

Sθ + θw

)
θ

)2(
1

Sθ + θw

)
θ
′2+

(fθ′ − f ′θ − Sθf ′) + Ecf ′′
2
(

(1− n) +
nWe

2
f ′′
)

+
ε

Pr
θ′

2
+ EcMf ′2 = 0,

(2.9)
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1
Scφ

′′ + (fφ′ − f ′φ− Sφf ′) = 0. (2.10)

Similarly, the associated wall and far stream conditions transform to the underlisted:

f ′(0) = 1, f(0) = 0, θ(0) = 1− Sθ, φ(0) = 1− Sφ

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0.

(2.11)

The definitions of the controlling physical parameters featured in Eqs (8-11) are expressed in Eqs
(2.7) with We, M, N, λ, β1, β2, P r, Ec, Rd, θw, Sθ, Sφ and Sc sequentially describes Weis-
senberg number, magnetic field term, ratio of concentration to buoyancy force parameter, mixed
convection parameter, nonlinear thermal convection term, nonlinear concentration convection term,
Prandtl number, Eckert number, radiation parameter, temperature ratio term, thermal stratifica-
tion term, solutal stratification parameter and Schmidt number. For technology and engineering
applications, it is imperative to include the physical quantities such as the skin friction coefficient,
Cfx which describes the viscous drag between the sheet and the fluid, the local Nusselt number,
Nux corresponding to heat transfer at the surface and then the Sherwood number, Shx which
describes the mass transfer rate. Eq. (2.12) orderly shows the description of these quantities as

Cfx=
2τw
u2
w

, Nux=
xqw

k∞ (Tw − T0)
, Shx=

xqm
Db (Cw − C0 )

, (2.12)

where τw=

[
∂u
∂y + Υ√

2

(
∂u
∂y

)2
]
y=0

, qw=−
[(
k∞ + 16T 3σ?

3k?

)
∂T
∂y

]
y=0

and qw −
(
Db

∂C
∂y

)
y=0

respectively symbolizes the wall shear stress, the surface heat flux and the surface mass flux.
The dimensionless quantities related to Eq. (2.12) are listed in Eq. (13-15) as

Re
1
2
xCfx=

[
(1 + n)f ′′(0) +

We

2
f ′′

2
(0)

]
, (2.13)

Re
− 1

2
x Nux=−

[
1 +Rd(1 + (θw − 1) θ (0))

3
]
θ′ (0) , (2.14)

Re
− 1

2
x Shx=− φ′(0) (2.15)

3 Method of Solution
Difficulty in solving ordinary differential equations or partial differential equations varies depending
on the level of non-linearity. The equations could be solved using analytical techniques or numerical
methods. However, these methods pose some challenges in their implementation. As per analytical
techniques, its challenges could be; slow or non-convergence of obtained solutions to the true solu-
tion, solutions being too cumbersome for practical use, non-existence of general analytic methods
for non-linear problems, and many difficulties in the solution processes, amongst others. Also, for
numerical methods, stability and convergence could be an issue. There could be difficulty in dealing
with singularities and it might be uneasy to interpret some numerical results/solutions such as the
occurrence of multiple solutions. Hence, there is a need for modifications and improvements of
the existing analytical and numerical methods. The quest for optimal methods to address these
problems brings about the Spectral Methods. An efficient iterative method known as Spectral
Local Linearization Method (SLLM), described by Motsa [36, 37] has been employed to solve the
boundary value problem BVP (8-11). Due to the effectiveness of this method, various authors have
engaged it to solve various nonlinear BVP. For instance, Ogunseye and Sibanda [38] applied SLLM
to study the transport of Powell-Eyring nanofluid in a porous channel with entropy analysis. Ayano
et al. [39] applied the SLLM to solve steady mixed convection MHD Casson nanofluid bioconvec-
tive flow through a Darcy-Forchheimer porous stratum. Sithole et al. [40] engaged this method
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to investigate entropy generation in MHD second-grade nanofluid motion with convective heating
and nonlinear thermal radiation effects. The transport of MHD micropolar fluid over a nonlinear
elongated porous plate with multiple slips was examined by Fatunmbi et al. [41] via this technique.
Recently, Ogunseye et al. [42] reported on the complete exothermic reaction of viscoplastic fluid
containing nanoparticles in a cylindrical medium using SLLM. Furthermore, via SLLM, Adigun et
al. [43] examined the effect of solutal and thermal stratification, and activation energy on the Stag-
nation point MHD slip-flow of viscoelastic nanomaterial over a stretched inclined cylindrical surface
in a porous medium, with variable fluid properties. In this method, the linearization of all nonlinear
terms via one term Taylor series expansion for multiple variables is carried out. Thereafter, the
Gauss-Siedel iteration technique is also used to decouple the equations while the Chebyshev Pseudo-
spectral technique is applied to tackle those decoupled equations. The non-linear coupled Equations
(8 – 10) together with boundary conditions (2.11) would be numerically integrated. Consider the
differential operators below:

Φf = (1− n) f
′′′

n + fnf
′′

n − f
′

n
2 + nWef

′′′

n

(
f

′′

n

)
−Mf

′

n + λθn (1 + β1θn) + λNφn (1 + β2φn) (3.1)

Φθ =

(
1 + εθn +Rd

(
1 +

(
1

Sθ+θw

)
θn

)3
)
θ
′′

n + 3Rd
(

1
Sθ+θw

)
θ
′2
n

(
1 +

(
1

Sθ+θw

)
θn

)2

+ εθ
′2
n

+ Pr
(
fnθ

′

n − f
′

n (θn + Sθ)
)

+ PrEcfn
′′2
(

(1− n) + nWe
2 f

′′

n

)
+ PrEcMf

′2
n

(3.2)
Φφ = φ

′′

n + Sc
(
fnφ

′

n − f
′

nφn − Sφf ′n
)
, (3.3)

where prime denotes the derivative with respect to η. Equations (21-23) can be decoupled by
implementing the algorithm below:
(a) from Φf , find fn+1while treating θn and φn as known functions from the developed initial guess.
(b) solve for θn+1 from Φθ, while treating fn and φn as known functions, fn from (a) above and
φnthe developed initial guess.
(c) solve for φn+1 from Φφ, while treating fn and as known functions, fn from (a) and (b) above
respectively.
The non-linear system of equations (16-18) are written as

α1,nf
′′′

n+1 + α2,nf
′′

n+1 + α3,nf
′

n+1 + α4,nfn+1 = Rfn (3.4)

α5,nθ
′′

n+1 + α6,nθ
′

n+1 + α7,nθn+1 = Rθn (3.5)

α8,nφ
′′

n+1 + α9,nφ
′

n+1 + α10,nφn+1 = Rφn (3.6)

subject to boundary conditions

fn+1(0) = 0, f
′

n+1(0) = 1, f
′

n+1(∞) = 0
θn+1(0) = 1− Sθ(0), θn+1(∞) = 0
φn+1(0) = 1− Sφ(0), φn+1(∞) = 0,

(3.7)

where the coefficients αi,n (i = 1, ..., 8), are known functions from previous iterations and are
explicitly written out below.

α1,n =
∂Φf
∂fn

′ ′ ′ = nWef
′′

n−n+1, α2,n =
∂Φf
∂fn

′ ′ = nWef
′′′

n +fn, α3,n =
∂Φf
∂fn

′ = −2f
′

n−M,α4,n =
∂Φf
∂fn

= f
′′

n

α5,n =
∂Φθ
∂θn

′ ′ = 1+εθn+Rd (1 + (θr − 1) θn)
3
α6,n =

∂Φθ
∂θn

′ = 6Rd (θr − 1) θ
′2
n (1 + (θr − 1) θn)

2
+2εθ

′

n+Pr fn

α7,n =
∂Φθ
∂θn

= 6Rd

(
1

Sθ + θw

)
θ
′2
n

(
1 +

(
1

Sθ + θw

)
θn

)2

− Pr f ′n
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α8,n =
∂Φφ
∂φn

′ ′ = 1, α9,n =
∂Φφ
∂φn

′ = Scfn, α10,n =
∂Φφ
∂φn

= −Scfn
′

Rfn = α1,nf
′′′′

n + α2,nf
′′′

n + α3,nf
′′

n + α4,nf
′

n + α5,nfn − Φf

Rθn = α6,nθ
′′

n + α7,nθ
′

n + α8,nθn − Φθ, R
φ
n = α9,nφ

′′

n + α10,nφ
′

n + α11,nφn − Φφ (3.8)

Equations (3.4), (3.5), (3.6) and (3.7) are solved numerically via the Chebyshev pseudo-spectral
technique (Canuto et al. [38]). The domain of the problem is transformed to the interval [−1, 1]using
the transformationη = 1

2 (ξ + 1)$∞. The unknown functions f(η), θ(η) and φ(η) are discretized
using the Gauss-Lobatto points

ξk = cos

(
πk

N̄

)
, k = 0, 1, ..., N̄ ; −1 ≤ ξ ≤ 1. (3.9)

The differentiation matrix D is used to approximate the derivatives of the unknown variables fn,
θn and φn at the collocation point to the matrix-vector product,

df

dη
=

N̄∑
i=0

Dijf(ξi) = DF,
dθ

dη
=

N̄∑
i=0

Dijθ(ξi) = Dθ and
dφ

dη
=

N̄∑
i=0

Dijφ(ξi) = Dφ, j = 0, 1, 2, ..., N̄ ,

(3.10)
where N̄ + 1 is the number of collocation points, D = 2D/$∞andF = [f(ξ0), f(ξ1), ..., f(ξN̄ )]

T
,

Θ = [θ(ξ0), θ(ξ1), ..., θ(ξN̄ )]
T and Φ = [φ(ξ0), φ(ξ1), ..., φ(ξN̄ )]

T are vector functions at the collo-
cation points. In addition, let Θ and Φ be similar vector functions representing θ and φ respectively.
Higher order derivatives of f, θand φ are evaluated as powers of D, that is
fs(η) = DsF,θs(η) = DsΘand φs(η) = DsΦ, for lower case s. The decoupled matrix below is
obtained when Equations (3.9), (3.10) and (31) are substituted into (24-27).


D1,1 ... D1,N̄+1

diag [α1,n]D3 + diag [α2,n]D2 + diag [α3,n]D + diag [α4,n] J
DN̄−1,1 ... DN̄−1,N̄+1

DN̄,1 ... DN̄,N̄+1

D1,1 ... D1,N̄+1

×


fn+1(ξ0)
fn+1(ξ1)

...

...
fn+1(ξN−1)
fn+1(ξN )


=



0

Rfn+1(ξ1)
...
...
1
0




1 ... 0

diag [α5,n]D2 + diag [α6,n]D + diag [α7,n] J
0 ... 1




θn+1(ξ0)

θn+1(ξN )

 =


0

Rθn+1(ξ)
...
Sθ




1 ... 0

diag [α8,n]D2 + diag [α9,n]D + diag [α10,n] J
0 ... 1




φn+1(ξ0)

φn+1(ξN )

 =


0

Rφn+1(ξ)
...
Sφ

 .
where, J is an

(
N̄ + 1

)
×
(
N̄ + 1

)
identity matrix, and diag []denotes a diagonal matrix. The initial

approximations taken for the SLLM implementation are

f0(η) = 1− e−η, θ0(η) =

(
1

1− Sθ

)
e−η and φ0(η) =

(
1

1− Sφ

)
e−η

Table 1 shows the convergence analysis for the developed numerical scheme that was used to solve
the governing equations. The convergence of solutions is noticed from the 7th iteration, as sub-
sequent iterations no longer have any effects on the results obtained for momentum, energy, and
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concentration equations. The accuracy of the current result has been checked by validating the
computational values of the skin friction coefficient for various values of the magnetic field term M
with the existing study of Fathizadeh et al. [40] under some limiting conditions A good agreement
exists in the comparison as recorded in Table 2.

Table 1: Numerical scheme convergence for variation in the number of iterations

Number of
iterations

Cfx Nux Shx

1 −1.25065217 1.13786499 1.46167328
5 −1.25503222 1.13260153 1.45894040
7 −1.25503235 1.13260135 1.45894030
8 −1.25503235 1.13260135 1.45894030
9 −1.25503235 1.13260135 1.45894030

Table 2: Computed values of the skin friction coefficient Cfx compared with existing studies for
variation in M when other parameters are zero

M Fathizadeh et al. [44] Present (SLLM) Absolute Difference
1
5

−1.41421
−2.44948

−1.41421356
−2.44948974

3.56× 10−6

9.74× 10−6

10 −3.31662 −3.31662479 4.79× 10−6

50 −7.14142 −7.14142843 8.34× 10−6

500 −10.0499 −10.04987543 2.46× 10−5

3.1 Convergence and Stability Analysis
In order to validate the accuracy of the numerical results obtained from the SLLM, the error norms
may be used to evaluate the convergence and stability of the iterative scheme. To achieve this,

• the effect of collocation (grid) points on the accuracy of the solutions obtained is observed to
understand if an increase in the number of collocation points affected the accuracy of solutions
obtained.

• the effect of the number of iterations on the accuracy of the solutions obtained is observed, to
understand if an increase in the number of collocation points affected the accuracy of solutions
obtained.

The infinity norms are used to identify the extent by which approximate solutions ofRes (f) , Res(θ)
and Res(φ) deviate from the real solution. These are defined as INr (f) = ‖Res(f)‖∞, INr (θ) =
‖Res(θ)‖∞ and INr (φ) = ‖Res(φ)‖∞. The point when the values of the error norms obtained from
the iterations don’t change any longer is referred to as a “point of optimal residual”. When applying
the method, it was observed that their algorithm was easy to set up and gave very accurate results
with few grid points. The convergence rate of the method was observed to be high and its accuracy
was very impressive. However, the like work done by Sithole et al. [40], who presented an analysis
of the residual errors to show the accuracy and convergence of the SLLM, the graphs below describe
the residual errors involved in the numerical computation.
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Fig.2 Collocation points on ‖Res(f)‖∞ Fig. 3 Number of iterations on ‖Res(f)‖∞
Fig. 2 unveils the behaviour of the residual error against the number of collocation points and they
all show that as collocation points increase, the residual error decreases. The maximum residual
error is attained at about 8 collocation points. The trend is similar in Fig. 3. It shows that the
number of iterations at some point, no longer has any effect on the residual error when it is already
optimized. That optimal residual is noticed at about 8 iterations.

4 Results and Discussion
This section graphically highlights the significant contributions of some of the physical parameters
on the non-dimensional quantities: velocity profile, temperature field and concentration profile.
Besides, the effects of some key parameters on the skin friction coefficient, Nusselt number and
Sherwood number are also analyzed and publicized accordingly through various tables.

Fig.4 Variation of M&n on the velocity profile Fig.5 Plot ofλ on the velocity field

The effects of both magnetic field termM and power law index n on the velocity profile are described
in Fig. 4. The fluid motion decelerates for both parameters as found in this plot. The interaction of
the electro-conducting tangent hyperbolic fluid and the transverse magnetic field induces a retarding
force known as the Lorentz force. This force resists the fluid movement as M is being increased
in magnitude and thereby, a decelerating flow occurs. Similarly, a retarding flow occurs due to an
increase in n. Growing values of n depict a rise in the fluid viscosity and as such, there is a resistance
to the fluid motion. Thus, the nature of the fluid changes from shear thinning to shear thickening
and in consequence, the hydrodynamic boundary layer shrinks and the velocity is reduced. On the
other hand, the fluid motion accelerates with a rise in the mixed convective variable parameter, λ
as demonstrated in Fig. 5. The mixed convective parameter describes the ratio of the buoyancy
force to viscous force, thus an enhancement in aids the buoyancy force and strengthens it over the
viscous force. Such a phenomenon leads to the thickening of the hydrodynamic boundary layer and
better fluid acceleration since the viscous force is reduced.
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Fig.6 Variation of We on the velocity profile Fig.7 Plot of Rd on temperature profiles

Fig. 6. is a description of the reaction of the velocity profile to variation in the tangent hyperbolic
material parameter (Weissenberg number) We. A rise in We shrinks the momentum boundary
structure and decelerates the fluid motion as displayed in this figure. The material term We
is directly proportional to the relaxation time of the fluid and as such, a rise in We favours the
relaxation time which consequently offers greater resistance to the fluid motion. There is an increase
in the surface temperature as the thermal radiation term Rd increases as found in Fig. 7. With
an increase in Rd, the mean absorption coefficient reduces and thus thickens the thermal boundary
layer and the temperature is also raised. Likewise, the surface temperature escalates with growth in
the value of the temperature parameter θw as sketched in Fig. 8. This parameter describes the ratio
of the sheet temperature to that of the upstream temperature

(
θw = Tw

T∞

)
and it is also known as

the wall heating parameter. As θw increases, the operating temperature at the wall is encouraged
in the flow region as, hence, the thermal state of the fluid is enhanced, leading to a rise in the
temperature. The description of the impact of Eckert number Ec on the heat distribution is seen
in Fig. 9. An Eckert number is a dimensionless quantity which describes the ratio of the kinetic
energy to the enthalpy. It reveals the impact of internal heating of a fluid due to internal friction.
Thus, a rise in Ec leads to additional heating which is responsible for a rise in the temperature.
For the effect of the thermal stratification parameter Sθ, Fig. 10 elucidates the declining nature
of the thermal field due to a rise in Sθ. A rise in this term produces a denser density of the fluid
in the lower region in comparison to the upper region. Consequently, the temperature difference
between the heated surface and the upstream region becomes reduced which leads to a decline in
the fluid temperature. Fig. 11 depicts the graph of the concentration, φ(η) versus η for variation in
the Schmidt number, Sc. It is found that a rise in Sc causes the concentration profile to diminish.
This parameter (Sc) describes the ratio of the momentum diffusivity and mass diffusivity. Thus,
with growing values of Sc, the mass diffusivity is reduced and consequently the solutal boundary
layer and the concentration profile decline.

Fig.8 Temperature profiles for changes in θw Fig.9 Temperature profiles for varying Ec
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Fig.10 Temperature profiles for changes in Sθ Fig.11 Concentration profiles for Sc

Table 3: Numerical values of the skin friction coefficient for different values of n, M, We, λ, N ,
β1 and β2

n M We λ β1 N β2 −Re
1
2
xCfx

0.1 0.4 0.1 0.1 0.1 0.1 0.1 1.11505710
0.2 1.18648639
0.3 1.27520668

1 1.45513233
2 1.79701900
3 2.08628443

0.1 1.11505710
0.5 1.13325856
1.0 1.15839606

0.1 1.11505710
0.5 0.94748743
1.0 0.75282335

0.1 1.11505710
0.2 1.11297699
0.3 1.11089839

0.1 1.11505710
0.5 1.10371834
0.9 1.09241696

0.1 1.11505710
0.2 1.11491752
0.3 1.11477794

In Table 3, the impact of some chosen parameters n, M, We, λ, β1, N and β2 on the skin friction
coefficient which corresponds to surface friction as a result of the drag between the fluid and the
stretching surface are checked. As noted in this table, the values of the skin friction coefficient are
all negative for all the parameters checked. Such a phenomenon occurs when the stretching plate
drags the fluid against the fluid dragging the plate. It is observed that a rise in the power law index
n raises the frictional drag due to the fact the fluid becomes more viscous with higher values of
n. A hike in the values of M also boosts the skin friction coefficient due to resistance in the flow
resulting from the Lorentz force. Growth in the Weissenberg number, We also induces a rise in the
skin friction coefficient due to an increase in the viscosity of the fluid. On the other hand, the skin
friction coefficient reduces as λ, β1, N and β2 improve in magnitude.

Table 4: Numerical values of Re−
1
2

x Nux and Re−
1
2

x Sh x for different values of
ε, M, We, Pr, Ec, Sc, Sθ and Sφ when λ = β1 = β2 = N = 0.1
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ε M We Pr Ec Sc Sθ Sφ Re
− 1

2
x Nux Re

− 1
2

x Sh x

0.1 0.2 0.1 1.5 0.1 2 0.2 0.2 0.78640455 1.3929987
0.2 0.75963706 1.39334377
0.3 0.73500512 1.39368708

1 0.70005442 1.30275142
2 0.61988997 1.21629325
3 0.55815502 1.14717629

0.1 0.78640455 1.39299873
0.5 0.78481686 1.38986986
1.0 0.78269178 1.38571648

0.1 0.60512337 1.39840104
0.2 0.68126682 1.39584538
0.3 0.78640455 1.39299873

1.0 0.47892776 1.39622913
1.5 0.30572966 1.39805037
2.0 0.13075632 1.39989123

0.3 0.78825422 0.40350658
0.4 0.78794462 0.48496297
0.5 0.78768500 0.56224846

0.2 0.78640455 1.39299873
0.3 0.77283347 1.38993192
0.4 0.75756055 1.38692767

0.2 0.78640455 1.39299873
0.3 0.78624662 1.34291223
0.4 0.78609006 1.29280704

In Table 4, the response of the Nusselt number (ratio of convective to conductive heat transfer on
the surface) and Sherwood (ratio of convective to diffusive mass transfer at the surface) number to
variations in some selected parameters ε, M, We, Pr, Ec, Sc, Sθ and Sφ are investigated. It is
evident from this table that the Nusselt number is a decreasing function of the thermal conductivity
parameter ε, magnetic field term M , Weissenberg number We. A rise in the magnitude of these
terms implies a lowering of the heat transfer across the sheet surface. However, the case is different
when the Prandtl number is increased. The Prandtl number, Pr denotes a dimensionless quantity
which approximates the ratio of momentum diffusivity to thermal conductivity. In problems that
relate to heat transfer, Pr controls the relative thickness of the momentum diffusivity and thermal
boundary layers. As found in this table a rise in Pr propels an improvement in the heat transfer
due to a rise in the Nusselt number. More so, the Nusselt number depreciates with growing values
of the Eckert number, Ec and thermal stratification parameter, Sθ as noted in Table 4. Ec signals
the kinetic energy to the enthalpy of a fluid and it characterizes the impact of internal heating of
a fluid due to dissipation (internal friction) effects. Thus, a rise in Ec corresponds to an additional
heating effect and a rise in the temperature as such. Heat transfer therefore declines. The thermal
stratification phenomenon occurs when two kinds of steam with different temperatures come into
contact. Thus, as clearly revealed in Table 4, the thermal stratification term Sθ lowers the transfer
of heat. This reaction agrees well with the results of Hayat et al. [45] and Atif et al. [46].

5 Conclusion
This research investigated the mixed convective transport mechanism of a tangent hyperbolic fluid
over a vertical stretchy sheet with stratification effects, nonlinear thermal radiation, viscous dissi-
pation and quadratic Boussinesq approximation. The main equations governing the dynamics of
flow, heat and mass transfer are restructured into ordinary differential equations via suitable sim-
ilarity variables and then integrated using SLLM. Comparison with some existing studies reveals
an excellent agreement with the current work. The findings are parametrically displayed in various
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graphs with appropriate analysis and discussions. More so, the impact of some crucial parameters
on the physical quantities of engineering interest are tabulated and discussed effectively for mean-
ingful practical engineering and technological applications. In summary, the under-listed facts are
deduced from the investigation:

• Heat transfer can be improved by increasing the values of the Prandtl number whereas the
converse is true in the presence of thermal stratification, variable thermal conductivity, viscous
dissipation, and tangent hyperbolic fluid material parameter.

• The surface drag force enhanced due to a rise in the power law index, magnetic field influence,
and the Weissenberg number while it declined due to the mixed convective term, nonlinear
thermal and concentration terms are increased.

• There is a reduction in the hydrodynamic boundary layer and the fluid motion is decreased
due to the influence of the Weissenberg number, magnetic field term and power law index
whereas an increase in the velocity as the mixed convective variable term upsurges.

• The thermal boundary layer structure and the surface temperature appreciate with growth in
the magnitude of nonlinear thermal radiation term, viscous dissipation and thermal radiation
parameter.

Nomenclature
B0 magnetic field strength [Wbm−2] ε thermal conductivity parameter
h1 linear thermal expansion coefficient [K−1] λ mixed convection parameter
cp specific heat capacity [J/kgK] N ratio of concentration to buoyancy force
Ec Eckert number β1 nonlinear thermal convection term
f non-dimensional stream function η similarity variable
h2 nonlinear thermal expansion coefficient

[K−1]
θ dimensionless temperature

h3 linear solutal expansion coefficient K−1] β2 nonlinear solutal term
g acceleration due to gravity Sφ Solutal stratification term
h4 nonlinear solutal expansion coefficient [K−1] µ dynamic viscosity [kgm−1s−1]
k thermal conductivity [Wm−1K−1 ] ϑ kinematic viscosity [m2s−1]
We Weissenberg number ρ fluid density [kgm−3]
k? mean absorption coefficient [m−1] Db Mass diffusivity [m2s−1]
M magnetic field parameter σ0 electrical conductivity [Sm−1 ]
Rd radiation parameter φ dimensionless concentration
Nux Nusselt number ψ stream function [m2s−1]
Pr Prandtl number Sθ thermal stratification term
n Power law index Sc Schmidt number
θw temperature ratio parameter T0 reference temperature [K]
qw surface heat flux [Wm−2 ] C0 reference concentration [mol m−3]
C concentration [mol m−3] qm surface mass flux [Wm−2 ]
T temperature [K]
Tw surface temperature [K] subscripts
T∞ free stream temperature [K] w surface conditions
u velocity in x direction [ms−1 ] ∞ free stream conditions
v velocity in y direction [ms−1 ]
γ relaxation time [s−1 ]
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