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Abstract

Crude oil prices are in�uenced by a number of factors that are far beyond the traditional
supply and demand dynamics such as West Texas Intermediate (WTI), Brent and Dubai. The
high frequency crude oil data exhibit non-constant variance. This paper models and forecasts
the exhibited �uctuations via asymmetric GARCH models with the three commonly used error
distributions: Student's t distribution, normal distribution and generalized error distribution
(GED). The Maximum Likelihood Estimation (MLE) approach is used in the estimation of
the asymmetric GARCH family models. The analysis shows that volatility estimates given by
the exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model
exhibit generally lower forecast errors in returns of WTI oil spot price while the asymmetric
power autoregressive conditional heteroskedasticity (APARCH) model exhibits lower forecast
errors in returns of Brent oil spot price, therefore they are more accurate than the estimates
given by the other asymmetric GARCH models in each returns. The results obtained from
the volatility forecasts seem to be useful to oil future traders and policy makers who need
to perceive �apriori� the e�ects of news on return volatilities before executing their trading,
investments and political strategies for the economic wellbeing of the country.

Keywords and Phrases Stylized facts, Asymmetric GARCH, Oil price volatility, Volatility
estimate, Error distribution
MSC2010: 62M10, 91B79.

1 Introduction

Crude oil is the raw oil from which petroleum products such as gasoline are derived. In recent
years, crude oil price has become one of the major economic challenges facing most countries in
the world especially those in Africa including Nigeria. World crude oil prices are established in
accordance with three market traded benchmarks, namely: West Texas Intermediate (WTI), Brent
and Dubai, and are quoted at premiums or discounts to these benchmark prices [1]. WTI is a light
sweet crude oil and actually lighter than Brent Crude oil. WTI contains about 0.24% sulphur and
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are considered the world's most actively traded energy products. Its properties and production
site make it ideal for being re�ned in the United States and in the Gulf Coast regions. They are
preferred because of low sulphur content and its relatively high energy e�ciency of high-quality
products such as gasoline, diesel fuel, heating oil and jet fuel. The price of a barrel (159 litres) of oil
depends on both its grade and location. Grade is determined by its speci�c gravity and its sulphur
content. The Energy Information Administration (EIA) uses the imported re�nery acquisition cost,
the weighted average cost of all oil imported into the US, as its world oil price [1].

Crude oil prices just like �nancial markets exhibit empirical characteristics: (i) leptokurtic, i.e.
they have heavy tails and a higher peak than a normal distribution; (ii) equity returns are typically
negatively skewed and (iii) squared return series shows signi�cant autocorrelation, i.e. volatilities
tends to cluster. Considering the �rst two facts, it is important to examine which probability
density function capture heavy tails and asymmetry best. The third fact requires to correctly specify
conditional mean and conditional variance equations from GARCH family models. We equally know
crude oil prices measured over short time intervals, i.e. daily or weekly, are characterized by high
kurtosis and kurtosis is both a measure of peakedness and fat tails of the distribution. Modelling
and forecasting the volatility (conditional variance) of these non-constant empirical regularities are
challenging tasks. The emerging �nancial markets are becoming more sophisticated and also, the
need for accurate volatility forecasting and estimation are becoming increasingly more important
[2, 3]. Volatility forecasts are important for many �nancial decisions such as the issues for policy
makers, option traders and investors to e�ectively price, speculate, and hedge before executing their
trading and investments strategies. The policy makers require the crude oil price dynamics for the
economic and political growth of the country. The deep understanding of the results produced
by GARCH and Asymmetric GARCH models are needed for out-of-sample forecast in the oil
market. Thus, in this paper, a family of generalized autoregressive conditional heteroskedasticity
(GARCH) models: exponential GARCH (EGARCH), Threshold GARCH (TGARCH), Glosten,
Jogannathan Ronkle GARCH (GJRGARCH), asymmetric power GARCH (APARCH) and Non-
linear Asymmetric GARCH (NAGARCH) which use past variances and past variance forecasts to
forecast future variances are employed to capture volatility clustering and predict the periods of
�uctuations in the future.

Several scholars have worked on how oil price shocks a�ect economic growth in a body of research.
Examples include [4, 5] and [6] who clearly demonstrated that positive oil price shocks induce a
slow-down in aggregate measures of growth or employment and that negative oil price shocks lead
to an increase in aggregate measures of growth or unemployment. [7, 8, 9] and [10] focused on
how shocks to volatility of crude oil prices a�ect future oil price and found out that negative and
positive news have a di�erent impact on oil price volatility. [11, 12], in their works investigated
the linear and nonlinear causal linkages between spot and futures prices of di�erent maturities of
West Texas Intermediated (WTI) crude oil and observed that spot and future prices (oil shocks)
exhibit asymmetric GARCH e�ects and signi�cant higher order conditional moments. Also, [13] in
analysing oil prices examine 43 stock markets and �nd that the volatility of oil prices has a negative
impact on international stock market returns. In many cases, the �rst-order GARCH family models
have been extensively proven to be appropriate for modelling and forecasting �nancial time series as
observed by [14, 15]. But in these studies little or no attention has been given to their suitable error
distributions, hence, the paper focuses on modelling and forecasting asymmetric GARCH models
using distributions with heavy tails.

(a) GARCH (p, q) Model [16]
In order to model in a parsimonious way the conditional heteroskedasticity, [16] proposed the
generalized ARCH model, i.e GARCH(p, q):

σ2
t = ω + α(L)ε2t + β(L)σ2

t (1.1)
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where α(L) = α1L+α2L
2+...+αqL

q, β(L) = β1L+β2L
2+...+βpL

p. Recall that ε2t = z2
t σ

2
t and

z2
t is independent and identically distributed with standard normal. And also, εt ∼ N(0, σ2

t ),
and the conditional function of εt is given by

f(εt : v) =
1√

2πσ2
t

exp

(
(εt)

2

2σ2
t

)
(1.2)

where σ2
t is the conditional variance, and also the function of the unknown parameters. An

e�ective GARCH (1, 1) [17], the conditional variance is modelled as

σ2
t = ω + αε2t−1 + βσ2

t−1. (1.3)

When ω > 0, α ≥ 0, β ≥ 0, then εt is stationary if and only if α+ β < 1. The non-negativity
constraints on ω, α and β guarantee the positivity of σ2

t . If the condition that α + β < 1 is
ful�lled, then the unconditional variance in GARCH (1, 1) is obtained as:

σ2 = E[σ2
t−1] = E[ω + αε2t + βσ2

t ]

= ω + αE[ε2t ] + βE[σ2
t ]

= ω + α+ βσ2

= ω(1− α− β)−1

The h-step ahead forecasts from GARCH (1, 1) are obtained recursively as [17]:

σ2
t+h = ω + (α+ β)σ2

t+h−1

= σ2 + (α+ β)(σ2
t+h−1 − σ2)

= σ2 + (α+ β)h−1(σ2
t+h−1 − σ2)

As h → ∞, it is clear that the volatility forecast approaches the unconditional variance
σ2 and α + β dictates the speed of the mean reversion just like our GRACH model above.
GARCH models assume that only the magnitude and not the positivity or negativity of
anticipated excess returns determines the conditional variance. Importantly, GARCH models
cannot explain the observed covariance between ε2t and ε

2
t−j as it can only be achieved if the

conditional variance is expressed as an asymmetric function of ε2t−j .

(b) Asymmetric GARCH Models

(i) The EGARCH Model [18]
The exponential GARCH (EGARCH) model was proposed by [18] with the aim to
capture the asymmetries in the volatility changes noted by [19]. The EGARCH model
is generally speci�ed as:

ln(σ2
t ) = ω +

p∑
i−1

βj ln(σ2
t−i) +

q∑
i−1

αi [φzt−i + γ (|zt−i| − E|zt−i|)] (1.4)

The left hand side is the log of the variance series. This makes the leverage e�ect
exponential and therefore the parameters ω, βj , αi are not restricted to be non negative,

α1 = 1, E|zt| = ( 2
π )

1
2 when zt ∼ NID(0, 1). Let de�ne g(zt) = φzt + γ [|zt| − E|zt|]

by construction {g(zt)}∞t=−∞ is a zero-mean, i.i.d. random sequence. The components
of g(zt) are φzt and γ(|zt| − E|zt|), each with mean zero. If the distribution of zt
is symmetric, the components are orthogonal, but not independent. Over the range
0 < zt < ∞, g(zt) is linear in zt with slope φ + ψ,, and over the range −∞ < zt < 0,
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g(zt) is linear with slope φ− γ. The term γ(|zt| − E|zt|) represents a magnitude e�ect.
If γ > 0 and φ = 0, the innovation in lnσ2

t+1 is positive (negative) when the magnitude
of zt is larger (smaller) than its expected value. If γ = 0 and φ < 0, the innovation
in conditional variance is now positive (negative) when returns innovations are negative
(positive). A negative shock to the returns which would increase the debt to equity ratio
and therefore increase uncertainty of future returns could be accounted for when αi > 0
and φ < 0 [20].
The EGARCH (1, 1) variance equation with a normal distribution is stated by [21] as:

lnσ2
t = ω + β ln(σ2

t−1) + γ
εt−1√
σ2
t−1

+ α

 εt−1√
σ2
t−1

−
√

2

π

 (1.5)

where ω is the intercept for the variance; β is the coe�cient for the logged GARCH
term; α is the magnitude; ln(σ2

t−1) is the logged GARCH term; γ is the scale of the
asymmetric leverage parameter that quanti�es the degree of the volatility leverage e�ect

in the model if γ 6= 0.

 εt−1√
σ2
t−1

−
√

2

π

 is the parameter that takes into account the

absolute value of the last period's volatility shock. It replaces the regular ARCH term;
εt−1√
σ2
t−1

is the last period's shock which is standardized. Given that the model uses the

log of the variance, this means that even if the parameters are negative, the variance will
still be positive. Thus, the model is subjected to the non-negativity constraints [18, 21].

(ii) The Glosten - Jagannathan - Runkle model [22]
The GJR-GARCH model is designed in a way that allows the model to account for the
potential larger impact of negative shocks on return volatility. It models the variance
directly and does not use the natural logarithm as in the EGARCH model. The GJR-
GARCH model is stated as:

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

(
αiε

2
t−i + γiS

−
t−iε

2
t−i
)

(1.6)

where

S−t =

 1, if εt < 0

0, if εt ≥ 0.

The conditional variance in the GJR-GARCH (1, 1) is given as:

σ2
t = ω + α1ε

2
t−1 + βσ2

t−1 + α2It−1ε
2
t−1 (1.7)

where σ2
t is the conditional forecasted variance; ω is the intercept for the variance;

α1ε
2
t is the variance that depends on the previous lag error terms; α2 is the scale of

the asymmetric volatility; β is the coe�cient for yesterday's forecasted variance; α2
t−1

yesterday's forecasted variance; It−1 is a dummy variable that is only activated if the
previous shock is negative (εt−1 < 0), allowing the GJR-GARCH to take leverage e�ect
into consideration [22]. The sign of leverage e�ect is opposite compared to that of
EGARCH model. If α2 = 0, no asymmetric volatility; if α2 > 0, negative shocks will
increase the volatility more than the positive shocks and if α2 < 0, positive shocks
increase the volatility more than negative shocks.
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(iii) Threshold GARCH (TGARCH) Model [23]
The threshold GARCH (TGARCH) is similar to the GJR GARCH model except that
the standard deviation instead of the variance is included in the speci�cation. TGARCH
is modelled as:

σt = ω +

q∑
i=1

αi (|εt−i|+ γiIt−iεt−i) +

p∑
i=1

βjσt−j (1.8)

where ω > 0, α ≥ 0, β ≥ 0, −1 < γi < 1 and

It−i =

 1, if εt−i < 0

0, if εt−i ≥ 0.
(1.9)

(iv) The Asymmetric Power ARCH [24]
The asymmetric power ARCH (APARCH) model introduced by [24] aims to reproduce
both the leverage e�ects and the sample autocorrelation of absolute squared returns.
APARCH is modelled as:

rt = µ+ εt

εt = σtzt zt ∼ N(0, 1)

σδt = ω +

q∑
i=1

αi (|rt−i|+ γiεt−i)
δ

+

p∑
i=1

βjσ
δ
t−j

where ω > 0; δ ≥ 0; αi ≥ 0 i = 1, ..., q; −1 < γi < 1 i = 1, ..., q; βj ≥ 0 j = 1, ..., p.
This model nests at least seven ARCH type models, according to the estimated parameters.
In model (1.12) parameter δ plays the role of a Box-Cox transformation of the time-
varying conditional standard deviation σt, while γi re�ects leverage e�ect, i.e. asymmetric
information in�uence. The parameter, β, in the mean conditional equation, determines
volatility of stock, i.e. stock risk. If β > 1, the stock is highly risked. If 0 < β < 1,
the stock is lowly risked, while free-risk stock assumes that β = 0. The Box-Cox
transformation for a positive random variable γt:

γ
(λ)
t =


γλt − 1

λ
λ 6= 0

log γt λ = 0.

(1.10)

The asymmetric response of volatility to positive and negative �shocks� is the well-known
leverage e�ect. This generalized version of APARCH model includes the below models as
special cases: ARCH(q) model, just let δ = 2 and γi = 0, i = 1, ..., q, βj = 0, j = 1, ..., p;
GARCH(p, q) model just let δ = 2 and γi = 0, i = 1, ..., q; Taylor/Schwert's GARCH in
standard deviation model just let δ = 1 and γi = 0, i = 1, ..., q; and GJR model just let
δ = 2.

(v) Non-linear Asymmetric GARCH Model [24]
NAGARCH model was proposed by [24]. NAGARCH (1, 1) is de�ned by

σ2
t = ω + ασ2

t−1(εt−1 − γ)2 + (σ2
t−1) (1.11)

σ2
t is the conditional volatility; ω is the intercept for the variance; α is the coe�cient for

the ARCH term; α2
t−1 is lagged conditional volatility and ε2t−1 is the residuals (measures

the shock) of the time series.
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2 Methodology

Price-in�uencing events may be normally distributed, but the likelihood of said events being
reported in news increases with the magnitude of the impact of the event [25]. In this paper,
we use the maximum likelihood estimation (MLE) approach to estimate unknown parameters that
de�ne a probability density function (pdf): location parameter (mean), scale parameter (variance
or standard deviation) and shape parameter (skewness and/or kurtosis) for all the forms of the
GARCH models using the Gaussian (Normal) and the non-Gaussian (Student's t and Generalized
Error Distribution) distributions to allow the model �t both the tails and the central part of the
conditional distribution present in high frequency energy time series data.

Since the paper is dealing with dependent variables, we use a juxtaposition of calibration and
maximum likelihood via the Bayes' rule to get the joint distribution as

f(y1, y2, ..., yt : θ) = f(y1|X1 : θ)f(y2|y1X1, X2 : θ)...f(yt|yt−1...y1Xt−1...X1 : θ) (2.1)

Taking natural log of equation, we have

ln f(y1, y2, ..., yt : θ) = ln f(y1|X1 : θ) + ln f(y2|y1X1, X2 : θ)

+...+ ln f(yt|yt−1...y1Xt−1...X1 : θ)

This likelihood function provides a systematic way to adjust the parameters ω, α1, β1 to give the
best �t. The conditional likelihood function is given as

L(y1, ..., yn|ω) =

n∏
t=1

g(yt, µt(α), σt(ω)) (2.2)

where g(yt, µt(α), σt(ω)) denotes the conditional density function for the random variables yt with
mean µt and standard deviation σt and ω = (α, θ) is the parameter vector to be estimated; α
corresponds to the set of parameter in the conditional mean assumed, in what follows to be an
ARMA (k, l) model and θ = (α1, ..., αq, β1, ..., βp).

The numerical method used to estimate the parameters of the models with a larger order is the
score algorithm. In this case the �rst and second partial derivatives of the likelihood must be
calculated. Assuming the conditional density and the µt(θ) and σ

2
t (θ) functions are di�erentiable

for all ψ ∈ Θ×H ≡ Ψ, the maximum likelihood estimator is the solution to

ST (yT , yT−1, ..., y1;ψ) ≡
T∑
t=1

st(yt;ψ) (2.3)

where st ≡
∂lt(yt;ψ)

∂ψ
is the score vector for the tth observation and εt(θ) ≡ yt − µt(θ).

(i) Normal distribution
The normal distribution is uniquely determined by its �rst two moments [26]. Hence, only
the conditional mean and variance parameters enter the log-likelihood function

L(θ) = −n
2

log(2π)− 1

2

n∑
t=1

{
log

(
σ2
t +

ε2t
σ2
t

)}
(2.4)

where n is the sample size. To obtain an analytical or numerical solution of the MLE, we need

to know the �rst-order derivative of
∂L(θ)

∂θ
with respect to θ and solve

∂L(θ)

∂θ
= 0. Assuming
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ψ = 0, we have the score functions as

∂L(θ)

∂θ
=

n∑
t=1

εt
σ2
t

∂µt
∂θ

+
1

2

n∑
t=1

1

σ2
t

(
ε2t
σ2
t

− 1

)
∂σ2

t

∂θ
(2.5)

The Hessian matrix is given by

∂2L(θ)

∂θ∂θ′
= −

n∑
t=1

1

σ2
t

∂µt
∂θ

∂µt
∂θ′
−

n∑
t=1

εt
σ4
t

∂µt
∂θ

∂σ2
t

∂θ′
−

n∑
t=1

εt
σ4
t

∂σ2
t

∂θ

∂µt
∂θ′

+

n∑
t=1

1

σ4
t

(
1

2
− ε2t
σ2
t

)
∂σ2

t

∂θ

∂σ2
t

∂θ′

Now, if the paper assumes that the innovations (εt)t∈Z have conditional non-Gaussian distributions:

(ii) The Student-t distribution

f [zt(θ); η] = (2π)−
1
2 (s2)−

1
2

(
v
2

)− 1
2 Γ
(
v+1

2

)
Γ−1

(
v
2

){
1 + (x−µ)2

vs2

}− (v+1)
2

(2.6)

where µ is location parameter, s2 is scale parameter and v is a shape parameter, or degrees
of freedom and Γ(.) is gamma function. Standard t-distribution assumes µ = 0, s2 = 1, with
integer v.

The degrees of freedom can be estimated using method of moments, which means that kurtosis

and degrees of freedom are closely related: k =
6

v − 4
+ 3 for every v > 4. So, when empirical

distribution is leptokurtic, then Student's t-distribution with parameter 4 < v ≤ 30 should
be used to allow heavy tails of high kurtosis distribution. The �rst two central moments are

given as: µ2 = E
[
(x− µ)2

]
= s2v

v−2 and µ4 = E
[
(x− µ)4

]
= 3s4v2

(v−2)(v−4) with excess kurtosis

(greater than 3):

k∗ = µ4

µ2
2
− 3 = 6

v−4 if v <∞ and v 6= 4. (2.7)

Hence, we may apply method of moments to get consistent estimators: µ̂2 =

n∑
i=1

(xi−x)2

n ;

µ̂4 =

n∑
i=1

(xi−x)4

n ; k∗ = µ̂4

µ2
2
− 3; v̂ = 4 + 6

k∗ and ŝ2 =
(

3+k̂∗

3+2.k̂2

)
.σ̂2, where variance from sample

σ̂2 is biased estimator of scale parameter s2.
The MLE estimator θ̂2 maximizes the log-likelihood function lt given by

lt = n
[
log Γ (v+1)

2 − log Γ
(
v
2

)
− 1

2 log π(v − 2)
]

− 1
2

n∑
t=1

{
log(σ2

t ) + (v + 1) log
[
1 +

ε2t
σ2
t (v−2)

]}

where 2 < v ≤ ∞ and Gamma is the Euler gamma function de�ned by Γ(x) =
∞∫
0

tx−1e−1dt.

When v → ∞, we have the normal distribution, so that the smaller the value of v the fatter

the tails. This means that for large v, the product
(
v
2

)− 1
2 Γ
(
v+1

2

)
Γ−1

(
v
2

)
tends to unity,

while the right-hand bracket in (2.8) tends to e
1

2σ2
(x−µ)2 .
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The score function is given

∂lt
∂θ

=

n∑
t=1

[
v + 1

v − 2

εt
σ2
t

(
1 +

ε2t
σ2
t

)−1
]
∂µt
∂θ

+
1

2

n∑
t=1

[
v + 1

v − 2

ε2t
σ2
t

(
1 +

ε2t
σ2
t (v − 2)

)−1
]

1

σ2
t

∂σ2
t

∂θ

and the Hessian matrix is given by

∂2lt
∂θ∂θ′

=
v + 1

v − 2

n∑
t=1

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ2
t

[
2

v − 2

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ2
t

− 1

]
∂µt
∂θ

∂µt
∂θ′

+
v + 1

v − 2

n∑
t=1

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ4
t

[
1

v − 2

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ2
t

− 1

]
∂µt
∂θ

∂σ2
t

∂θ′

+
v + 1

v − 2

n∑
t=1

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ4
t

[
1

v − 2

(
1 +

ε2t
(v − 2)σ2

t

)−1
εt
σ2
t

− 1

]
∂σ2

t

∂θ

∂µt
∂θ′

+
1

2

n∑
t=1

1

σ4
t

[
1 +

v + 1

v − 2

ε2t
σ2
t

(
1 +

ε2t
(v − 2)σ2

t

)−1
]

[
ε2t

(v − 2)σ2
t

(
1− ε2t

(v − 2)σ2
t

)−1

− 2

]
∂σ2

t

∂θ

∂σ2
t

∂θ′

(iv) The Generalized error distribution (GED)
The GED is a symmetrical unimodal member of the exponential family. The domain of the
probability density function (pdf) is x ∈ [−∞,∞] and the distribution is de�ned by three
parameters, µ ∈ (−∞,∞), which locates the mode of the distribution, σ ∈ (0,∞), which
de�nes the dispersion of the distribution and k ∈ (0,∞), which controls the skewness. The
probability distribution function, F (x), is given by

dF (x|µ, σ, v) =
e

1
2

∣∣x−µ
σ

∣∣ 1v
2v+1σΓ(v + 1)

dx (2.8)

If we choose v = 1
2 , then (2.13) is recognized as the pdf for the univariate Normal distribution,

that is, G(µ, σ2, 1
2 ) = N(µ, σ2). If we use v = 1, then (2.13) is recognized as the pdf for the

Double- Exponential or Laplace distribution, that is, G(µ, σ2, 1) = N(µ, 4σ2). If the limit
v → 0, the pdf tends to the Uniform distribution, U(µ− σ, µ+ σ). This shows that the GED
allows one to maintain the same mean and variance, but vary the distribution's shape (via
the parameter v) as required. The GED is useful because it can be smoothly transformed
from normal distribution into a leptokurtic distribution (�fat tails�) or even into a platykurtic
distribution (�thin tails�). This also allows us to use the maximum likelihood ratio test to test
the hypothesis as to whether the GARCH process innovations are i.i.d. normal. The kurtosis
of the GED is given by

E
[
ε4t
]

= Γ

(
1

v

)
Γ

(
5

4

)[
Γ

(
3

v

)]2

(2.9)

which is greater than three if v < 1
2 .
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In GED, the score function is

∂lt
∂θ

=
1

2

n∑
t=1

v

|λv|

(
εt
σt

)v
1

εt

∂µt
∂θ

+
1

2

n∑
t+1

1

σ2
t

[
1

2

1

|λv|v

(
εt
σt

)v
− 1

]
∂σ2

t

∂θ
(2.10)

and the Hessian matrix is equal to

∂lt
∂θ∂θ′

=
v

|λv|

(
v − 3

2

) n∑
t=1

2

σ2
t

(
ε2t
σ2
t

) v
2−1

∂µt
∂θ

∂µt
∂θ′

−1

2

v

|λv|

n∑
t=1

εt
σ4
t

(
ε2t
σ2
t

) v
2−1 [

1 +
(v

2
− 1
) ε2t
σ2
t

]
ε2t
σ2
t

= −1

2

v

|λv|v
n∑
t=1

εt
σ4
t

(
ε2t
σ2
t

) v
2−1 [

1 +
(v

2
− 1
) ε2t
σ2
t

]

−1

2

n∑
t=1

[
1

4

v(v + 2)

|λv|v

(
εt
σt

)v
− 1

]
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′

Using (2.6) and (2.16), we have

∂σ2
t

∂θ
=

(
1, ε2t−1, σ

2
t−1, σt−1εt−1

)
+ 2σ1εt−1

∂εt−1

∂θ
+ β1

∂σ2
t−1

∂θ

+c1

(
σt−1

∂εt−1

∂θ
+

1

2

εt−1

σt−1

)
∂σ2

t−1

∂θ

The main feature of the selected distributions is that the maximum likelihood estimators
achieve optimal accuracy, in the sense that they are asymptotically consistent and achieve
Cramer-Rao lower bound [27]. When the errors have heavy tails that can be described by a
student t-distribution (t-AFTER) and error distribution (g-AFTER), the forecast combination
adapted, following the spirit of the AFTER strategy by [28] should be used.

Let ‖X‖ =
n∑
i=1

|xi| be the l1-norm of vector X = (x1, ..., xn). Let Wi = (Wi,1, ...,Wi,J) be a

vector of combination weights of Ŷi. It is assumed that and
J∑
j=1

Wi,j = 1 and Wi,j ≥ 0 for any

i ≥ i0, 1 ≤ j ≤ J. Let Wi0 = (w1, ..., wJ) be the initial weight vector. The combined forecast
for yi from the combination method is ŷi = (Ŷi,Wi). The general form of Wi for the AFTER

approach is Wi = Ii−1

‖Ii−1‖ 1
, where Ii−1 = (Ii−1,1, ..., Ii−1,J) and for any 1 ≤ j ≤ J, li−1,j , li−1,j =

wj
i−1∏
i′≥i0

1
Ŝi′,j

h
(
y′i−ŷi′,j
ŝi′,j

)
, where ŝi′,j is an estimate of s′i from the jth forecaster at time point i′− 1.

Suppose at each time period i ≥ 1, there are J forecasters available for predicting yi and the forecast
combination starts at i0 ≥ 1, where i0 is assumed to be large enough, say 10.
Let Ω = (v1, ..., vk) be a set of degrees of freedom for Student's t distributions. Let wj,k(wj,k ≥ 0

and
K∑
k=1

J∑
j=1

wj,k = 1) be the initial combination weight of the forecaster j under the degrees of

freedom vk. Let the combining weight of Ŷi from a t-AFTER method be WAt
i and the combined

forecast be ŷAti . The WAt
i and ŷAti are obtained through the following steps:

(i) Estimate (e.g. by MLE) si for each vk ∈ Ω and for each candidate forecaster. The estimate
for si from the jth forecaster given vk is denoted as ŝi,j,k.

697



International Journal of Mathematical Analysis and

Optimization: Theory and Applications

Vol. 2020, No. 1, pp. 689 - 706

(ii) Calculate WAt
i and ŷAti :

WAt
i =

IAti−1

‖IAti−1‖ 1

, ŷAti =
(
Ŷi,W

At
i

)
(2.11)

where IAti−1 = (IAti−1,1, ..., I
At
i−1,J) and for any 1 ≤ j ≤ J and any i ≥ i0 + 1, lAti−1,j =

K∑
k=1

lAti−1,j,k with

lAti−1,j,k = wj,k

i−1∏
i′≥i0

1

Ŝi′,j,k
ft

(
y′i − ŷi′,j
ŝi′,j,k

|vk
)
, (2.12)

where ft(.|v) is the pdf of the student's t distribution with degrees of freedom v.

The performance of the forecast combination method, g-AFTER, for situations when there is a
lack of strong or consistent evidence on the tail behaviours of the forecast errors due to shortage of
data and/or evolving data-generating process is provided from the theorem that allows the random
errors to be from one of the three popular distribution families (normal, double-exponential and

scaled student's t). Let the combining weight Ŷi from the g-AFTER be W
Ag
i for any i > i0, W

Ag
i

and the associated combined forecast ŷ
Ag
i are

W
Ag
i =

I
Ag
i−1

‖IAgi−1‖ 1

, ŷ
Ag
i =

(
Ŷi,W

Ag
i

)
, (2.13)

where I
Ag
i−1 = (I

Ag
i−1,1, ..., I

Ag
i−1,J) and for 1 ≤ j ≤ J .

l
Ag
i−1,j = (lA2

i−1,j + c1l
A1
i−1,j) + c2l

At
i−1,j (2.14)

where lA2
i−1,j , l

A1
i−1,j and l

Ai
i−1,j are from the L2−, L1− and t-AFTER, respectively and c1 and c2 are

non-negative constants that control the relative importance of the L2−, L1− and t-AFTERs in the
g-AFTER. , L2-AFTER is when the random errors in the data generating process follow a normal
distribution or a distribution close to a normal distribution, The L1-AFTER method is the double-
exponential distribution with scale parameter 1 and location parameter 0 which was designed for
robust combination when the random errors have occasional outliers. The g-AFTER satis�es the
following conditions:

(i) There exists a constant τ > 0 such that for any i ≥ i0,

P ( sup
1≤j≤J

|ŷi,j −mi|/si ≤
√
τ) = 1.

(ii) Suppose the random errors have zero mean and are from of the three families (normal, double-
exponential and scaled student's t), and there exists a constant 0 < γ2 ≤ 1 such that for any
with probability 1, we have γ2 ≤ ŝi

si
≤ 1

γ2
, where si is the actual conditional scale parameter

at time point i and ŝi refers to any estimate of si used in the g-AFTER.

(iii) When the random errors in the true model follow a scaled student's t distribution with degrees
of freedom v, assume there exist positive constants v, λ and v such that v ≤ min

vk∈Ω
(vk, v)−2 ≤ v,

max |vk − v| ≤ λ.
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Let wA2
j and wA1

j be the initial combination weights of the forecaster j in the L2−, L1−AFTERS

respectively and wAtj,k be the initial combination weight of the jth forecaster under the degrees of

freedom vk in the t-AFTER. Let ŵA2
i,j =

l
A2
i−1,j

‖lAgi−1‖
, ŵA1

i,j =
c1l

A1
i−1,j

‖lAgi−1‖
and ŵAti,j,k =

c2l
At
i−1,j

‖lAgi−1‖
, where lAti−1,j,k

is de�ned in (2.19) and l
Ag
i−1 is de�ned in (2.21), so, ŵA2

i,j , ŵ
A1
i,j and ŵAti,j,k are weights of the density

estimates under normal, double-exponential and scaled student's t with degrees of freedom vk in
the g-AFTER procedure at time point i− 1 from the jth forecast, respectively.

Let G =
∑(

wA2
j + c1w

A1
j + c2

∑
k w

At
j,k

)
, where c1 and c2 are de�ned in (2.21) and Let qi be the

pdf of εi at time i and its estimator from g-AFTER procedure be

q̂
Ag
i =

J∑
j=1

(
ŴA2
i,j

1

σ̂i,j
fN

(
ŷi,j − yi
σ̂i,j

)
+ ŴA1

i,j

1

d̂i,j
fDE

(
ŷi,j − yi
d̂i,j

))

+

K∑
k=1

ŴAt
i,j,kft

(
ŷi,j − yi
ŝi,j,k

|vk
)
,

where q̂
Ag
i is the mixture estimator of qi from the g-AFTER procedure, σ̂i,j is the sample standard

deviation in the L2-AFTER assuming the random error are independent and identically distributed,
ŝi,j used in the L1-AFTER, denoted as d̂i,j is the mean of {|yi′ − ŷi′,j |}i−1

i′=1 . The L1-AFTER method
was designed for robust combination when the random errors have occasional outliers.

Theorem 1 [29]: If conditions (ii) and (iii) hold, then for ŷ
Ag
i from g-AFTER procedure, we have

1

n

i0+n∑
i=i0+1

E
(
D
(
qi‖q̂

Ag
i

))
≤ inf

1≤j≤J

(
B1

n

i0+n∑
i=i0

E

(
mi − ŷi,j

σ̂2
i

)
+R

)
,

where

R =



log G

w
A2
j

+ B2

n

i0+n∑
i=i0+1

E
(

(σ̂i,j−σi)2
σ̂2
i

)
under normal errors,

log G

c1w
A1
j

n + B2

n

i0+n∑
i=i0+1

E
(

(d̂i,j−di)2
d2i

)
under double− exponential errors,

inf
1≤k≤K

(
log

(
G

c2w
At
j,k

)
+ B2

n

i0+n∑
i=i0+1

E
(

(B̂i,j,k−Bi)2
B2
i

)
+B3

∣∣ v−vk
v

∣∣) , under

scaled t errors

where D (f‖g) =
∫
f log f

g is the Kullback-Leibler divergence between two density functions f and

g. So, E
(
D
(
qi‖q̂

Ag
i

))
is a measure of the performances of q̂

Ag
i as estimate of qi under Kullback-

Leibler divergence at time point i. If condition (i) also holds, then

1
n

i0+n∑
i=i0

E

(
mi−ŷ

Ag
i

σ̂2
i

)
≤ C inf

1≤j≤J

(
B1

n

i0+n∑
i=i0

E
(
mi−ŷi,j)2

σ2
i

)
+R

)
where C,B1, B2 and B3 are constants

depending on τ, γ2 and parameters in Condition (iii).

When strong evidence is shown that the errors are highly heavy-tailed, Ω can be very small with
only small degrees of freedom and c2w

At
j,k in G can be relatively large (relative to wA2

j and c1w
A1
j ).

The more information in the tails of the error distribution that is available, the more e�cient the
allocation of the initial weights can be.
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3 Results and Discussion

3.1 Data

Each empirical time series comprises of weekly observations covering Jan 12, 1986 to Jan 12, 2018
(1672) of the West Texas Intermediate Cushing (WTI) oil spot price and May 15, 1987 to Jan 12,
2018 (1601) of Brent oil spot price sourced from the website of United States Energy information
Administration, a central online data warehouse are analyzed using asymmetric GARCH models.
The period selected includes the dynamics in oil prices from above 100 (USD) per barrel in late
2014 to less than 30(USD) per barrel in early 2016 came amid over supply of crude oil at a time
when global demand for crude oil stagnated [30]. In each case, weekly returns are computed as
logarithmic price (Pt) relatives as: Given a series of stock/oil prices (p0, p1, ..., pt), return series are
computed as follows:

Rt = log(Pt)− log(Pt−1) (3.1)

where Pt = Observed weekly price at time t and Rt= compounded weekly returns. Analyses are
written using the R−i386 3.4.4 programming language under the Maximum Likelihood Estimation.

3.2 Preliminary Tests

A time plot graph(s) of WTI and Brent Crude oil spot price in USD/Barrel displayed in Figures
1 and 2 follows an upward trending behaviour indicating non-stationarity of the series. The plots
also show a sharp fall at about the last quarter of 2008 which persisted till 2010. The series are
transformed using logarithmic approach to get the return series and plotted in Figures 3 and 4. The
plots show that the returns were more volatile over some time periods and became very volatile
toward the end of the sample period. This pattern of alternating quiet and volatile periods of
substantial duration is referred to as volatility clustering [31]. A visual inspection shows clearly,
that the mean process for the di�erent oil prices are not statistically signi�cantly di�erent from
zero, but the variance changes over time, so the return series is not a sequence of independently
and identically distributed (i.i.d.) random variables [32]. A simple test to investigate the leverage
e�ect is to calculate �rst-order autocorrelation coe�cient between lagged returns and contemporary

squared returns:
n∑
t=2

r2
t rt−1/

√
n∑
t=2

r4
t

n∑
t=1

r2
t−1.

Table 1: Summary Statistics for the compounded returns Rt of WTI and Brent spot oil prices
Series Statistics WTI OIL BRENT OIL

RETURNS RETURNS

Mean 0.0008243 0.0005372
Std Dev. 0.04208652 0.04341357
Skewness -0.1962921 -0.1467255
Kurtosis 5.92395 6.286493
Jarque-Bera (Probability) 0.0000 0.0000
σ 1 1
ADF test (Probability) 0.0100 0.0100
σ 1 1
cov(r2

t , rt−1) -0.065172 -0.073240

From Table 1, the mean weekly returns of the both series (WTI and BRENT) are positive (0.0005372
and 0.008243) and they are close to zero. These show that positive changes in the oil prices indices
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are more dominant than negative changes. The skewness coe�cients are negative for all series
suggesting that they have long left tail. The kurtosis coe�cients on the other hand are very high
(greater than 3), a re�ection that the distributions of the two sets of real data are highly leptokurtic.
The values of skewness and kurtosis show that the assets are far from being unconditionally normally
distributed, thus supporting the conjecture that more �exible distributional assumptions can be
conducive to enhanced model performance [33]. The p-value corresponding to the Jarque-Bera
normality test is zero at 5% level suggesting that the test is signi�cant for all series. The test gave
a value of σ = 1 which indicates that the series rt does not come from a normal distribution; in
favour of σ = 0 which indicates that the series rt comes from a normal distribution with unknown
mean and variance. The test results imply that the two series exhibit non-normal behaviour. The
Augmented Dickey-Fuller (ADF) test rejects the unit root null hypothesis in all data sets. This
is indicated by the minimal p-values at 5% level and the values of σ. The test returns a value of
σ = 1 which indicates rejection of the unit root in favour of the trend-stationary alternative. σ = 0
indicates failure to reject the unit root null hypothesis. The series statistics show strong serial
correlations in both levels of the return series.

Their positive kurtosis coe�cient indicates that the tails of the histogram (Figures 5 and 6) of
returns of WTI and Brent oil prices are fatter than the tails of a normal distribution (leptokurtic).
Therefore, the returns of weekly WTI and Brent oil series are approximated using Student's t-
distribution with 5 degrees of freedom. It means that higher probabilities are assigned to extreme
values of the distribution, and empirical evidence for heavy tails can be found in high kurtosis.
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3.3 Estimation of Parameters on Returns of Brent and WTI Oil Prices

We estimate the GARCH model and asymmetric models to explain conditional variance and
volatility clustering for each of the series: GARCH(1,1), EGARCH(1,1), GJRGARCH(1,1), APARCH(1,1),
TGARCH (1,1) and NAGARCH(1,1). For each oil returns, the parameter estimates are reported
in Tables 2 and 3.

Table 2: Parameters estimates of asymmetric GARCH models; AIC and Log-Likelihood function
for Brent Oil Returns

Table 3: Parameters estimates of asymmetric GARCH models, AIC and Log-Likelihood function
for WTI Oil Returns

Tables 2 and 3 report the parameter estimates of all conditional volatility models employed in
the analysis and information criteria and the log likelihood function for the estimate. Except
GJRGARCH (the coe�cients that re�ects the leverage e�ects γ), the estimates of other models are
signi�cant at 1% level suggesting the strong validity of models. For the returns of Brent andWTI oil,
EGARCH models show a positive and signi�cant leverage e�ects γ parameter showing that future
price volatility is greatly in�uenced by past positive events. GJRGARCH and TGARCH leverage
e�ects are positive and signi�cant in both oil series returns, attesting that bad news increases
volatility. APARCH models estimates con�rm that the asymmetric e�ects are present. The leverage
coe�cients are also positive and statistically signi�cant, showing that positive innovations would
imply a higher conditional variance than negative innovation of the same magnitude. Also the sum
of the ARCH and the GARCH coe�cients of each of the GARCH models are very close to one,
indicating that volatility shocks are quite persistent. We can, therefore, attest that asymmetric
e�ects are indeed present in WTI and Brent return series returns and performed better than a
simple GARCH (1, 1) model in explaining the conditional volatility for the considered series.

Table 2 also shows that TGARCH-STD, followed closely by APARCH-STD model has the lowest
values for AIC and the highest value for log-likelihood function. These criteria reveal that the
TGARCH-STD is the better estimate for volatility of returns of Brent oil series compared to other
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models. In Table 3, EGARCH-STD, followed closely by NAGARCH-STD model has the lowest
values for AIC and the highest value for log-likelihood function. These criteria reveal that the
EGARCH-STD is the better estimate for the conditional volatility of the series returns of WTI
compared to the other models. The results, therefore, reveal that the asymmetric GARCH models
clearly outperformed GARCH (1, 1) models under the three error distributions.

3.4 Out-of-Sample Forecast (t-AFTER and g-AFTER)

Table 2: Asymmetric GARCH models of Brent oil returns
NORMAL NORMAL GED GED STD STD

MODEL MSE MAE MSE MAE MSE MAE
GARCH 0.00138492 0.02677674 0.001389167 0.02684516 0.00138786 0.02682452
EGARCH 0.001383527 0.02675223 0.001387628 0.02682074 0.001386556 0.02680363
GJRGARH 0.001384876 0.026776 0.001389193 0.02684556 0.001387796 0.02682347
APARCH 0.001383715 0.02675553 0.00138798 0.02682646 0.001386895 0.02680914
TGARCH 0.001383709 0.02675543 0.001387981 0.02682648 0.001386899 0.02680922
NAGARCH 0.00138369 0.02675521 0.001388261 0.02683099 0.001387262 0.02681501

Table 3: Asymmetric GARCH models of WTI oil return
NORMAL NORMAL GED GED STD STD

MODEL MSE MAE MSE MAE MSE MAE
GARCH 0.001283268 0.02639347 0.001287621 0.02643919 0.001285604 0.02641641
EGARCH 0.001280298 0.02636687 0.001284731 0.02640764 0.001283195 0.02639273
GJRGARH 0.001281199 0.02637424 0.001285974 0.02642031 0.001284336 0.02640389
APARCH 0.001279798 0.02636264 0.001284751 0.02640785 0.001283388 0.02639468
TGARCH 0.0012798 0.02636265 0.00128475 0.02640783 0.001283365 0.02639444
NAGARCH 0.001280498 0.02636856 0.001285362 0.02641401 0.001283872 0.02639944

The volatility forecasts obtained from Table 4 for the GARCH and symmetric GARCH models
for the 1-week horizon show that EGARCH-Normal performed better than the other models because
it has the lowest values in both mean absolute error (MAE) and mean square error (MSE). Therefore
we can now say that at 1- week horizon EGARCH-Normal yields more accurate forecast for the
volatility of the Brent oil returns series. In Table 5, APARCH-Normal outperformed the other
models in terms of its MAE and MSE values. The paper, therefore, upholds APARCH-Normal as
the best accurate forecast for the volatility of the returns of WTI oil prices at 1- week horizon.
When the true random errors have tails signi�cantly heavier than normal and double-exponential,
they could be assumed to be from a scaled student's t distribution with unknown v and a (general) t-

AFTER is more reasonable. In this case, I
Ag
i−1,j = IAti−1,j . When the random errors have heavy tails,

the t- and g-AFTER provide more accurate forecasts than the L2- and L1- AFTER consistently.
When the tails of the random errors distributions are not only mildly heavy, the g-AFTER is better
than the t-AFTER in terms of forecast accuracy.

The best model for the forecast of the volatility is also plotted in Figures 7 and 8 for WTI and
Brent respectively. Importantly, the MAE and MSE statistics clearly identi�es the EGARCH and
APARCH models as superior forecasting of Brent and WTI oil spot prices. Nevertheless, caution
should be used in the interpretation of these results, as a change in sample size, rolling window,
forecast horizon and frequency of observations could greatly impact the above �ndings.
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4 Conclusion

The analyses reveal that GARCH and asymmetric GARCH models are appropriate forecast tools
when modelled under the selected error distributions: normal, student t and generalized error
distributions for capturing volatility clustering, heavy tails, serial correlation, leverage e�ects and
news asymmetry in the weekly return series of Brent and WTI oil spot prices. Also the sum of the
ARCH and the GARCH coe�cients of each of the GARCH models are very close to one, indicating
that volatility shocks are quite persistent. The AIC and likelihood function criteria reveal that
the TGARCH-STD and EGARCH-STD are the better estimate for volatility of returns of Brent
and WTI oil series respectively when compared with the other models. Evaluating relative out-
of-sample performances, EGARCH-Normal and APARCH-Normal performed better in returns of
Brent and WTI oil spot prices respectively. The results obtained from the volatility forecasts seem
to be useful to oil future traders especially when there is evidence of high standard deviation in the
descriptive statistics of the return series. The policy makers on the other hand need to perceive
�apriori� the e�ects of natural catastrophes and political or �nancial crises news far deeper than
any good news on return volatilities before executing their investments and political strategies for
the economic well being of the citizenry of any country.
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