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Abstract

Drug resistance to the line of treatment is also of concerns in the control of Tuberculosis
disease in the world [11], an individual with drug resistance will still retain the disease even
after several treatment. In this study, we consider a mathematical model of a tuberculosis
disease with resistance to the first line of treatment, taking into consideration population of
children and adults. We considered six different compartment (S1S2EIRHR), an extension of
SEIR model by introducing two different susceptible classes (S1S2) and drug resistance(RH) to
the first line of treatment. The system was described by an ordinary differential equation, which
was solved algebraically to obtained the equilibrium point (disease free and endemic equilibrium
point). The next generation matrix was employed to evaluate the basic reproduction number
and column reduction matrix to get the local stability of the systems. It was observed that
the age group had bigger effect on the control of TB. The drug resistance had a little effect
on the total control of the disease. At the end, three effective measure were found,that would
help reach the major goal of the World Health Organization(WHO)which includes: to reduce
the exposed rate of the disease especially in the adults, increase the recovery rate and reduce
the transmission rate of the adults.

Keywords and Phrases: Tuberculosis, Resistance to Drug, Basic Reproduction number, Equi-
librium, Stability, Sensitivity Analysis.
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1 Introduction
Tuberculosis (TB) remains a major cause of ill health and is one of the top 10 causes of death
worldwide. An estimated 10.0 million people fell ill with TB in 2018, a number that has been
relatively stable in recent years. Globally, there were 1.2 million TB deaths among HIV-negative
people in 2018 (a 27 percent reduction from 1.7 million in 2000) and an additional 251 000 deaths
among HIV-positive people (a 60 percent reduction from 620 000 in 2000) [11].
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Since 2007, TB has been the leading cause of death from a single infectious agent, ranking
above HIV/ AIDS. TB affects people of both sexes in all age groups but the highest burden is in
adult men, who accounted for 57 percent of all TB cases in 2018. By comparison, adult women
accounted for 32 percent and children for 11 percent. Among all TB cases, 8.6 percent were people
living with HIV. Geographically, most TB cases in 2018 based the World Health Organization
(WHO)records [11]consist of South-East Asia (44 percent), Africa (24 percent) and the Western
Pacific (18 percent), with smaller shares in the Eastern Mediterranean (8 percent), the Americas
(3 percent) and Europe (3 percent). Eight countries accounted for two thirds of the global total:
India (27 percent), China (9 percent), Indonesia (8 percent), the Philippines (6 percent), Pakistan
(6 percent), Nigeria (4 percent), Bangladesh (4 percent) and South Africa (3 percent) [11].

The burden of drug-resistant TB is of major interest and concern at global, regional and country
levels. In 2018, there were approximately half a million new cases of rifampicin-resistant TB (of
which 78 percent had multidrug-resistant TB). The three countries with the largest share of the
global burden were India (27 percent), China (14 percent) and the Russian Federation (9 percent).
Globally, 3.4 percent of new TB cases and 18 percent of previously treated cases had MDR/RRTB,
with the highest proportions (greater than 50 percent in previously treated cases) in countries of
the former Soviet Union [11].

In 2018, The Federal Ministry of Health has declared a year to accelerate finding and notification
of TB cases in Nigeria. The huge gap in TB case finding is much higher among children aged
zero to 14 with a child proportion of seven per cent for 2017. in order to improve the TB case
finding Nigeria has added active case-finding in key affected populations. The health minister said
this included people living with HIV, children, urban slum dwellers, prisoners, migrants, internally
displaced people and facility based health care workers.Over 11,500 TB cases were detected through
active house to house case searching in 2017. Although this is a useful initiative, the number of TB
cases detected is a small percentage of the missing 300,000 cases of TB in Nigeria. It estimated by
the WHO that 30,000 children get TB in Nigeria each year. There are also 47,000 children that
are eligible to receive preventative treatment, that would help to prevent them from getting TB.
However, only about 8,500 children actually receive this preventative treatment. Many researchers
has work on dynamics of tuberculosis, but few work has be done on the dynamics of tuberculosis
disease with resistance to drug.

The first tuberculosis model was developed by Waaler et al [3], they use mathematical model to
study the epidemiology of tuberculosis disease. Liu and Yang [1], McCluskey and Van den Driessche
[9] both study the mathematical model of tuberculosis with two latent periods and treatment
interruptions. Ozcaglar et al [8] observed and predicted epidemiological models which reviews
earlier study on modeling different aspects of tuberculosis dynamics. They observed that there is
an increase in the tuberculosis in 1990s and the emergence of drug- resistant in the first decade of
the 21st century. Ronoh et al [4], Yu et al [5] and Gupta et al [6] considered mathematical model
of tuberculosis disease with drug resistance effect an SEIRR model, he failed to consider the age
group factor of the population and also the effect of each parameters was not considered (sentivity
Analysis). Fofana et al [7] also investigate multistrain mathematical model to investigate the role of
pyrazinamide in the emergence of extensively drug-resistant tuberculosis. Greenhalgh et al [12] use
a mathematical model to study the impact of awareness programs on an infectious disease outbreak
with two susceptible (aware susceptible and unaware susceptible) . Okuonghae and Ikhimwin [2]
consider the dynamic of a mathematical model for tuberculosis with variability in susceptibility and
disease progression due to difference awareness level.
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In 2019, Omale et al [13] formulate the mathematical modelling of dynamics of tuberculosis disease
and its control, it was showed that vaccination rate decrease the susceptible population . Also in
2020,Omale et al [14] determine the Global stability and sensitivity index of the modelled problem
in [13], and it was found that the model Endemic equilibrium point is globally asymptotically stable
and the recovery rate of the infected but treated, and the rate at which the vaccinated recovered
due to vaccine efficiency decrease the basic reproduction number of the model.

In this paper, we formulate a mathematical model of tuberculosis taking into consideration two
susceptible classes (children and adults) and resistance to the first line of treatment.

2 Model Formulation
In this section, we introduce a nonlinear tuberculosis (TB) model with resistance to the first line
of treatment. The entire population is classified into five classes: susceptible (S), exposed (E),
infectious (I), resistance to drug treatment (RH) and recovered (R). The susceptible clas s was
further divided into two age groups: childhood (S1) and Adults (S2). It is assumed that the only
way of exit or death is through the natural death µ or death from the tuberculosis disease ε. The
member of susceptible classes (S1) and (S2) move to the exposed class (E) due to infection at the
rate of α and β. The member of exposed class moves to infectious class (I) due to lack of treatment
or immunity at the rate of σ, while member of infectious class moves either to the recovery class
after the first treatment or resist the first line of treatment and moves to drug resistance class (RH),
then after multiple treatment, the drug resistance class (RH) moves to recovery (R).

2.1 Model Diagram
The figure 1 below represent the transmission of tuberculosis diseases using think arrow to describe
the movement of the compartments.

Figure 1: Schematic digram of the model

2.2 System of the Equations
The model for the TB is given by the following deterministic system of non linear differential
equation, a flow diagram of the model is depicted in figure 1, and the associated variables and
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parameters as described in table 1 and 2 respectively.

dS1

dt
= πρ− µS1 − ωS1 − βIS1 (2.2.1)

dS2

dt
= (1− π)ρ+ ωS1 − µS2 − αIS2 (2.2.2)

dE

dt
= βIS1 + αIS2 − µE − σE (2.2.3)

dI

dt
= σE − (µ+ ε)I − δI − γI (2.2.4)

dRH
dt

= δI − (µ+ τ)RH (2.2.5)

dR

dt
= γI + τRH − µR (2.2.6)

Table 1: Description of State Variables
varables Description
S1(t) Susceptible Child
S2(t) Susceptible Adult
E(t) Exposed Human
I(t) Infected Human
RH(t) Resistant to the first line of treatment
R(t) Recovered Human

Table 2: Descriptions of Parameters
Parameters Description

πρ Recruitment rate from the childhood
(1− π)ρ Proportion of the Adult

µ Natural death rate for the various compartment
β Transmission rate of tuberculosis from the child
ω Rate Child from to the Adulthood
α Transmission rate of tuberculosis from the Adult
σ Rate of human moving from the exposed class to the infectious class
δ Rate of human resistance to the first line of treatment
ε Death rate due to the tuberculosis disease
γ Recovering rate
τ Recovering rate after several treatment due to the drug resistance

3 Model Analysis

3.1 Existence, Uniqueness and Boundedness of the systems of equations
Theorem 3.1 for any initial value p ∈ <6, system (1) to (6) has a unique nonnegative solution
for all t ≥ 0

Proof.
N(t) = S1(t) + S2(t) + E(t) + I(t) +RH(t) +R(t), (3.1.1)

dN(t)

dt
=
dS1(t)

dt
+
dS2(t)

dt
+
dE(t)

dt
+
d1(t)

dt
+
dRH(t)

dt
+
dR

dt
,
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By adding all the equation, (1)to (6),

dN(t)

dt
= ρ− µN(t)− τI ≤ ρ− µN(t),

dN(t)

dt
≤ ρ− µN(t). (3.1.2)

It is clear that, if N(t) ≥ ρ
µ and dN(t)

dt ≤ 0 , then the solutions of equation (1) to (6) with non-
negative initial value are bounded and exit on the interval [0,+∞).

3.2 Positivity of the solution
For the model to be epidemiologically meaningful and well posed, we need to prove that the state
variables are nonnegative i.e ∀ t ≥ 0.

Theorem 3.2 : Let

Ω =[(S1, S2, E, I, RH , R) ∈ <6 : S1 + S2 + E + I +RH +R]

then the solution (S1(t), S2(t), E(t), I(t), RH(t), R(t)) of the equation (1)to (6) are positive ∀ t ≥ 0

Proof.
For (S1(0) ≥ 0, S2(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, RH(0) ≥ 0, R(0) ≥ 0) then,equation (1)-(6)

dS1

dt
≤ πρ− (µ+ ω)S1 (3.2.1)

by solving, we have
S1(t) ≤ πρ

µ+ ω
+ c e−(µ+ω)t. (3.2.2)

Applying the initial condition t ∈ [0,+∞)

S1(t) ≤ πρ

µ+ ω
+ c, t = 0

≤ πρ

µ+ ω
, t→∞,

0 ≤ S1 ≤
πρ

µ+ ω
.

Using this same approach in (9) for (2) to (6), then we have

S2(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, RH(0) ≥ 0, R(0) ≥ 0).

3.3 Equilibrium Points
To obtain the equilibrium points for the systems of differential equation (2.2) above, by setting each
of the equations (1) - (6) to zero.

πρ− µS1 − ωS1 − βS1 = 0 (3.3.1)
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(1− π)ρ+ ωS1 − µS2 − αIS2 = 0 (3.3.2)

βIS1 + αIS2 − µE − σE = 0 (3.3.3)

σE − (µ+ ε)I − δI − γI = 0 (3.3.4)

δI − (µ+ τ)RH = 0 (3.3.5)

γI + τRH − µR = 0 (3.3.6)

The calculating results will be in two equilibrium points, one being the Disease free equilibrium
(DFE), while the other being the Endemic equilibrium.

3.3.1 Disease free equilibrium point:

Let the disease free equilibrium of the system of equation (1) - (6) be defined as

D0
f = (S0

1 , S
0
2 , E

0, I0, R0
H , R

0)

by solving equations (11) - (16), we have,

D0
f =(S0

1 , S
0
2 , E

0, I0, R0
H , R

0)

=

(
πρ

(µ+ ω)
,

(1− π)ρ(µ+ ω) + πρω

µ(µ+ ω)
, 0, 0, 0, 0

)
(3.3.7)

3.3.2 Endemic equilibrium

Let the endemic equilibrium point of the system of equations (1)-(6) be given as:

D∗
f = (S∗

1 , S
∗
2 , E

∗, I∗, R∗
H , R

∗).

From equations (11) - (16), let,

a = βI, b = αI, k1 = (µ+ ω + a), k2 = (µ+ b), k3 = (µ+ σ), k4 = (µ+ ε+ δ + γ), k5 = (µ+ τ),

we have equations (11) - (16) becomes
k1S1 = πρ (3.3.8)

ωS1 − k2S2 = (π − 1)ρ (3.3.9)

aS1 + bS2 − k3E = 0 (3.3.10)

σE − k4I = 0 (3.3.11)

δI − k5RH = 0 (3.3.12)

γI + τRH − µR = 0. (3.3.13)
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By solving system of equations in (18)-(23), we have the endemic equilibrium as

S∗
1 =

πρ

k1
(3.3.14)

S∗
2 =

ωπρ− k1(1− π)ρ

k1k2
(3.3.15)

E∗ =
ak2πρ+ b(ωπρ− k1(1− π)ρ)

k1k2k3
(3.3.16)

I∗ =
σ[ak2πρ+ b(ωπρ− k1(1− π)ρ)]

k1k2k3k4
(3.3.17)

R∗
H =

σδ[ak2πρ+ b(ωπρ− k1(1− π)ρ)]

k1k2k3k4k5
(3.3.18)

R∗ =
(τσδ + γσk5)(ak2πρ+ b(ωπρ− k1(1− π)ρ)

µk1k2k3k4k5
(3.3.19)

3.4 Basic Reproduction number (R0) for DFE
The basic reproduction number is defined as the average number of secondary infections caused by
infected individual in a whole population. This can be computed by the method of next generation
matrix applied to the equation (3), (4) and (5), and by taking the largest eigenvalue (spectral ra-
dius) of FV −I .

Where F is the matrix of infectious rate, defines as ∂Fi(xi)
∂(xi)

and V is the matrix of transition

rate, defines as ∂Vi(xi)
∂(xi)

, i = 1, 2, 3, ...

Consider the system in equations (3), (4) and (5) i.e
dE

dt
=βIS1 + αIS2 − µE − σE

dI

dt
=σE − (µ+ ε)I − δI − γI

dRH
dt

=δI − (µ+ τ)RH

F =

0 βS1 + αS2 0
0 0 0
0 0 0



V =

(µ+ σ) 0 0
−σ (µ+ ε+ γ + δ) 0
0 −δ (µ+ τ)



V −1 =


1

(µ+σ) 0 0

σ
(µ+σ)(µ+ε+γ+δ)

1
(µ+ε+γ+δ) 0

σδ
(µ+σ)(µ+ε+γ+δ)(µ+τ)

δ
(µ+ε+γ+δ)(µ+τ)

1
(µ+τ)


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FV −1 =


(βIS1+αIS2)σ

(µ+σ)(µ+ε+γ+δ)
(βIS1+αIS2

(µ+ε+γ+δ) 0

0 0 0
0 0 0


The spectral radius of

R0 = ρ(FV −1) =
(βIS1 + αIS2)σ

(µ+ σ)(µ+ ε+ γ + δ)
(3.4.1)

=
(µβ + ωα)πρσ + (µ+ ω)(1− π)ρασ

µ(µ+ σ)(µ+ ω)(µ+ ε+ γ + δ)
(3.4.2)

3.5 Stability Analysis for Disease free equilibrium
In order for us to established the stability of the disease free equilibrium, some certain condition must
be meet, either the disease will be totally eradicated or not, from the population. We considered
both local and global stability of the disease free equilibrium.

3.5.1 Local Stability of the disease free equilibrium

Theorem 3.3 The disease free equilibrium of the system (1) to (6) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1 or the disease free equilibrium is locally stable if and only if all
the eigenvalues of the Jacobian matrix of the systems are all negatives.

Proof
By Jacobian, we obtain the matrix of the system at the disease free equilibrium points.

J =



−(µ+ ω + βI) 0 0 −πβρ
(µ+ω) 0 0

ω −µ 0 −αρ(µ+ω−µπ)
µ(µ+ω) 0 0

0 0 −(µ+ σ) 0 0

0 0 σ (µ+ ε+ γ + δ) 0 0

0 0 0 δ −(µ+ τ) 0

0 0 0 γ τ −µ



(3.5.1)
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Using column reduction, matrix (32) becomes

J =



−(µ+ ω + βI) 0 −πσβµρ(µ+τ)
(µ+ω)

−πβµρ(µ+τ)
(µ+ω) 0 0

ω −µ −αρ(µ+τ)(µ+ω−µπ)
(µ+ω)

−αρ(µ+τ)(µ+ω−µπ)
(µ+ω) 0 0

0 0 −µ(µ+ σ)(µ+ τ)(µ+ ε+ γ + δ) 0 0 0

0 0 0 −(µ+ τ)(µ+ ε+ γ + δ) 0 0

0 0 0 0 −µ(µ+ τ) 0

0 0 0 0 0 −µ


(3.5.2)

Since the resulting matrix is an upper triangular matrix, then the eigenvalues are the diagonal
entries of the matrix.

λ1 = −(µ+ ω + βI), λ2 = −µ, λ3 = −µ(µ+ σ)(µ+ τ)(µ+ ε+ γ + δ),

λ4 = −(µ+ τ)(µ+ ε+ γ + δ), λ5 = −µ(µ+ τ), λ6 = −µ

From the above results in equation (33), the disease free equilibrium of the model is locally asymp-
totically stable since all the eigenvalues are all negatives.
Alternatively,
Consider the basic reproduction number R0 as in equation (31), for the system to be locally asymp-
totically stable we need to show that

R0 =
(µβ + ωα)πρσ + (µ+ ω)(1− π)ρασ

µ(µ+ σ)(µ+ ω)(µ+ ε+ γ + δ)
< 1

Using values of the parameters in table 4 below, we find out that R0 = 0.2604814805 which is less
than 1.
Hence the disease free equilibrium of the model is local asymptotically stable.
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3.6 Sensitivity Analysis
Sensitivity analysis of the system of the differential equation above is defined as the derivatives of
the solution with respect to the parameters. The sensitivity analysis serves two main purposes. On
one hand, the sensitivities are diagnostics of the model which are useful for understand how it will
change in accordance with changes in the parameters. In order for us to compute the sensitivity
index of the above system, we use the partial derivatives of R0 with respect to each parameter. i.e

γR0
µ =| ∂R0

∂µ
× µ

R0
|,

3.6.1 Parameter Values

Parameter Value Unit Reference
πρ 0.25 Person per year A.A Momoh and A Tahir (2015)

(1− π)ρ 0.75 Person per year Assumed
µ 0.0241 Per year D. Okuonghae (2013)
ω 0.01 Per year Assumed
β 8.557 Per year D. Okuonghae (2013)
α 1.5 Per year D. Okuonghae (2013)
σ 0.001 Per year A.A Momoh and A Tahir (2015)
δ 0.32 Per year Assumed
ε 3.65 Per year Assumed
γ 7.5 Per year Assumed
τ 1.5 Per year D. Okuonghae (2013)

Table 3: The parameters values from existing literatures and those assumed by the author

3.6.2 Sensitivity Values

Parameter Value Security Value
πρ 0.25 0.3894544033

(1− π)ρ 0.75 0.6105455968
µ 0.0241 -0.1812390091
ω 0.01 -0.01498301404
β 8.557 0.2254614952
α 1.5 0.774536313
σ 0.001 0.9601593627
δ 0.32 -0.02736422641
ε 3.65 -0.3121232075
γ 7.5 -0.6413490565

Table 4: The computation of sensitivity values for each parameter
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Figure 2: The histogram plot of sensitivity values against parameters

Figure 3: The line plots of Sensitivity values with parameters

3.7 Numerical Solution of the Model
The numerical simulation were carried out with Maple 17 using the parameter values in table 4
above
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Figure 4: The graph of susceptible population against time in years

Figure 5: Variation of Child that moves to Adulthood with contact the virus

Figure 6: Proportion of Susceptible Childhood with different values of Natural death rate
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Figure 7:Proportion of Susceptible Adulthood with different values of Natural death rate

Figure 8:Proportion of Exposed Class with different values of Natural death rate

Figure 9: Proportion of people that infected with the disease, with different values of Natural death.
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Figure 10: Proportion of peoples with resistant to the first line of treatment,with different values
of Natural death rate

Figure 11: Proportion of people that are recovered from the disease with difference natural death

4 Discussion of Results
In this paper, we established the Sensitivity analysis of mathematical model of Tuberculosis disease
with resistance to drug treatment and the following results were obtained
1. The solution to the model are bounded and exist
2. All choosing parameters are epidemiologically meaningful and well posed
3. The disease free equilibrium of the model is locally asymptotically stable.
4. From the Sensitivity Analysis, the positive index indicates an increase in the value of basic
reproduction number with increase in the parameter values while negative values indicates decrease
in the basic reproduction number with increase in parameter values
5. The sensitivity analysis show that the most sensitivity parameter is the contact rate σ (The rate
at which the human get infected with the tuberculosis.

5 Conclusion
A model of six compartment was developed. The equilibrium point of the model was calculated
(Disease free and Endemic Equilibrium). The local stability were obtained and analysed based
on the basic reproduction number of the model and it was observed that the model is locally
asymptotically stable. The sensitivity analysis show that the most sensitivity parameter is the
contact rate σ (The rate at which the human get infected with the tuberculosis).It was observed
that the age group has bigger effect on the control of TB. The drug resistance has a little effect on
the total control of the disease. At the end, three effective measure was found that would help reach
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the major goal of the WHO End the Strategy: reduce the exposed rate of the disease especially in
the adults, increase the recovery rate and reduce the transmission rate of the adults.
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