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Abstract

In this paper, we get some elliptic type gradient estimates on positive solutions to the heat
equation on a weighted Riemannian manifold with time dependent metrics and potentials. The
geometry of the space in terms of curvature bounds play crucial role in determining the esti-
mates. The gradient estimates derived are useful in proving the classical Harnack inequalities,
Liouville type theorems, heat kernel bounds, e.t.c. As an example, we discuss Liouville prin-
ciple on bounded positive solution. Indeed, each gradient estimate obtained is equivalent to
saying bounded weighted harmonic function is a constant.
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1 Introduction
In recent years, there have been many interesting results relating to elliptic gradient estimates,
Harnack inequalities and Liouville type theorems on smooth metric measure spaces. This is due to
the fact that these estimates have found numerous applications in the fields of Geometric Analysis
and Partial Differential Equations among others. The pioneering paper [1] by Li and Yau gives
more insight into the concept of gradient estimates in the field of differential equations. The Li-Yau
gradient estimates were used to get classical Harnack principle and several heat kernel estimates.
Hamilton [2] was motivated by [1] and then derived global elliptic gradient estimates for linear
heat equation. Hamilton obtained a matrix Harnack estimate which can be used to prove some
monotonicity formulas of Perelman type [3]. Later, some logarithmic correction term was added
by Souplet and Zhang [4] to obtain localized elliptic gradient estimates on positive solutions to the
linear heat equation defined on compact manifold.

The main aim of this paper is to derive some local elliptic gradient estimates for smooth positive
solutions u = u(x, t) to the weighted nonlinear heat equation

∂u

∂t
= ∆fu, t > 0, (1.1)
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defined on a smooth metric measure space whose underlying time dependent metric, g(t) and
potential, f(t), are being deformed by the action of the super Perelman-Ricci flow

∂g

∂t
+ 2Ricf ≥ 0 (1.2)

∂f

∂t
− 1

2
Tr
(
∂g

∂t

)
= 0, (1.3)

where Tr stands for the metric trace on (0, 2)-tensors and ∂
∂t is the partial derivative with respect

to t. (Refer to Section 2 for other notations).
The gradient estimates obtained in this article are related to Hamilton type estimates for the

heat equation on a compact manifold and Souplet-Zhang type estimates for the heat equation on
noncompact manifolds. Hamilton type, Souplet-Zhang type and Li-Yau type gradient estimates
are of fundamental roles in estimating smooth solutions to parabolic partial differential equations
on compact and noncompact manifolds, either with static or evolving metrics. These estimates are
widely known for their usefulness as highlighted above. They have been used in conjuction with
the so-called Perelman entropy in several contexts. It is therefore natural to investigate whether
or not these estimates are available for weighted manifolds equipped with time dependent metrics
and potentials. This paper therefore addresses this issue in affirmative by providing the conditions
needed on the generalized curvature and the potentials under super Perelman-Ricci flow.

1.1 Smooth metric measure space
A Smooth metric measure space (or weighted manifold) is usually denoted by (M, g, e−fdv), for
an n-dimensional complete Riemannian manifold (M, g), volume measure on M (denoted by dv)
and C∞(M) function f . The triple (M, g, f) will be simply referred to as a weighted manifold
throughout this paper. Associated with (M, g, f) is the so called Witten Laplacian or f -Laplacian
denoted by ∆f := ∆−∇f · ∇, where ∆ is the usual Laplacian on (M, g) and ∇ is the connection
with respect to metric g. A natural extension of Ricci curvature tensor (Ric), which arises on the
space, is the ∞- Bakry-Émery tensor and defined by Ricf := Ric+∇2f , where ∇2f is the Hessian
of f . This tensor defines gradient Ricci solitons, Ricf = σg, σ ∈ R, as some special solutions to
Hamilton-Ricci flow [5]. A gradient Ricci soliton is shrinking when σ is positive, steady when σ
is zero and expanding when σ is negative. Gradient Ricci solitons are of fundamental importance
in understanding the natures of Hamilton Ricci flows singularities and in the final resolution of
Poincaré conjecture [3, 6].

1.2 The Perelman-Ricci flow
Given the pair (M, g), a n-dimensional complete compact Riemannian manifold without boundary
(n ≥ 2). The Hamilton-Ricci flow can be defined as the deformation of a family of metrics g(t) by
the following quasilinear parabolic equation

∂g

∂t
= −2Ric

g(0) = g0,
(1.4)

where t ∈ [0, T ], 0 < T < Tmax i.e., Tmax is the maximal existence time after which the flow blows
up and singularities occur. The Hamilton-Ricci flow theory emanated from the seminal paper [5].
It has since been widely studied [7, 8], and applied to solve some problems in geometry, topology
and physics [3, 9].

A super Perelman-Ricci flow is defined by a complete manifold M without boundary, endowed
with time dependent family of Riemannian metrics g(t) and smooth functions, f(t), {(M, g(t), f(t)) :
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t ∈ [0, T ]}, satisfying
∂g

∂t
+ 2Ricf ≥ 0 (1.5)

∂f

∂t
− 1

2
Tr
(
∂g

∂t

)
= 0.

Replacing the inequality sign in (1.5) by equality we have the Perelman-Ricci flow

1

2

∂g

∂t
+Ricf = 0, (1.6)

as was introduced in [3] as a gradient flow of an energy functional defined by F(g, f) =
∫
M

(R +

|∇f |2)e−fdµ on the condition that the measure, dµ := e−fdv, remains static in time, whereas f(t)
satisfies the heat type equation (compare with second equation in (1.5))

∂f

∂t
= −R−∆f. (1.7)

Clearly, the Hamilton-Ricci flow can be recovered from (1.6)–(1.7) by pulling back (g(t), f(t)) with
a family of diffeomorphism generated by the gradient of f [3].

Owing to the strong relationship between the heat equation and the Hamilton-Ricci flow on one
hand and due to the physical and geometric implications yielded when the two equations are coupled,
many researchers have shown keen interests in the field. The coupling was studied in [10–15] and
different gradient estimates were obtained for the heat equation, which consequently yield various
estimates on the fundamental solution with respect to time dependent metrics. Recently, Wu [16]
derived some elliptic type gradient estimate for (1.1) on static weighted manifold. Therefore it is
natural to ask if one can obtain similar estimates when (1.1) and (1.2) are coupled. Motivated
by [14–16], we investigate the geometric conditions under which one can obtain space only gradient
estimates on positive solution to (1.1) when the underlying metric and potential are being evolved
along the flow (1.2). Thus, this paper extends Hamilton Harnack inequalities on positive solutions
to the weighted heat equation on time dependent metric measure space. Note that several attempts
have been made in this direction by S. Li and X-D. Li [17–19] via Perelman W-entropy, yielding
many interesting results.

1.3 Main results
Fix a point x0 on (M, g, f) and denote by r(x, t) or d(x, x0; t), a distance function from x0 to x
with respect to g(t). Define a compact space BR,T by
BR,T ≡ {(x, t) : d(x, x0; t) ≤ R, 0 ≤ t ≤ T} ⊂M × [0, T ], for R, T > 0.

The first result is Souplet-Zhang type gradient estimate with the assumption that ∞- Bakry-
Émery tensor is bounded uniformly locally.

Theorem 1.1. Given a complete weighted manifold (M, g, f) of dimension n ≥ 2 with |Ricf |g(t) ≤
(n−1)kg for some k ≥ 0 and {(M, g(t), f(t)) : t ∈ [0, T ]} a complete solution to the super Perelman-
Ricci flow (1.2). Suppose u(x, t) ≤ A, A > 0, is a positive bounded solution to the weighted heat
equation (1.1) in BR,T . Then the following estimate

|∇u|
u
≤ C

(√1 + |α|
R

+
1√
T

+
√
k
)(

1 + ln
A

u

)
(1.8)

holds for all (x, t) in BR/2,T/2 with t 6= 0, where C is a positive constant depending only on the
dimension of M and α := max{x|d(x,x0;t)=1,0≤t≤T}∆fr(x, t).

Moreover, if Ricf ≥ 0, then there exists constants C1, C2 > 0 which depend only on n such that

|∇u|
u
≤ C1

1 +
√
|α|

t
1
4

(
1 + eC2D + ln

u(x, 2t)

u(x, t)

)
(1.9)

for all (x, t) ∈M × (0, T ], where D = supy∈B(x,
√
t) |f(y)|.
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Remark 1.2. Assuming that f is a constant, the above estimate in (1.8) recovers the estimate
in (2.3) of [7, Theorem 2.2] for the heat equation along Hamilton-Ricci flow. Estimate (1.8) can
also be compared with [22, Theorem 1] for heat equation under backward Ricci flow. It also extends
gradient estimates on stationary manifold contained in [16]. Hence, Theorem 1.1 generalizes and
improves the results in the aforementioned references.

The next theorem is a global version of estimate (1.8). This has been established previously
in [2, 14,15].

Theorem 1.3. Given a complete weighted manifold (M, g, f) of dimension n ≥ 2 with {(M, g(t), f(t)) :
t ∈ [0, T ]} evolving by the super Perelman-Ricci flow (1.2). Suppose u ≤ A is a positive bounded
solution to (1.1) in M × [0, T ]. Then the following estimate

|∇u|
u
≤
√

1

t
ln
A

u
(1.10)

holds for A = sup
M×[0,T ]

u(x, t) : (x, t) ∈M × [0, T ]. Moreover, there holds the following interpolation

inequality for δ > 0, x, y ∈M

u(x, t) ≤ C3u
1/(1+δ)(y, t)Aδ/(1+δ) exp

(
C4
d2(x, y, t)

t

)
, (1.11)

where t ∈ (0, T ] and C3, C4 > 0 are constant depending on δ > 0.

Remark 1.4. Note that local estimate (1.8) and global estimate (1.10) cannot replace each other,
as (1.10) involves neither curvature assumption nor dimension dependent constant.

The last result of this paper gives Hamilton type gradient estimate.

Theorem 1.5. Given a complete weighted manifold (M, g, f) with Ricf ≥ −(n − 1)k, k > 0. Let
{(M, g(t), f(t)) : t ∈ [0, T ]} be a complete solution to the super Perelman-Ricci flow (1.2). Suppose
u = u(x, t) is a positive bounded solution to (1.1) in BR,T . Then for all x and t > 0

|∇u|
u
≤ CD

( 1

R2
+
|α|
R

+
1

T
+ k
) 1

2

(1.12)

where C > 0 is a universal constant and D := sup{u(x, t) : (x, t) ∈ BR,T }.

The rest of this paper is arranged as follows. Two important Lemma are first presented in Section
2 and then the proofs of Theorems 1.1 and 1.3. Section 3 contains the discusion on Theorem 1.5,
while some remarks are made on Liouville type results in the last section.

2 Proof of Theorems 1.1 and 1.3
The section presents the proofs of the first two theorems. Meanwhile two important results to be
applied are first stated in forms of lemmas

2.1 Fundamental results
The two lemmas below are fundamental to the proof of Theorem 1.1.

Lemma 2.1. Let {(M, g(t), f(t)) : t ∈ [0, T ]} be a complete solution to the super Perelman Ricci
flow (1.2). Suppose u ≤ A, for some positive constant A, is a positive solution to (1.1). Then the
function w = |∇ ln(1− h)|2, where h = lnu/A ≤ 0 verifies(

∆f −
∂

∂t

)
w ≥ 2h

1− h
∇h∇w + 2(1− h)w2 (2.1)

in BR,T .
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Proof. We adopt the convention that h2
i = |∇h|2, hii = ∆h with repeated indices summed up in

a local orthonormal system, while subscript t means partial derivative with respect to t. By the
scaling u→ ū = u/A, we have 0 < ū ≤ 1 and (1.1) then implies

∂ū

∂t
= ∆f ū.

Let h = ln ū ≤ 0 and w = |∇h|2/(1− h)2. A simple calculation yields

ht = ∆fh+ |∇h|2.

Standard computation using super Perelman-Ricci flow (1.2) gives

(|∇h|2)t ≤ 2(Rij + fij)hihj + 2hi(ht)j . (2.2)

and by the equation ht = ∆fh+ |∇h|2 we have

(|∇h|2)t ≤ 2(Rij + fij)hihj + 2hi(∆fh)j + 2hi(|∇h|2)j .

Then

wt =
(|∇h|2)t
(1− h)2

+
2|∇h|2ht
(1− h)3

≤ 2(Rij + fij)hihj
(1− h)2

+
2hi(∆fh)j
(1− h)2

+
2hi(|∇h|2)j

(1− h)2
+

2h2
i∆fh

(1− h)3

+
2h2

ih
2
jh

(1− h)3
.

(2.3)

Similarly,

wj =
2hihij

(1− h)2
+

2h2
ihj

(1− h)3

and

∆w = wjj =
( 2hihij

(1− h)2

)
j

+
( 2h2

ihj
(1− h)3

)
j

=
2h2

ij

(1− h)2
+

2hihijj
(1− h)2

+
8hihjhij
(1− h)3

+
2h2

ihjj
(1− h)3

+
6h2

ih
2
j

(1− h)4
.

Hence
∆fw = ∆w −∇f∇w = wjj − wjfj

=
2h2

ij

(1− h)2
+

2hihijj
(1− h)2

+
8hihijhj
(1− h)3

+
2h2

ihjj
(1− h)3

+
6h2

ih
2
j

(1− h)4

−2hihijfj
(1− h)2

− 2h2
ihjfj

(1− h)3
.

(2.4)

Using the Ricci identity hijj = hjji +Rijhj , we have

2hihijj
(1− h)2

− 2hihijfj
(1− h)2

=
2hi(∆fh)i
(1− h)2

+
2(Rij + fij)hihj

(1− h)2
. (2.5)

Putting (2.3)-(2.5) together, we get(
∆f −

∂

∂t

)
w ≥

( 2h2
ij

(1− h)2
+

4hihjhij
(1− h)3

+
2h2

ih
2
j

(1− h)4

)
+
(4hihjhij

(1− h)3
+

4h2
ih

2
j

(1− h)4

− 4hihjhij
(1− h)2

−
2h2

ih
2
j

(1− h)3

)
=

2

(1− h)2

(
hij +

hihj
(1− h)

)2

+
( 2

1− h
hjwj − 2hjwj +

2h2
ih

2
j

(1− h)3

)
≥ 2

1− h
hjwj − hjwj +

2h2
ih

2
j

(1− h)3
,
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which implied the required inequality. Note that we have used the following identities

hjwj =
2hihijhj
(1− h)2

+
2h2

ih
2
j

(1− h)3
and

2

(1− h)
hjwj =

4hihjhij
(1− h)3

+
4h2

ih
2
j

(1− h)4
.

The second lemma gives some properties of a cut-off function that will be applied to get useful
bounds in the space BR,T . The idea of cut-off functions was introduced by Li and Yau [1] and has
become standard in this context, see for instance [4, 14, 20]. Only the statement of the lemma is
therefore given here.

Lemma 2.2. Let φ = φ(r(x, t), t) be a cut-off function which is smoothly supported in BR,T with the
following properties [20, 21]: Fix τ ∈ (0, T ], there exists a smooth function φ̄ : [0,∞) × [0, T ] → R
satisfying

(i) φ = φ̄(r, t); φ̄(r, t) = 1 in BR/2,T/2, 0 ≤ φ(r, t) ≤ 1.

(ii) φ is a radially decreasing function in spatial variables.

(iii) |∂φ̄∂r |
1
φ̄a ≤ Ca

R and |∂
2φ̄
∂r2 |

1
φ̄a ≤ Ca

R2 in [0,∞) × [0, T ], where 0 < a < 1 for some constant
Ca > 0.

(iv) |∂φ̄∂t |
1

φ̄1/2 ≤ C
τ in [0,∞)× [0, T ] for some C > 0 and φ̄(r, 0) = 0 ∀r ∈ [0,∞).

2.2 Proof of Theorem 1.1
Applying (2.1) of Lemma 2.1, a simple calculation yields(

∆f −
∂

∂t

)
(φw) ≥ 2h

1− h

[
∇h∇(φw)− w∇h∇φ

]
+ 2(1− h)φw2

+2
∇φ
φ
∇(φw)− 2

|∇φ|2

φ
w + w

(
∆f −

∂

∂t

)
φ.

(2.6)

Assume φw is maximal at the point (x1, t1) in BR,T for any fixed τ ∈ (0, T ]. Suppose that x1 is
not in the cut locus of M due to Calabi’s argument [1]. Also assume (φw)(x1, t1) > 0, otherwise
the result becomes trivial with w(x, t) ≤ 0 whenever d(x, x0) < R/2. Then at the point (x1, t1) we
have

∆f (φw) ≤ 0, (φw)t ≥ 0 and ∇(φw) = 0. (2.7)

By (2.6) and (2.7) we deduce that

2(1− h)φw2 ≤ 2h

1− h
w∇h∇φ+ 2

|∇φ|2

φ
w − (∆fφ)w + φtw (2.8)

at (x1, t1).
Firstly, we consider the case x ∈ B(x0, 1). In this case φ is a constant function in space direction

in B(x0, R/2), R ≥ 2, based on the assumption. Thus at (x1, t1), we have from (2.8)

w ≤ 1

2

φt
φ
≤ C

T

at (x1, t1) since 1− h ≥ 1.
Since φ = 1 when d(x, x0) < R/2 due to assumption (i) on φ, we have

w(x, τ) = (φw)(x, τ) ≤ (φw)(x1, t1) ≤ w(x1, t1) ≤ C

T
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for all (x, t) ∈ BR/2,T with t 6= t0. By the definition of w(x, τ) and the fact that τ was chosen
arbitrarily, we prove that

|∇h|
1− h

(x, t) ≤ C√
T

for all (x, t) ∈ BR/2,T . Then the required estimate follows since h = lnu/A.
Secondly, we suppose x1 6∈ B(x0, 1). Let C > 0 be a constant which depends on n only, though

the value may vary from step to step. Following the argument in [16,21] we have that

2
|∇φ|2

φ
w ≤ 1

8
φw2 +

C

R4
(2.9)

and

2h

1− h
w∇h∇φ ≤ (1− h)φw2 +

C

R4
· h4

(1− h)3
. (2.10)

Now, using the properties of φ and the weighted Laplacian comparison theorem [22], ∆fr(x, t) ≤
α + (n− 1)k(R − 1), where r ≥ 1 in B(x0, R), α = max{x:d(x,x0;t)=1,0≤t≤T}∆fr(x, t) at this point
and Ricf ≥ −(n− 1)k, k ≥ 0:

−∆fφ = −(φr∆fr + φrr|∇r|2)

≤
(
|φr|

1

φ1/2
(|α|+ (n− 1)k(r − 1)) + |φrr|

1

φ1/2

)
φ1/2

≤ C1/2

( |α|
R

+ nk +
1

R2

)
φ1/2.

Now φt is estimated as follows: For all x ∈ B(y,R), let γ : [0, a] → M be a minimal geodesic
connecting x = γ(0) and y = γ(a) at time t ∈ [0, T ]. Then

∂tr(x, t) = ∂t

∫ a

0

|γ′(s)|ds = −
∫ a

0

Ricf (γ′(s), γ′(s))ds

≤ (n− 1)kr ≤ nkR.

Then apply the properties of φ as stated above

φt ≤ |φ̄t|+ |φr||∂tr| ≤
C1/2φ

1/2

τ
+ C1/2φ

1/2nk.

Therefore

−(∆fφ)w ≤ 1

8
φw2 +

C

R4
+
C|α|2

R2
+ Ck2 (2.11)

and

φtw ≤
1

8
φw2 +

C

τ2
+ Ck2. (2.12)

By putting (2.9)–(2.12) into (2.8) and rearranging we obtain

2(1− h)φw2 ≤ 1

2
φw2 +

C

R4

h4

(1− h)3
+

C

R4
+
C|α|2

R2
+ Ck2 +

C

τ2
(2.13)

at (x1, t1). Since 1− h ≥ 1, clearly h4/(1− h)4 ≤ 1 and then (2.13) implies

φw2 ≤ 1

2
φw2 +

C

R4
+
C|α|2

R2
+ Ck2 +

C

τ2
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at (x1, t1). It therefore follows for all (x, t) ∈ BR,T , that there holds

(φ2w2)(x, τ) ≤ (φ2w2)(x1, t1) ≤ (φw2)(x1, t1)

≤ C

R4
+
C|α|2

R2
+
C

τ2
+ Ck2.

Since φ(x, τ) = 1 in BR/2,T , w = |∇h|2/(1− h)2 and that τ was arbitrarily chosen. Then

|∇h|
1− h

(x, t) ≤ C

R
+ C

√
|α|
R

+
C√
T

+ C
√
k (2.14)

for all (x, t) ∈ BR/2,T with t 6= t0. Since h = lnu/A we obtain

|∇h|
1− h

(x, t) =
( 1

1 + ln A
u

· |∇u|
u

)
(x, t) (2.15)

because h = lnu/A. Substituting (2.15) into (2.14) and rearranging leads to estimate (1.8).
To prove (1.9), we apply estimate (1.8) on B√t,t/2. By the parabolic Moser’s Harnack inequality

[21, Theorem 3.1] one has

A := sup
Q√

t,t/2

u(x, t) ≤ exp(C5e
c6D)u(x, 2t),

where D = supy∈B(x,
√
t) |f(y)|. Setting k = 0, then (1.9) follows from (1.8) at once.

2.3 Proof of Theorem 1.3
Our argument follows the idea in [2, 15] summarised as follows. Consider the function P (x, t) :=

t
|∇u|2

u
− u ln

A

u
on M × [0, T ] and show that

( ∂
∂t
−∆f

)
P (x, t) ≤ 0, for all (x, t)

and
P (x, 0) ≤ 0 for all x ∈M.

The above assertion follows from routine calculation, which we show as follows

∂

∂t

(
t
|∇u|2

u

)
≤ |∇u|

2

u
+ t
(2Ricf (∇u,∇u) + 2∇u∇ut

u
− ∂u

∂t

|∇u|2

u2

)
,

∂

∂t

(
u ln

A

u

)
=
∂u

∂t
ln
A

u
− ∂u

∂t
=
∂u

∂t

(
ln
A

u
− 1
)
,

∆f

(
t
|∇u|2

u

)
= t
(∆f (|∇u|2)

u
− 4∇∇u|∇u|2

u2
− ∆fu|∇u|2

u2
+

2|∇u|2|∇u|2

u3

)
,

∆f

(
u ln

A

u

)
= ∆fu

(
ln
A

u
− 1
)
− |∇u|

2

u
.

Putting the above equations together yields( ∂
∂t
−∆f

)
P (x, t) =

( ∂
∂t
−∆f

)(
t
|∇u|2

u
− u ln

A

u

)
≤ t
(2Ricf (∇u,∇u) + 2∇u∇∆fu−∆f (|∇u|2)

u

− 4∇∇u|∇u|2

u2
+

2|∇u|2|∇u|2

u3

)
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since u solves the weighted equation (1.1). Applying the weighted Bochner formula

∆f (|∇u|2) = 2|∇∇u|2 + 2∇u∇∆fu+ 2Ricf (∇u,∇u) (2.16)

gives ( ∂
∂t
−∆f

)
P (x, t) ≤ −2t

u

(
∇∇u− ∇u · ∇u

u

)2

≤ 0.

Then application of the maximum principle yields P (x, t) ≤ 0 for (x, t) ∈ M × [0, T ] from where
the desired estimate (1.10) follows.

To prove estimate (1.11). We set Z(x, t) = ln
A

u(x, t)
and by (1.10) we obtain

|∇
√
Z| = 1

2

∣∣∣ ∇u
u
√
Z

∣∣∣ ≤ 1

2
√
t
.

Integrating along a minimising geodesic joinning two fixed points x and y gives√
ln

A

u(x, t)
≤

√
ln

A

u(y, t)
+
d(x, y, t)

2
√
t

.

For any δ > 0, we obtain

ln
A

u(x, t)
≤ ln

A

u(y, t)
+
d2(x, y, t)

4t
+

√
ln

A

u(y, t)
· d(x, y, t)√

t

≤ ln
A

u(y, t)
+
d2(x, y, t)

4t
+ δ ln

A

u(y, t)
+
d2(x, y, t)

4δt
.

Rearranging and exponentiating yield the desired interpolation inequality (1.10).

3 Proof Theorem 1.5
The method of proof of Theorem 1.5 is similar to that of Theorem 1.1, but it will be shown for
completeness sake. Here the quantity w = h · |∇h|2 with h = uε, 0 < ε < 1 is used instead of
w = |∇ ln(1− h)|2 with h = lnu used in getting Souplet-Zhang estimate in Theorem 1.1.

Proof. Let h = uε, where ε ∈ (0, 1) is a constant to be chosen andW = h·|∇h|2. Direct computation
implies ht = εuε−1ut and (

∆f −
∂

∂t

)
h =

(ε− 1)

ε

|∇h|2

h
. (3.1)

By the weighted Bochner formula (2.16) and (3.1), we obtain(
∆f −

∂

∂t

)
(|∇h|2) ≥ 2|∇2h|2 + 2〈∇h,∇∆fh〉 − 2〈∇h,∇ht〉

= 2|∇2h|2 + 2
ε− 1

ε
∇h∇

( |∇h|2
h

)
.

Similarly, by (2.2) derived from super Perelman-Ricci flow,

Wt = ht|∇h|2 + h(|∇h|2)t

≤ ht|∇h|2 + 2hRicf (∇h,∇h) + 2h∇h∇ht
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and again by weighted Bochner formula (2.16)

∆fW = h∆f (|∇h|2) + |∇h|2∆fh+ 2∇h∇(|∇h|2)

= 2h|∇2h|2 + 2h〈∇h,∇∆fh〉+ 2hRicf (∇h,∇h) + |∇h|2∆fh+ 2∇h∇(|∇h|2).

Hence,(
∆f −

∂

∂t

)
W ≥ 2h|∇2h|2 + 2h〈∇h,∇(∆fh− ht)〉+ (∆f − ht)|∇h|2 + 2∇h∇(|∇h|2)

= 2h|∇2h|2 + 2
ε− 1

ε
h∇h∇

( |∇h|2
h

)
+
ε− 1

ε

|∇h|4

h
+ 2∇h∇(|∇h|2)

= 2h|∇2h|2 + 2
ε− 1

ε
∇h∇(|∇h|2)− ε− 1

ε

|∇h|4

h
+ 2∇h∇(|∇h|2)

= 2
∣∣∣√h|∇2h|+ ∇h⊗∇h√

h

∣∣∣2 + 2
ε− 1

ε
∇h∇(|∇h|2)−

(ε− 1

ε
+ 2
) |∇h|4

h

≥ 2
ε− 1

ε
∇h∇(|∇h|2)−

(ε− 1

ε
+ 2
) |∇h|4

h
.

Note that ∇h · (h|∇h|2) = |∇h|2 + h∇h∇(|∇h|2), which implies

∇h∇(|∇h|2) =
∇h
h
∇(h|∇h|2)− |∇h|

4

h
.

Therefore (
∆f −

∂

∂t

)
W ≥ 2

ε− 1

ε

∇h
h
∇(h|∇h|2)−

(
3
ε− 1

ε
+ 2
) |∇h|4

h

= 2
ε− 1

ε

1

h
〈∇h,∇W 〉 −

(3(ε− 1) + 2ε

ε

) 1

h3
W 2.

Suppose we choose ε = 1
3 , we have(

∆f −
∂

∂t

)
W ≥ − 4

h
〈∇h,∇W 〉+

4

h3
W 2.

Now, follow the similar idea as in the proof of Theorem 1.1, using the same cut-off function φ
satisfying properties (i)− (iv) above.(

∆f −
∂

∂t

)
(Wφ) ≥ 2

ε− 1

ε

1

h

[
∇h∇(φW )−W∇h∇φ

]
− 2
|∇φ|2

φ
W

+ 2
∇φ
φ
∇(φW )− 3(ε− 1) + 2ε

ε

1

h3
φW 2 +W

(
∆f −

∂

∂t

)
φ.

For a fixed τ ∈ (0, T ), let (x1, t1) be a maximum point for φW in BR,T . It then follows that

−3(ε− 1) + 2ε

ε
φW 2 ≤ −2

ε− 1

ε
h2W∇h∇φ+ 2

|∇φ|2

φ
h3W − h3W

(
∆f −

∂

∂t

)
φ

= −2
ε− 1

ε
h3/2W 3/2∇φ+ 2

|∇φ|2

φ
h3W − h3W

(
∆f −

∂

∂t

)
φ.

Since ε ∈ (0, 1), −2
ε− 1

ε
> 0 and −3(ε− 1) + 2ε

ε
> 0. Therefore

3− ε
ε

φW 2 ≤ 2(1− ε)
ε

h3/2W 3/2∇φ+ 2
|∇φ|2

φ
h3W − h3W

(
∆f −

∂

∂t

)
φ. (3.2)
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We suppose x 6∈ B(x0, 1) and estimate each term of the right hand side of (3.1) as before. It follows
from the Young’s inequality, Cauchy-Schwarz inequality and properties of φ that:

2(1− ε)
ε

h3/2W 3/2∇φ =
2(1− ε)

ε
φ3/4W 3/2h3/2 ∇φ

φ3/4

≤ 1− ε
ε

φW 2 + C(ε)( sup
BR,T

{h})6 |∇φ|4

φ3

≤ 1− ε
ε

φW 2 +
C(ε)

R4
( sup
BR,T

{h})6.

and

2
|∇φ|2

φ
h3W ≤ 2

|∇φ|2

φ3/2
φ1/2W ( sup

BR,T

{h})3

≤ 1− ε
ε

φW 2 +
(
C(ε)

|∇φ|2

φ3/2

)2

( sup
BR,T

{h})6

≤ 1− ε
ε

φW 2 +
C(ε)

R4
( sup
BR,T

{h})6.

Recall from previous explanation that

−∆fφ ≤ C1/2

( |α|
R

+ nk +
1

R2

)
φ1/2 and φt ≤

C1/2φ
1/2

τ
+ C1/2φ

1/2nk.

Hence, we have

−h3W
(

∆f −
∂

∂t

)
φ ≤ C1/2h

3W
( |α|
R

+
1

R2
+

1

τ
+ nk

)
φ1/2

≤ CW ( sup
BR,T

{h})3
( |α|
R

+
1

R2
+

1

τ
+ k
)
φ1/2

≤ 1− ε
ε

φW 2 + C(ε)
( |α|2
R2

+
1

R4
+

1

τ2
+ k2

)
( sup
BR,T

{h})6

at (x1, t1) for some constant C(ε) > 0 depending on n and ε only. Putting these estimates into
(3.2) yields

3− ε
ε

φW 2 ≤ 3(1− ε)
ε

φW 2 + C(ε)
( |α|2
R2

+
1

R4
+

1

τ2
+ k2

)
( sup
BR,T

{h})6

at (x1, t1). It therefore follows that

φW 2 ≤ C
( |α|2
R2

+
1

R4
+

1

τ2
+ k2

)
( sup
BR,T

{h})6.

Then for all (x, τ) ∈ BR/2,T/2, there holds

(φ2W 2)(x, τ) ≤ (φ2W 2)(x1, t1) ≤ (φW 2)(x1, t1)

. Since φ(x, τ) = 1 when d(x1, x) ≤ R/2

W (x, τ) ≤ φW (x1, t1)

≤ C(ε)
( |α|2
R2

+
1

R4
+

1

τ2
+ k2

)1/2

( sup
BR,T

{h})3
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for all (x, t) ∈ BR/2,T/2. Since τ ∈ (0, T ] is arbitrary, W = h · |∇h|2 = ε2h3 |∇u|2

u2
and supBR,T

{h} =

supBR,T
{uε} ≤ (supBR,T

{u})ε, then we have

|∇u|2

u2−3ε
≤ C(ε)( sup

BR,T

{u})3ε
( |α|2
R2

+
1

R4
+

1

T 2
+ k2

)1/2

for all (x, t) ∈ BR/2,T/2. In conclusion, choosing ε = 1
3 yields the required result.

4 Remarks on Liouville type theorem
Our estimates in Theorems 1.1 and 1.3 are obtained under the constrained super Perelman-Ricci
flow. Indeed, they are extensions of Hamilton’s [2] and Souplet-Zhang’s estimates to the setting
of smooth metric measure spaces with time dependent metrics and potentials. As in the classical
setting, these estimates can be used to obtain sharp estimates on weighted heat kernel, Harnack
inequality and Liouville principle. For example, we briefly highlight how Liouville principle can be
obtained.

Letting R→ +∞ and t→ +∞ in estimates (1.8) and (1.12), respectively give

|∇u|
u
≤ C
√
k
(

1 + ln
A

inf u

)
(4.1)

and

|∇u|
u
≤ C
√
k (4.2)

for a bounded positive solution u of ∆fu = 0 on smooth metric measure spaces with Ricf ≥ −k. In
particular, if Ricf ≥ 0, each of the estimates in (4.1) and (4.2) implies that every bounded weighted
harmonic function must be a constant.

Finally, we show in the last two propositions two approaches to obtaining triviality of solution
to the heat equation with cutvature free conditions.

Proposition 4.1. Suppose {(M, g(t), f(t)) : t ∈ [0, T ]} is a complete solution to the super Perelman-
Ricci flow (1.2). Let u = u(x, t) be a solution to the weighted heat equation (1.1) for x ∈ M and
t > 0, which is uniformly bounded. Then u is constant.

Proof. Define a quantity U(x, t) = u2(x, t) + 2t|∇u(x, t)|2 for t > 0 and compute its time evolution
Ut = (u2 + 2t|∇u|2)t (subscript t means partial derivative with respect to t). Reverting to (1.1) a
direct computation gives

(u2)t = 2uut = 2u∆fu = ∆fu
2 − 2|∇u|2.

Reverting to (1.1), (1.2), (2.2) and (2.16)

(|∇u|2)t ≤ 2Ricf (∇u,∇u) + 2∇u∇∆fu = ∆f (|∇u|2)− 2|∇2u|2.

Then by the last two expressions we arrive at

(u2 + 2t|∇u|2)t ≤ ∆f (u2 + 2t|∇u|2)

and so by the maximum principle we have Umax ≤ 0 a.e., implying that U(x, t) ≤ U(x, 0) and

u2(x, t) + 2t|∇u(x, t)|2 ≤ u2(x, 0) ≤ sup
M
{u(x, 0)}2 < +∞

a.e., which then follows that |∇u|2 ≤ c supM{u|t=0}2/t (c is a finite positive number). Sending t to
+∞ yields |∇u| ≡ 0 ∀x ∈M, t > 0, that is, u is constant.
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Proposition 4.2. Suppose {(M, g(t), f(t)) : t ∈ [0, T ]} is a complete solution to the super Perelman-
Ricci flow (1.2). Let u = u(x, t) be a solution to the weighted heat equation (1.1) for x ∈ M and
t > 0, with uniformly bounded L2-norm. Then u is constant.

Proof. Here we use the so-called energy estimate. Define the energy

Ep(u(x, t)) =

∫
M

up(x, t)dµg(t), p ≥ 1.

Recall that the weighted measure dµg(t) = e−f(t)dv is stationary in the sense that ft = 1
2Tr

(
∂g
∂t

)
(see (1.2)) and (dµg(t))t = 0 (see [6, eq.(1.15)]). Note that heat is conserved in the sense that
E′1(u) = 0 (by differentiation and integration by parts) and E1(u) = E1(u0) ∀t ≥ 0. Also a simple
but standard computation (omitted here) shows that Ep(u) is nonincreasing in time under the
Perelman-Ricci flow.

Now consider the functional F (u(x, t)) defined by

F (u) =

∫
M

(u2 + 2t|∇u|2)dµ.

Denote by ′ and ′′, the first and second order derivatives with respect to t respectively. Note that
E2(u) =

∫
M
u2dµ, E′2(u) = −2

∫
M
|∇u|2dµ and

E′′2 (u) = −2
d

dt

∫
M

|∇u|2dµ = −2

∫
M

(|∇u|2)tdµ

≥ −4

∫
M

(Ricf (∇u,∇u) +∇u∇∆fu)dµ

= −2

∫
M

(∆f (|∇u|2)− 2|∇2u|2)dµ = 4

∫
M

|∇2u|2dµ.

by the compactness of {(M, g(t), f(t))}. Thus,
F (u) = E2(u) − tE′2(u) and F ′(u) = −tE′′2 (u) ≤ −4t

∫
M
|∇2u|2dµ showing that F (u) is monotone

increasing for t ≥ 0. It then follows that

F (u(x, t)) ≤ F (u(x, 0)) =

∫
M

u2(x, 0)dµ, ∀t ≥ 0

and then ∫
M

|∇u(x, t)|2 ≤ c

t
‖u(x, 0)‖2L2(M).

With the assumption that the L2-norm of u is uniformly bounded in time, one then concludes that
u is constant in space since |∇u| ≡ 0 everywhere as t→ +∞.
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