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Abstract

In the language of Ω-groupoid we introduce Ω-subgroup, where a groupoid is an algebraic
structure endow with one binary operation. Ω-subgroup is defined, as a generalization of the
classical subgroup. In this case it was shown that the properties of Ω-groups are inherent in
their Ω-subgroups. We then introduce and define the notions: center of an Ω-group, centralizers
and normalizers of an Ω-subset of an Ω-group. Furthermore we investigate and prove some of
the properties of these notions as in the case of classical group theory. .
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1 Introduction

1.1 Historical remarks
Fuzzy set was introduced by Zadeh [1]. Since then numerous works by researchers have been on-
going in various areas of abstract algebra and related fields in the framework of fuzzy setting.
Notably, this concept was quickly adopted by Goguen [2], who introduced the notion of L-fuzzy
set, Sanchez [3] and Brown [4], generalized the concept of fuzzy set, in which case the unit interval
on the real line as introduced by Zadeh [1] was replaced by a suitable partially ordered set (lattice)
as the codomain of the fuzzy membership function.
Fuzzy groups and fuzzy semigroups as related concept were introduced and investigated early in the
beginning of fuzzy era. The first appearance of fuzzy group was by Rosenfeld [5] . Thereafter, there
were many other papers, see the monograph [6], and references cited there. For fuzzy semigroups,
monograph [7] by Malik et al. gave a comprehensive overview of all the results up to 2003. Among
numerous results, we can mention paper [8] where the structure of fuzzy subgroups of a group was
investigated, paper [9] where it was shown that a fuzzy subgroupoid of a group need not be a fuzzy
group.
In this research the topic investigated is some algebraic aspects of Ω-valued algebraic structures,
with focus on groups. Ω is a complete lattice.
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Our research originates in fuzzy structures and in Ω-sets. Ω-sets, as an intention for modeling intu-
itionistic logic, appeared 1979, in the paper [10] by Fourman and Scott. An Ω-set is a nonempty set
A equipped with an Ω-valued equality E, with truth values in a complete Heyting algebra Ω. E is
considered to be a symmetric and transitive function from A2 to Ω. Both theories are well related
in their basic ideals since they both deal with the notion of belonging in set-theoretic and logical
sense. Quickly we want to mention that Ω-set in its interpretation is not totally equivalent to that
of fuzzy. In fuzzy the notion of subset is generalized by a function, while in Ω-set approach we deal
with the so-called “partial elements”, where E is not reflexive. Ω-sets have been further applied to
non-classical predicate logics, and also to theoretical foundations of the fuzzy set theory [11,12].
Dealing with Ω-structures we use Ω-sets and in our research Ω is a complete lattice (not necessarily
a Heyting algebra). The main reason for this membership values structure is that it allows the use of
cut-sets as a tool appearing in the fuzzy set theory. In this setting, main algebraic and set-theoretic
notions, and their properties can be generalized from their classical origin to the lattice-valued
framework [13]. So we deal also with lattice-valued structures and Ω-sets as basic objects . These
were developed within the fuzzy set theory
Since Goguen [2] replaced the unit interval with a complete lattice. This approach has been widely
used for dealing with algebraic topics (see e.g., [14], then also [15–17]), and with the lattice-valued
topology (starting with [18] and many others). In the recent decades, along with the development
of the fuzzy logic, a complete lattice as a membership (truth values) structure is often replaced
by a complete residuated lattice (see e.g., [19]). But then the cut structures do not keep algebraic
properties satisfied on the basic fuzzy structure.
As a generalization of the classical equality we use lattice-valued equality. This was introduced
into fuzzy mathematics by Höhle in his paper [20]. Afterwards several authors have used this no-
tion in the investigation of fuzzy functions and fuzzy algebraic structures notably among them are:
Demirci [21], Bělohlávek and V. Vychodil [22] and others.
Identities for lattice-valued structures with the fuzzy equality we use in this work were introduced
in [23] and developed in [24–27]. Recently, several applications of it have appeared in publica-
tion [28–32]. Although similar notion first appeared in [22] . In this framework, an identity holds
if the corresponding lattice-theoretic formula is fulfilled. What is new in this approach is that an
identity may hold on a lattice-valued algebra, while the underlying classical algebra does not satisfy
the analogue classical identity.
In [33] the authors introduced and investigated the notion of Ω-group in the language of Ω-groupiod.
In this case the basic algebra is a groupoid with single binary operation. The authors proved that
this study of Ω-groups can be equivalent to that of Ω-groups in the language of three operation as
presented in [33].
In the present work we introduce and investigate Ω-subgroup arising from the notion of Ω-groups
introduced [33]. We presented that the lattice-valued identities which holds in an Ω-group also hold
in the Ω-subgroup. Then the notion of Ω-centralizer, Ω-normalize and Ω-center of an Ω- group was
introduced and we proved that the sets of Ω-centralizer, Ω-normalize and Ω-center of an Ω- group
form Ω-subgroup of the Ω-group , like in the classical group theory.

2 Preliminaries
In this section, we give some notations, definitions and propositions that would be needed in this
paper. We refer to [34,35] for general lattice theory.

2.1 Lattices and Algebras
We present a complete lattice as a complete poset. A poset (, ) is complete if for every subset M
of Ω both sup M and inf M exist (in Ω). The elements supM and infM will be denoted by

∨
M

and
∧
M , respectively.

A complete lattice possesses the least and the greatest elements 0 and 1, respectively. A meet
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and a join of a two-element subset {a, b} of Ω are binary operations, denoted by a ∧ b and a ∨ b,
respectively.
A language (or a type) of algebras is a set F of function symbols such that a nonnegative integer
n is assigned to each member f of F . This integer is called the arity (or rank) of f , and f is said
to be an n-ary function symbol.
Generally, an algebra of type F is a structure A = 〈A,F 〉, where A is a nonempty set and F is
a set of (fundamental) operations on A. An n-ary operation in F corresponds to an n-ary symbol
in the language. A subalgebra of A is an algebra of the same type, defined on a subset of A,
closed under the operations in F . Terms in a language are regular expressions constructed by
the variables and operational symbols see [36]. If t(x1, . . . , xn) is a term in the language of an
algebra A, then we denote in the same way the corresponding term-operation An → A on A. An
identity in a language is a formula t1 ≈ t2, where t1, t2 are terms in the same language. An
identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) is said to be valid on an algebra A = 〈A,F 〉, or that A
satisfies this identity, if for all a1, . . . , an ∈ A, the equality t1(a1, . . . , an) = t2(a1, . . . , an) holds.
An equivalence relation ρ on A which is compatible with respect to all fundamental operations,
meaning that xiρyi, i = 1, . . . , n imply f(x1, . . . , xn)ρf(y1, . . . , yn), is a congruence relation on A.

Suppose ρ is a congruence on A, then for a ∈ A, the congruence class of a, [a]ρ, is defined by

[a]ρ := {x ∈ A | (a, x) ∈ ρ}

and the quotient algebra A/ρ is defined by

A/ρ := (A/ρ, F ),

where A/ρ = {[a]ρ | a ∈ A}, and the operation on classes are defined by representatives.
An algebra G = (G, ∗) with a single binary operation is called a groupoid.

An element e in a groupoid G = (G, ∗) is said to be a neutral element if for every x ∈ G,
x ∗ e = e ∗ x = x.
A semigroup is a groupoid G = (G, ∗) that fulfills the associative identity:

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z.

A monoid, G is a semigroup with a neutral element.
For x ∈ G its inverse denoted by x−1 ∈ G is referred to as inverse element, of x in a monoid G,
such that

x ∗ x−1 = x−1 ∗ x = e.

The inverse of every element x ∈ G is unique.
A group, G = (G, ∗) is a monoid in which every element possesses an (unique) inverse. The
following formula defines a neutral element and inverses:

(∃z)(∀x)(x ∗ z = z ∗ x = x ∧ (∃y)(x ∗ y = y ∗ x = z)) : (2.1)

in addition to the associative identity.
In universal algebra a group can equivalently be defined as an algebra with three operations,
(G; ∗;x−1; e) : binary operation ∗, unary operation x−1 and a nullary operation, constant, e, so
that the following identities hold:

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z; (2.2)

x ∗ e ≈ x ≈ e ∗ x; (2.3)

x ∗ x−1 ≈ e ≈ x−1 ∗ x. (2.4)
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It is clear that the only identity in the definition of a group as a groupoid, G = (G, ∗) is the
associativity property.
In the language with one operation properties of the neutral element and inverses, as a formula
(2.1), contain existential quantifiers. In the language with three operations, all three formulas, (2.2,
2.3, 2.4), defining a group are identities. Still, these notions describing the structure of a group
in different languages are equivalent, as follows. If G = (G, ∗) is a group as a groupoid with the
neutral element e and inverse x−1 for x ∈ G, then (G, ∗,−1 , e) is a group in the language with
three operations. Conversely, if (G, ∗,−1 , e) is a group in the corresponding language, then also the
groupoid G = (G, ∗) is a group.

2.2 Ω-valued functions and relations
An Ω-valued function µ on a nonempty set A is a mapping µ : A → , where (, ) is a complete
lattice. This notion can be related to fuzzy set on A. If µ and ν are Ω-valued functions on A, then
ν is said to be a fuzzy subset of µ, if for all x ∈ A ν(x)µ(x).
For p ∈ , a cut set or a p-cut of an Ω-valued function µ : A → is a subset µp of A which is the
inverse image of the principal filter in Ω, generated by p:

µp = µ−1(↑(p)) = {x ∈ X | µ(x)p}.

An Ω-valued (binary) relation R on A is an Ω-valued function on A2, i.e., it is a mapping
R : A2 → .
R is symmetric if

R(x, y) = R(y, x) for all x, y ∈ A; (2.5)

R is transitive if
R(x, y)R(x, z) ∧R(z, y) for all x, y, z ∈ A. (2.6)

Observe that an Ω-valued symmetric and transitive relation R on A fulfills the strictness property
(see [12]):

R(x, y)R(x, x) ∧R(y, y). (2.7)

Likewise we say an Ω-valued symmetric and transitive relation R on A satisfies the separation
property if the following holds:

R(x, y) = R(x, x) = R(y, x) 6= 0 implies x = y. (2.8)

Therefore, R is said to be separated if 2.8 holds.
We now consider the connection of the above notion with Ω-valued relations on Ω-set.
Suppose µ : A→ is an Ω-valued function on A and R : A2 → an Ω-valued relation on A. If for all
x, y ∈ A the following holds:

R(x, y)µ(x) ∧ µ(y). (2.9)

then we say that R is an Ω-valued relation on µ.
Next, we consider the notion of (weak) reflexiveness of R. An Ω-valued relation R on µ : A → is
said to be reflexive on µ or µ-reflexive if

R(x, x) = µ(x) for every x ∈ A. (2.10)

A symmetric and transitive Ω-valued relation R on A, which is reflexive on µ : A→ is an Ω-valued
equivalence on µ.
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Clearly, an Ω-valued equivalence R on µ fulfills the strictness property (2.7).

Furthermore, if R is an Ω-valued equivalence on µ, which is separated according to (2.8), then we
say that R is an Ω-valued equality on µ.

2.3 Ω-set
The following is defined in [10], and then adopted to a fuzzy framework in [27].
An Ω-set is a pair (A,E), where A is a nonempty set, and E is a symmetric and transitive Ω-valued
relation on A, which may fulfill the separation property (2.8) if indicated. But we note that in this
work the separation property is needed for most of the result.
Consequently, for an Ω-set (A,E), we denote by µ the Ω-valued function on A, defined by

µ(x) := E(x, x). (2.11)

Then µ is said to be determined by E. This enable us in generalizing the notion of subset of an
Ω-set (A,E).
Clearly, by the strictness property (2.7), E is an Ω-valued relation on µ, namely, it is an Ω-valued
equality on µ. That is why we say that in an Ω-set (A,E), E is an Ω-valued equality.

If (A,E) is an Ω-set and p ∈ , then the cut Ep is an equivalence relation on the corresponding
cut µp of µ.

2.4 Ω-algebra and Ω-subalgebra
For reference on the results in this section see ( [29], [27]).

Let A = (A,F ) be an algebra and E : A2 → an Ω-valued equality on A, which is compatible with
the operations in F . Then we say that (A, E) is an Ω-algebra. Algebra A is the underlying
algebra of (A, E).

[27] Let (A, E) be an Ω-algebra. Then the following hold:
(i ) The function µ : A → determined by E (µ(x) = E(x, x) for all x ∈ A), is compatible over

A.
(ii ) For every p ∈ , the cut µp of µ is a subalgebra of A, and
(iii ) For every p ∈ , the cut Ep of E is a congruence relation on µp. Let (A, E) be an Ω-algebra,

and (A,E1) an Ω-subset of (A,E). Then E1 is a symmetric and transitive Ω-relation on A, fulfilling
for all x, y ∈ A

E1(x, y) = E(x, y) ∧ E1(x, x) ∧ E1(y, y).

Let also E1 be compatible with the operations in A. Obviously, (A, E1) is an Ω-algebra and we say
that it is an Ω-subalgebra of the Ω-algebra (A, E).

2.5 Ω-group: (G, ∗,−1 , e)

For reference on the results in this section see ( [27], [23]).

[27] Let G = (G, ∗,−1 , e) be an Ω-group, and E and Ω-equality on G . Then G = (G, E) is an
Ω-group
Consider ν : G → to be an Ω-valued subset of the Ω-valued set µ : G → , E an Ω-valued relation
on µ and E1 : G2 → an Ω-valued relation on G. Then E1 is a restriction of E to ν if

E1(x, y) = ν(x) ∧ ν(y) ∧ E(x, y) (2.12)

[27] Let (A, E) be an Ω-algebra on the algebra A and ν is an Ω-valued subset of the Ω-valued set
µ and Ω-subalgebra of A . Then (A, E1), is also Ω-algebra on the algebra A where ν(x) = E1(x, x)
and the restriction of E to ν.
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Observe that if G = (G, E) and G1 = (G, E1) are Ω-groups over the same algebra G = (G, ∗,−1 , e),
then G1 is an Ω-subgroup of the Ω-group G if E1 is a restriction of E to the Ω-subalgebra ν of G
determined by E1.

Theorem 2.1. [27] Let G = (G, E) be an Ω-group and E1 an Ω-valued relation on G satisfying
the formula

E1(x, y) = E1(x, x) ∧ E1(y, y) ∧ E(x, y) (2.13)

Then the Ω-algebra G1 = (G, E1) is an Ω-subgroup of the Ω-group G if and only if the following
hold:

E1(x ∗ y, x ∗ y)E1(x, x) ∧ E1(y, y) (2.14)

E1(x1, x1)E1(x, x) (2.15)

E1(e, e) = 1 (2.16)

2.6 Ω-group: as Ω-groupoid
For reference on the results in this section see ( [33]). In both languages, the associative property
is equivalent to the fulfillment of the corresponding identity in the framework of Ω-algebras:

µ(x) ∧ µ(y) ∧ µ(z)E(x ∗ (y ∗ z), (x ∗ y) ∗ z), (2.17)

Let G = (G, E) be an Ω-groupoid, where the underlying algebra is a groupoid G = (G, ∗). Then G
is a strict Ω-group if it is associative in the sense of (2.17) and the following hold:
There is e ∈ G such that for every x ∈ G

µ(x)µ(e) ∧ E(e ∗ x, x) ∧ E(x ∗ e, x) (2.18)

and
there is x′ ∈ G such that µ(x)µ(x′) ∧ E(x ∗ x′, e) ∧ E(x′ ∗ x, e) (2.19)

[33] Let G = (G, E) be an Ω-groupoid which is a strict Ω-group, then the following hold: (i ) if
e ∈ G is a neutral element in G, then for all x ∈ G µ(e)µ(x).

(ii ) A neutral element e is unique and this is also the neutral element in the underlying groupoid
(G, ∗).

[33] Let G = (G, E) be an Ω-groupoid which is a strict Ω-group, then the following hold for
every x ∈ G: (i ) (x′)′ = x. (ii ) µ(x) = µ(x′). (iii ) Inverse element x′ is unique.

Theorem 2.2. [33] Let G = (G, E) be an Ω-groupoid with a neutral element e. If every nonempty
quotient µi/Ei, i ∈ is a group whose neutral element class is [e]Ei

, then G is an Ω-group.

3 Result
In subsection (2.5), Ω-subgroup of an Ω-group (as presented in ( [31])) was investigated in the case
where the underlying algebra is an algebra with three operations, namely: a binary operation, a
unary operation and a nullary operation. But our investigation here is to deal with Ω-subgroup of
an Ω-group in the language of one operation, as was introduced in ( [33]).
The following result follows directly from theorem (2.1).

Theorem 3.1. Let G = (G, E) be a strict Ω-group, where G = (G, ∗) the underlying algebra is a
groupoid and E1 an Ω-valued relation on G satisfying the formula

E1(x, y) = E1(x, x) ∧ E1(y, y) ∧ E(x, y) (3.1)
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Then the Ω-groupoid G1 = (G, E1) is an Ω-subgroup of the Ω-group G if and only if the following
hold:

E1(x, x) ∧ E1(y, y)E1(x ∗ y, x ∗ y) (3.2)

E1(x, x)E1(x′, x′)(for the inverse element x′ of x ∈ G) (3.3)

E1(x, x)E(x, x)( x ∈ G) (3.4)

E1(e, e) = E(e, e)for the neutral element e ∈ G (3.5)

The following proposition is considered a special case of theorem (??) Let G = (G, E) be a
strict Ω-group , where G = (G, ∗) is a classical groupoid and Ĝ = (G, Ê) an Ω-subgroupoid of G.
Therefore, if Ĝ = (G, Ê) is an Ω-subgroup of G, then the following holds: There is e ∈ G such that
for all x ∈ G

µ̂(x)µ̂(e) ∧ Ê(x ∗ e, x) ∧ Ê(e ∗ x, x) (3.6)

there is x′ ∈ G
µ̂(x)µ̂(x′) ∧ Ê(x ∗ x′, e) ∧ Ê(x′ ∗ x, e) (3.7)

Proof. Assuming Ĝ = (G, Ê). Since Ĝ = (G, Ê) is an Ω-subgroupoid of G we have that for x, y ∈ G

Ê(x, y) = µ̂(x) ∧ µ̂(y) ∧ E(x, y) (3.8)

and also for any x ∈ G

µ̂(x)µ(x)

therefore, it follows that
µ̂(x)µ(e) ∧ E(x ∗ e, x) ∧ E(e ∗ x, x) (3.9)

Where µ̂(x)µ̂(x) = µ̂(x) ∧ µ̂(x).
Thus from equation 3.9, we have

µ̂(x)µ(e) ∧ E(x ∗ e, x) ∧ E(e ∗ x, x) ∧ µ̂(x) ∧ µ̂(x) (3.10)

Clearly, form 3.10

µ̂(x) ∧ µ̂(e ∗ x) ∧ µ̂(x ∗ e)µ(e) ∧ E(x ∗ e, x) ∧ E(e ∗ x, x) ∧ µ̂(x) ∧ µ̂(x) ∧ µ̂(e ∗ x) ∧ µ̂(x ∗ e) (3.11)

From equation 3.8 we have,

Ê(e ∗ x, x) = µ̂(e ∗ x) ∧ µ̂(x) ∧ E(e ∗ x, x) (3.12)

Ê(x ∗ e, x) = µ̂(x ∗ e) ∧ µ̂(x) ∧ E(x ∗ e, x) (3.13)

combine equations 3.12 and 3.13 with equation 3.11, to obtain

µ̂(x) ∧ µ̂(e ∗ x) ∧ µ̂(x ∗ e)µ(e) ∧ Ê(e ∗ x, x) ∧ Ê(x ∗ e, x) (3.14)

since µ̂(x)µ̂(e ∗ x) and µ̂(x)µ̂(x ∗ e), then equation 3.14, becomes

µ̂(x)µ(e) ∧ Ê(e ∗ x, x) ∧ Ê(x ∗ e, x) (3.15)

since Ĝ = (G, Ê) is an Ω-subgroup, and e is the neutral element, then µ(e) = µ̂(e). Therefore, 3.15
becomes

µ̂(x)µ̂(e) ∧ Ê(e ∗ x, x) ∧ Ê(x ∗ e, x) (3.16)

The second assertion follows similarly. Therefore rewriting equation 3.15, we have

µ̂(x)µ(x′) ∧ Ê(x′ ∗ x, e) ∧ Ê(x ∗ x′, e) (3.17)

But since Ĝ = (G, Ê) is an Ω-subgroup of the Ω-group G = (G, E), then
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µ̂(x)µ̂(x′)

Thus equation 3.17 becomes

µ̂(x)µ(x′) ∧ µ̂(x′) ∧ Ê(x′ ∗ x, e) ∧ Ê(x ∗ x′, e) (3.18)

but

µ̂(x′) = µ̂(x′) ∧ µ(x′)

Hence equation 3.18 becomes

µ̂(x)µ̂(x′) ∧ Ê(x′ ∗ x, e) ∧ Ê(x ∗ x′, e) (3.19)

as required.

The above result shows that every identity satisfied on an Ω-group G = (G, E) is also satisfied on
its Ω-subgroup Ĝ = (G, Ê).

We let (G, E) be the set of all Ω-subgroups of the Ω-group (G, E).

3.1 some definitions
Let A = (G,E1) to be an Ω-subset of G. Then we have the following definitions:

1) Let G = (G, E) be a strict Ω-group , where G = (G, ∗) is a classical groupoid and A = (G,E1)
an Ω-subset of G. An element x ∈ G is an Ω-centralizer of A if for every a ∈ A the following holds

µ1(a) ∧ µ(x)E(xax′, a). (3.20)

2) Let G = (G, E) be a strict Ω-group , where G = (G, ∗) is a classical groupoid and A = (G,E1)
be an Ω-subset of G . An element x ∈ G is an Ω-normalizer of A if for all a ∈ A there exist b ∈ A
such that

µ1(a) ∧ µ1(b) ∧ µ(x)E(xax′, b). (3.21)

3) Let G = (G, E) be a strict Ω-group , where G = (G, ∗) is a classical groupoid. An element x ∈ G
is in the Ω-center of G if for all a ∈ G the following holds

µ(a) ∧ µ(x)E(xa, ax). (3.22)

Let A = (G,E1) be an Ω-subset of the (strict) Ω-group G = (G, E). Then the following hold
(i) the neutral element of G is an Ω-centralizer A.
(ii) if x ∈ G is an Ω-centralizer of A, then the inverse element of x ∈ G is also an Ω-centralizer of A.
(iii) if x, y ∈ G are Ω-centralizers of A, then xy ∈ G is also an Ω-centralizer of A.

Proof. (i) Let A = (G,E1) be an Ω-subset of the (strict) Ω-group G = (G, E), then for the neutral
element e ∈ G we have

µ1(a) ∧ µ(e)µ(a) = E(a, a) = E(eae, a)⇒ µ1(a) ∧ µ(e)E(eae, a)

so the neutral element e in G is an Ω-centralizer of A = (G,E1).
(ii) Assume that x is an Ω-centralizer of A in G therefore by definition

µ1(a) ∧ µ(x)E(xax′, a)
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hence

µ1(a) ∧ µ(x) ≤ E(xax′, a) ∧ µ(x)

⇒ µ1(a) ∧ µ(x) ∧ µ(x′) ≤ E(xax′, a) ∧ µ(x) ∧ µ(x′) (x′ is the inverse of x in G)
⇒ µ1(a) ∧ µ(x) ∧ µ(x′) ≤ E(x′, x′) ∧ E(xax′, a) ∧ E(x, x) (µ reflexivity)
⇒ µ1(a) ∧ µ(x) ∧ µ(x′) ≤ E(x′, x′) ∧ E(xax′x, ax) (compatibility)
⇒ µ1(a) ∧ µ(x) ∧ µ(x′) ≤ E(x′xax′x, x′ax) (compatibility).

Let p = µ1(a) ∧ µ(x) ∧ µ(x′), then E(x′xax′x, x′ax)p. Therefore (x′xax′x, x′ax) ∈ Ep implying

[x′xax′x]Ep
= [x′ax]Ep

⇒ [x′x]Ep
[a]Ep

[x′x]Ep
= [x′ax]Ep

⇒ [e]Ep
[a]Ep

[e]Ep
= [x′ax]Ep

⇒ [a]Ep
= [x′ax]Ep

⇒ (a, x′ax) ∈ Ep
⇒ E(a, x′ax)p.

Thus µ1(a) ∧ µ(x) ∧ µ(x′)E(a, x′ax) implying µ1(a) ∧ µ(x′)E(a, x′ax).
Proving that for any x ∈ G that is an Ω-centralizer of A = (G,E1), then its inverse is also is an
Ω-centralizer of A = (G,E1).
(iii) Now let x, y ∈ G be Ω-centralizers of A and let p = µ1(a) ∧ µ(xy)

µ1(a) ∧ µ(xy) ∧ µ((xy)′)E(a, a) ∧ E(xy, xy) ∧ E((xy)′, (xy)′)

≤ E(axy, axy) ∧ E((xy)′, (xy)′) (compatibility)
= E((xy)′, (xy)′) ∧ E(axy, axy) (commutativity)
≤ E((xy)′axy, (xy)′axy) (compatibility).

Thus µ1(a) ∧ µ(xy) ≤ E((xy)′axy, (xy)′axy), where µ(xy) ≤ µ((xy)′).
Therefore, E((xy)′axy, (xy)′axy)p. It follows that ((xy)′axy, (xy)′axy) ∈ Ep implying

[(xy)′axy]Ep
= [y′x′axy]Ep

= [y′]Ep
[x′ax]Ep

[y]Ep
= [y′]Ep

a[y]Ep

= [y′ay]Ep
= [a]Ep

⇒ [a]Ep
= [(yx)′a(yx)]Ep

⇒ (a, (yx)′a(yx)) ∈ Ep
⇒ E(a, (yx)′a(yx))p.

Thus µ1(a) ∧ µ(xy)E(a, (yx)′a(yx)).
Proving that for x, y ∈ G that are Ω-centralizers of A = (G,E1), then their product xy ∈ G is also
an Ω-centralizer of A = (G,E1).

Let A = (G,E1) be an Ω-subset of the (strict) Ω-group G = (G, E). Then the following hold:
(i) the neutral element of G is an Ω-normalizer of A.
(ii) if x ∈ G is an Ω-normalizer of A, then the inverse element of x ∈ G is an Ω-normalizer of A.
(iii) if x, y ∈ G are Ω-normalizers of A, then xy ∈ G is an Ω-normalizer of A.

Proof. (i) It is easily proved.
(ii) Assume that x is an Ω-normalizer of A in G therefore by definition

µ1(a) ∧ µ1(b) ∧ µ(x)E(xax′, b)
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hence

µ1(a) ∧ µ1(b) ∧ µ(x) ≤ E(xax′, b)

⇒ µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′) ≤ E(xax′, b) ∧ µ(x) ∧ µ(x′)

(x′ inverse of x in G)
⇒ µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′) ≤ E(xax′, b) ∧ E(x′, x′) ∧ E(x, x)

(µ reflexivity)
⇒ µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′) ≤ E(x′xax′, x′b) ∧ E(x, x) (compatibility)
⇒ µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′) ≤ E(x′xax′x, x′bx) (compatibility).

Let p = µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′), then E(x′xax′x, x′bx)p. Therefore (x′xax′x, x′bx) ∈ Ep
implying

[x′xax′x]Ep
= [x′bx]Ep

⇒ [x′x]Ep
[a]Ep

[x′x]Ep
= [x′bx]Ep

⇒ [e]Ep
[a]Ep

[e]Ep
= [x′bx]Ep

⇒ [a]Ep
= [x′bx]Ep

⇒ (a, x′ax) ∈ Ep
⇒ E(a, x′bx)p.

Thus µ1(a) ∧ µ1(b) ∧ µ(x) ∧ µ(x′)E(a, x′bx) implying µ1(a) ∧ µ1(b) ∧ µ(x′)E(a, x′bx).
Proving that for any x ∈ G that is an Ω-normalizer of A = (G,E1), then its inverse also is an
Ω-normalizer of A = (G,E1).
(iii) Now let x, y ∈ G be Ω-normalizers of A and let p = µ1(a) ∧ µ1(b) ∧ µ(xy)

µ1(a) ∧ µ1(b) ∧ µ(xy) ∧ µ((xy)′)E(a, a) ∧ E(b, b) ∧ E(xy, xy) ∧ E((xy)′, (xy)′)

≤ E(axy, axy) ∧ E((xy)′, (xy)′) (compatibility)
= E((xy)′, (xy)′) ∧ E(axy, axy) (commutativity)
≤ E((xy)′axy, (xy)′axy) (compatibility).

Thus µ1(a) ∧ µ1(b) ∧ µ(xy) ≤ E((xy)′axy, (xy)′axy), where µ(xy) ≤ µ((xy)′).
Therefore, E((xy)′axy, (xy)′axy)p. It follows that ((xy)′axy, (xy)′axy) ∈ Ep implying

[(xy)′axy]Ep
= [y′x′axy]Ep

= [y′]Ep
[x′ax]Ep

[y]Ep
= [y′]Ep

[x′ax]Ep
[y]Ep

⇒ [y′by]Ep
= [a]Ep

⇒ (y′by, a) ∈ Ep
⇒ E(a, y′by)p.

Thus µ1(a) ∧ µ1(b) ∧ µ(xy)E(a, y′by).
since E(a, y′by)E(a, b), then
µ1(a) ∧ µ1(b) ∧ µ(xy) ≤ E(a, y′by) ∧ E(a, b) ≤ E(b, y′by) Therefore, E(b, y′by)p. It follows that
(b, y′by) ∈ Ep implying

[y′by]Ep
= [y′]Ep

[b]Ep
[y]Ep

= [y′]Ep
[x′ax]Ep

[y]Ep
= [y′]Ep

[x′]Ep
[a]Ep

[x]Ep
[y]Ep

= [(xy)′]Ep
[a]Ep

[xy]Ep

⇒ ((xy)′a(xy), b) ∈ Ep
⇒ E((xy)′a(xy), b)p.
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Hence µ1(a) ∧ µ1(b) ∧ µ(xy) ≤ E((xy)′a(xy), b)
Proving that for x, y ∈ G that are Ω-normalizers of A = (G,E1), then their product xy ∈ G is

also an Ω-normalizer of A = (G,E1).

Let A = (G,E1) be an Ω-subset of the (strict) Ω-group G = (G, E). Then the following hold:
(i) the neutral element of G is an element of the Ω-center of G.
(ii) if x ∈ G is an element of the Ω-center of G, then the inverse element of x ∈ G is also an element
of the Ω-center of G.
(iii) if x, y ∈ G are elements of the Ω-center of G, then xy ∈ G is also an element of the Ω-center
G.

Proof. The proofs follow similarly as above.

3.2 Concrete example
In this section we present an example.
Given that (G, E) is an Ω-groupoid. Let G = {e, a, b, c, d, f, g}, and Ω be a membership values
lattice given in Figure 1.
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Figure 1: Membership values lattice

Lattice Ω

An Ω-valued, equality E : G2 → is given in Table 2, and the operation ∗ is given in Table 1 .

∗ e a b c d f g
e e a b c d f g
a a e c b f d a
b b c e a f d b
c c b a e a e c
d d f d d a e d
f f d f f e a e
g g a b c d e a

E e a b c d f g
e 1 p v q 0 0 k
a p r v v 0 0 0
b v v s v 0 0 0
c q v v t 0 0 0
d 0 0 0 0 u 0 0
f 0 0 0 0 0 u 0
g k 0 0 0 0 0 k

Table 1: Operation ∗ Table 2: Ω-valued equality E

The membership Ω-function µ : G→ , defined by µ(x) := E(x, x), is given as

µ =

(
e a b c d f g
1 r s t u u k

)
.
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The cut sets of µ and E represented by partitions are:

µ0 = G ; E0 = {{e, a, b, c, d, f}};
µu = {e, d, f} ; Eu = {{e}, {d}, {f}};
µr = {e, a} = µp ; Er = {{e}, {a}};
µs = {e, a, b, c} = µv ; Es = {{e}, {a}, {b}, {c}};
µt = {e, c} = µq ; Et = {{e}, {c}};
µk = {e, a, d, f, g} ; Ek = {{e, g}, {a}, {d}, {f}};
µ1 = {e}; E1 = {{e}};
Ep = {{e, a}} ; Eq = {{e, c}};

Ev = {{e, a, b, c}}.

(G, E) is an Ω-group by theorem (2.2). This fact is shown in the analysis above. For all i ∈ , the
quotient cut subgroupoids (µi/Ei, ∗) are groups. Observe that µ0/E0 and µv/Ev are one-element
quotient cut subgroupoids, and the other quotient cut subgroupoids are presented in Tables 3 - 7.

∗ e a d f
e e a d f
a a e f d
d d f a e
f f d e a

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 3: Quotient cut (µk/Ek, ∗) Table 4: Quotient cut (µs/Es, ∗)

∗ e d f
e e d f
d d f e
f f e d

∗ e a
e e a
a a e

∗ e c
e e c
c c e

Table 5: (µu/Eu, ∗) Table 6: (µr/Er, ∗) Table 7: (µt/Et, ∗)

Note in Table 4 element g ∈ G could be used in place of element e ∈ G since e and g belong to the
equivalence class in cut set Es.

Finally, observe that for the Ω-group (G, E) with G = {e, a, b, c, d, f, g}, and Ω in Figure 1. we see
that definition 3.1 holds. Let A = (G,E1) an Ω-subset of G, for a ∈ A = (G,E1) and b ∈ G, we
have by equation 3.20

µ1(a) ∧ µ(b)E(bab′, a)⇒ p ∧ sE(a, a)⇒ vr. (3.23)

Therefore, b is an Ω-centralizer of A.
Next, for c ∈ G and a, b ∈ A = (G,E1), we have by equation 3.21

µ1(a) ∧ µ1(b) ∧ µ(c)E(cac′, b)⇒ p ∧ s ∧ tE(a, b)⇒ vv. (3.24)

Therefore, c is an Ω-normalizer of A.
Lastly, for a ∈ G and for d ∈ G, we have by equation 3.22

µ(d) ∧ µ(a)E(da, ad)⇒ u ∧ rE(f, f)⇒ ku. (3.25)

Therefore, d is an element of the Ω-center of G.
Obviously, in each of the quotient cut to which the above elements belong they also satisfy these
notions classically.
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4 Conclusion
In this work we have introduced and investigated the notion of Ω-subgroup of an Ω-group with one
binary operation as introduced in [33]. As in the classical case it was shown that an Ω-subgroup of an
Ω-group fulfill the same properties, with regards to the neutral element and inverses. We relied on
cut structures which are the connections to the classical structures. Furthermore we presented and
investigated some particular notions as in the case of classical group theory: Ω-centralizer, Ω-center
and Ω-normalizer in an Ω-group. In this framework our next task is to further our investigation
on these notions and consider Ω-permutation groups with focus on the class of symmetric group
presented in [37]. related concepts.
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