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Abstract

This paper presents an alternative proof of the Fundamental Theorem of Algebra that has

several distinct advantages. The proof is based on simple ideas involving continuity and

di�erentiation. Visual software demonstrations can be used to convey the gist of the proof.

A rigorous version of the proof can be developed using only single-variable calculus and basic

properties of complex numbers, but the technical details are somewhat involved. In order

to facilitate the reader's intuitive grasp of the proof, we �rst present the main points of the

argument, which can be illustrated by computer experiments. Next we �ll in some of the

details, using single-variable calculus. Finally, we give a numerical procedure for �nding all

roots of an nth degree polynomial by solving 2n di�erential equations in parallel.
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1 Introduction

The fundamental theorem of algebra states that any polynomial function from the complex numbers
to the complex numbers with complex coe�cients has at least one root. There are several proofs of
the fundamental theorem of algebra, which employ a number of di�erent domains of mathematics,
including complex analysis (Liouville's theorem, Cauchy's integral theorem or the mean value
property) ([1][2], topology (Brouwer's �xed point theorem)[3], di�erential topology[4], calculus
([1],[5]), and �elementary� methods using meshes or lattices [6], [7]. For easily-accessible and
readable web references that explain these proofs, see [8],[9],[10],[11]. Many of these proofs are
beautiful and elegant. Most are not constructive and do not provide a practical method for �nding
roots ([6] and [7] are exceptions). The proof we present here is both constructive, and provides a
practical method for �nding all roots of any polynomial through the numerical solution of di�erential
equations with di�erent initial conditions. Furthermore, we have created a simple, intuitive visual
display that demonstrates the construction of roots.

http://ijmao.unilag.edu.ng/article/view/274
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2 Empirical observations from computer experiments

Consider the polynomial f(z) =
∑N
n=0 anz

n, where N is a positive integer and an are complex. We
want to show that f(z) = 0 has at least one complex solution. To approach this problem, we make
some preliminary empirical observations on the behavior of polynomial functions.

First we may consider how f(z) behaves for some speci�c values of z. When z = 0 we have
f(z) = a0, and when z has a very large magnitude then the terms anz

n in f(z) also have large
magnitudes, especially the leading-order term aNz

N . To understand the behavior of f(z) between
these two extremes, we isolate the behavior of f(z) for di�erent values of |z|, as described below.

A complex number can be written in polar form as z = reiθ, where r > 0 is the magnitude of z
and 0 ≤ θ < 2π. If we �x r and allow θ to vary, then the set of points {reiθ, 0 ≤ θ < 2π} is a
circle of radius r in the complex plane, which we denote as Cr. Since the function f is de�ned on
all complex numbers, in particular it is de�ned on each circle Cr. The image of Cr under f is also
a set (a curve, actually) in the complex plane, which we may denote as f(Cr).

Using computer software, we may investigate the changes in the shape of f(Cr) as r increases from
0, for di�erent polynomials f(z). For this purpose, an R Shiny code (listed in the Appendix) was
developed that displays f(Cr) and Cr as well as upcrossings and downcrossings, for any given value
of r for an arbitrary polynomial with complex coe�cients, as speci�ed by the user. A screenshot
of the interface is shown in Figure 1. A sequence of f(Cr) plots for di�erent values of r is shown in
Figure 2.

Figure 1: R Shiny interface for dynamic display of f(Cr) and its preimage Cr, which shows
upcrossings (solid blue dots) and downcrossings (hollow red dots). The function in this case is
a cubic with roots at 1 + i,−0.8 + 0.8i, and −0.9− 0.9i. The large black dot in the preimage plot
is the root −0.9− 0.9i, which maps to 0 in the image plot. The R Shiny app used to create these
plots is available online at https://github.com/jthomasbarry/complex_plot_r.
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Figure 2: Curves f(Cr) for di�erent values of r, for the polynomial f(z) = (a1a2a3)
−1(z − a1)(z −

a2)(z − a3) where a1 = 1.6(1 + i), a2 = 1.7(−1 + i), a3 = 1.5(−1− i). The solid blue dots indicate
upcrossings (which move to the right), while the hollow red dots indicate downcrossings (which
move to the left). A new downcrossing-upcrossing pair is introduced when r ≈ 1.75 (as a lobe
in the upper half plane expands down across the real axs) and another pair is introduced when
1.75 < r < 2 (when a lobe in the lower half plane expands up across the real axis). Roots are found
at upcrossings for moduli r ≈ 2.15, 2.25, 2.4 (compare |a3| = 2.12, |a1| = 2.26, |a2| = 2.40).

Without loss of generality we may assume a0 = −1: given any polynomial with a0 6= 0 we may
obtain a polynomial with the same roots and having constant coe�cient −1 by dividing by −a0. If
we look at several di�erent polynomials f and see how the curve f(Cr) evolves as r increases, we
may make the following observations:

(i) When r is su�ciently small, then f(Cr) has a nearly circular shape with center −1 and small
radius. The curve f(Cr) has multiple intersections with the real axis.

(ii) As r increases, these points of intersection betwee f(Cr) and the real axis move continuously
along the real axis (although sometimes they disappear: see point (v) below)

(iii) There are two types of intersections: some move consistently to the right as r increases, and
others move consistently to the left. When r is small, the rightmost intersection is always
rightward-moving.

(iv) New intersections with the x axis may appear as r increases. From a geometrical viewpoint,
these new intersections occur when a lobe of f(Cr) located in the upper (resp. lower) half-
plane shfts downward (resp. upward) as r increases so that it intersects the axis. These new
intersections always appear �rst as a single point that splits into a left-moving and right-
moving intersection as r increases.

(v) A right-moving intersection continues to move to the right unless it runs into a left-moving
intersection, in which case both intersections may disappear. From the two-dimensional
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viewpoint, this occurs when a lobe of f(Cr) that intersects the real axis moves above or
below the axis.

(vi) When r is very large, the shape of f(Cr) approaches a large circle centered at the origin. In
particular, the rightmost intersection between f(Cr) and the real axis is large and positive.

(vii) The rightmost intersection when r is small is always continuously connected to the rightmost
intersection when r is large by a series of right-moving or left-moving intersections. Since
the origin is on the real axis between these two intersections, the origin must be either a
right-moving or left-moving intersection for some value of r.

To understand the di�erence between right-moving and left-moving intersections, we may look
more closely into the nature of the curve f(Cr). As we mentioned above, the circle Cr is parametrized
by the angle θ. As θ increases, the corresponding point on Cr (given by re

iθ) moves counterclockwise
around Cr, while the image of the point under the function f (given by f(reiθ traces out the curve
f(Cr). As the tracing point crosses the real axis, we �nd there are two types of crossings: either
upcrossings (from below to above), or downcrossings (from above to below). It may be observed
experimentally (and we shall soon show mathematically) that the upcrossings correspond to the
rightward-moving intersection points as noted above, and downcrossings correspond to leftward-
moving intersection points.

We may summarize a systematic procedure for using the software to locate roots of f :

(I) Ensure that a0 = −1 by dividing f by −a0 (if a0 = 0, then 0 is a root already);

(II) Start with a small value of r and locate an upcrossing point on Cr;

(III) Follow the upcrossing point as it moves rightward. Eventually it will either pass over the
origin, or run into a leftward-moving downcrossing point and disappear.

(IV) If the latter holds, follow the leftward moving point backwards (i.e. decreasing r). Eventually,
either it will pass over the origin, or it will merge with a rightward-moving point and
disappear.

(V) Follow this rightward-moving point forward (increasing r) until it either passes through the
origin or merges with a leftward-moving point.

(VI) Continue iterating Steps IV and V until the origin is reached.

3 Outline of a formal proof

This procedure is the basis for a formal proof of the theorem. Some of the technical detals are
rather involved, but the guiding intuition is captured by the procedure described above.

The proof proceeds in several steps:

1. The roots of f(z) are identical to the roots of −f(z)/a0. So without loss of generality, we
may assume that the constant coe�cient a0 is equal to −1.

2. Assume for the moment that f ′(z) has no zeros on the real axis between −1 and 0. (Later
we will deal with the case where this is not true.)

3. For any value of r > 0, we de�ne the curve fr(t) ≡ f(reit), 0 ≤ t ≤ 2π. Since fr(0) = fr(2π),
it follows that this is a closed (possibly self-intersecting) curve in the complex plane.
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4. Denote by upcrossing (resp. downcrossing) a point where fr crosses the real axis from below
(resp. above). In other words, the real number x is an upcrossing for fr if there exists t such
that fr(t) = x, and there exists δ > 0 such that Imfr(s) ≤ 0 for t−δ ≤ s ≤ t and Imfr(s) ≥ 0
for t ≤ s ≤ t+ δ. By continuity, every root of Imfr is either an upcrossing, a downcrossing,
or a point where the real line is tangent to fr.

5. Suppose xr = fr(t) is an upcrossing and fr
′(t) 6= 0, then the crossing point moves continuously

to the right as a function of r. More precisely, there exist ε, δ > 0 and a continuous, real-
valued function g(s) that is strictly increasing on the interval r − ε < s < r + ε such that
g(r) = xr and g(s) = fs(t

′), for some t′ in the interval t− δ < t′ < t+ δ. We call the function
g an upcrossing function. A similar statement holds for the downcrossing case, except that g
is decreasing: the function g in this case is called a downcrossing function).

6. The domain of any upcrossing function g may be extended to an open interval, such that
either the range of g includes the origin, or the right endpoint b of the domain is such that
g(b) is a point of tangency of the curve fb.

7. Every point of tangency that is the right endpoint of the domain of an upcrossing function is
the left endpoint of the domain of a downcrossing function.

8. Every point in the interval [−1, 0] is either an upcrossing, a downcrossing, or a point of
tangency of fr for some positive value of r. In particular, the origin is either an upcrossing,
downcrossing, or point of tangency, and is thus equal to f(reit) for some values of r and t.

Steps (1-8) handle the case where none of the roots of f ′ lie on the real segment [−1, 0]. If on the
other hand f ′ does have a root on [−1, 0], we may consider the ray θ = π+ ν, for su�ciently small
ν, which (by continuity) will have at least one upcrossing intersection with Cr if r, ν are su�ciently
small. We denote this intersection as z̃. Since the roots of f ′ are isolated, we can also choose the
ν such that f ′ has no roots on the ray. We may then consider the function f̃(z) ≡ f(z)e−iν . Then
z̃e−iν is an upcrossing point for f̃ of the negative real axis. Steps (1-8) above then goes through

for f̃ : and the roots of f̃ are identical with the roots of f .

4 Parallel numerical procedure for �nding all roots of a polynomial

As above, we suppose f(z) =
∑N
n=1 anz

n with a0 = −1, where z = reiθ. We seek equations satis�ed
by upcrossing locations x as a function of r. Note that in order for x = f(reiθ) to be an upcrossing,
the complex argument θ varies as r varies, so we must consider both θ and x as functions of r.
To make this clear, we will use φ = φ(r) to denote the complex argument, so that x(r) = f(z(r))
where z(r) = reiφ.

Using the chain rule, we have:

dx

dr
= f ′ (z)

d

dr
(z) = f ′ (z) eiφ

(
1 + ir

dφ

dr

)
(4.1)

Since x is real-valued, so dx
dr is also a real function and dx

dr =
(
dx
dr

)∗
, where ∗ denotes complex

conjugate. This gives

f ′ (z) eiφ
(
1 + ir

dφ

dr

)
= f ′ (z)

∗
e−iφ

(
1− ir dφ

dr

)
. (4.2)
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Solving for r dφdr , we obtain

r
dφ

dr
=

(
f ′ (z)

∗
e−iφ − f ′ (z) eiφ

)
i(f ′ (z) eiφ + f ′ (z)

∗
e−iφ)

=
− Im

(
f ′
(
reiφ(r)

)
eiφ(r)

)
Re
(
f ′
(
reiφ(r)

)
eiφ(r)

) , (4.3)

where we have replaced z with reiφ(r) to highlight the r dependence. From (4.1) and (4.3) we may
calculate:

dx

dr
= f ′ (z) eiφ

(
1− i Im(f ′ (z) eiφ

Re(f ′ (z) eiφ

)
=

|f ′(reiφ(r))eiφ(r)|2

Re
(
f ′
(
reiφ(r)

)
eiφ(r)

) (4.4)

Equations (4.3) and (4.4) express dφ
dr and dx

dr respectively in terms of f ′
(
reiφ(r)

)
eiφ(r). Fortunately,

this rather complicated expression turns out to have a relatively simple interpretation. The de�nition
of fr implies that d

dθfr(θ) = f ′(reiθ)(ieiθ), so if we de�ne:

α(r) ≡ d

dθ
fr(θ)

∣∣∣∣
θ=φ(r)

(4.5)

then we may re-express the system (4.3)-(4.4) as:

dφ

dr
=
− Im (−iα(r))
rRe (−iα(r))

=
Re (α(r))

r Im (α(r))
;

dx

dr
=
| − iα(r)|2

Re (−iα(r))
=
|α(r)|2

Im (α(r))
.

(4.6)

For future reference, note that Im(α(r)) is positive or negative depending on whether x(r) is an
upcrossing or downcrossing.

Alternatively, we can pose the system such that θ is the independent variable, and r, x are the
dependent variables. To clarify the dependence of r on θ, we use ρ = ρ(θ) here to represent the
complex modulus as a function of θ, so that fρ(ρe

iθ) is an upcrossing point for the curve Cρ. In
analogy to (4.5), we de�ne:

β(θ) ≡ d

dθ
fr(θ)

∣∣∣∣
r=ρ(θ)

, (4.7)

and in analogy to (4.6) we obtain:

dρ

dθ
=
−Re (−iβ(θ))
Im (−iβ(θ))

=
Im (β(θ))

Re (β(θ))
;

dx

dθ
= − | − iβ(θ)|

2

Im (−iβ(θ))
=
|β(θ)|2

Re (β(θ))
.

(4.8)

It follows that given a crossing point x = fr(θ), we can always make the crossing point `move'
continuously to the right by following this strategy:

1. If limz→reiθ | Imf ′(reiθ)/Ref ′(reiθ)| > c (where c < 1 is a �xed positive parameter), then
propagate x to the right using (4.6) with either increasing or decreasing r, depending on the
sign of Imf ′(reiθ):

2. Otherwise, propagate x to the right using (4.8) with either increasing or decreasing θ, depending
on the sign of Imf ′(reiθ).
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Following this procedure will yield a monotonically increasing crossing point. If the initial crossing
point is chosen such that it is chosen between −1 and 0 on the real axis, then eventually the crossing
point will pass 0 and a root will be obtained.

The above procedure is only guaranteed to obtain a single root γ1. Subsequent roots may be
estimated by taking f (1)(z) ≡ f(z)(1 − z/γ1)−1 and �nding another root γ2, then iterating the
procedure with f (j)(z) ≡ f(z)(1 − z/γj)−1, j = 1, 2, . . . until all roots are found. However, it is
possible there may be numerical stability problems, because due to numerical error f (j)(z) is no
longer a polynomial for j ≥ 1.

An alternative approach �nds all roots in parallel as follows. If the polynomial has degree n, the
zn term dominates the behavior of f(Cr) when r is large. It follows that for r su�ciently large,
f(Cr) must have at least n upcrossings on the positive real axis and at least n downcrossings of the
negative real axis. All upcrossings may be followed leftwards using the reverse of the rightward-
tracking procedure described above; and all downcrossings may be followed rightward by a similar
procedure. Not all of these 2n tracks (which may be computed in parallel) will result in a root;
however, it is guaranteed that all n roots will be obtained through the procedure.
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