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Abstract

High blood pressure (or hypertension) is a major public health issue a�ecting old aged adults
in many countries and is a major risk factor in the development of stroke, cardiovascular and
chronic kidney disease. High blood pressure of recent is becoming an important area of research
due to its high prevalence among lower aged groups (i.e. below 30 years old). Many studies
have been conducted on prevalence of high blood pressures amongst adults at local and national
levels, and at urban or rural areas and all pointing to the fact that there has been increasing
prevalence of hypertension across the globe. Since blood pressure tends to rise with age, there
is the need to investigate the prevalence of high blood pressures at di�erent age groups in order
to describe the process which generates a particular signal or set of observations. In this study,
sta� data from the University of Lagos medical Centre were used for the research. A recursive
Bayesian approach to dynamic state space estimation was developed to model the prevalence
of high blood pressure together with the use of analytic solutions based on the Kalman �lter.
Based on model diagnostic criteria adopted, the result generated a best �t autoregressive model
for the number patients with hypertension. The Kalman �lter provided an optimal estimate
of the linear state space approach to modelling dynamic system. The state space approach to
modelling dynamic system in this study focused on discrete time formulation by using di�erence
equations to model the evolution of the system with time, and measurements assumed to be
available at discrete time. It provided a generic and �exible framework for modelling the
prevalence of high blood pressure.

Keywords: High Blood Pressure, Dynamical systems, Bayesian recursive approach, State space
model, Kalman �lter.
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1 Introduction

High blood pressure (or Hypertension) is a major public health issue a�ecting older adults in many
countries due to its high prevalence all around the globe. High blood pressure symptoms are di�cult
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to identify and is a major risk factor for coronary heart disease, stroke, and chronic kidney disease.
High blood pressure puts a greater risk for developing life changing and life threatening conditions
and is a silent killer. Many studies have been conducted on prevalence of high blood pressures
amongst adults at local and national levels, and at urban or rural areas and all pointing to the
fact that there has been increasing prevalence of hypertension across the globe Adediran et al. [1];
Ekwunife and Aguwa [2]; Wang et al. [3].

According to Adeloyea et al. [4] and Rao et al. [5], the rate at which people are dying from
this silent disease is quite alarming and suggested that hypertension is high in Nigeria, but the
overall awareness of this silent killer disease (hypertension) cases is low in Nigeria. A number of
researches have been carried out on hypertension at old age but only few of them considered having
hypertension at early age (i.e. between 18 and 30 years old). Since blood pressure tends to rise
with age, there is the need to investigate the prevalence of high blood pressures at di�erent age
groups in order to describe the process which generates a particular signal or set of observations.

The aim of this study is to model high blood pressure from a real data generation process of a
system that changes over time. In order to analyze and make inference about prevalence of high
blood pressure at di�erent age groups, at least two models are required: �rstly a model describing
the evolution of the state with time (the system model), and secondly a model relating noisy
measurements to the state (the measurement model). This study assumes that these models are
available in a probabilistic form. Since hypertension is related to age, the probabilistic state space
formulation and the requirement for the updating of information for new measurements are ideally
suited within a Bayesian framework. This provides a rigorous general framework for dynamic state
estimation problem and di�erence equations are used to model the evolution of the system with
time, and measurements are assumed to be available at discrete time.

In Bayesian approach to dynamic state estimation, one attempts to construct the probability
density function (pdf) of the state based on all available information including the set of received
measurements. Since the pdf embodies all available statistical information, it may be said to be
the complete solution to the estimation problem, Gordon et al. [6].

In principle, an optimal estimate is obtained in the form of posterior distributions, which incorporate
both scientist's beliefs and the observations, in a well-founded probabilistic framework. In particular,
the problem of parameter estimation and model selection can be summarized by the posterior
probability of each model and this distribution is meaningful and certainly easier to interpret than
say classical P-values.

In Gordon et al. [6], analytic solutions to Bayesian estimation problem are only available for
a relatively small and restrictive choice of system and measurement models, and the well-known
approach is the Kalman �lter. The Bayesian formulation means that the Kalman �lter is regarded
as a way of updating the prior probability distribution when a new observation becomes available
to give a revised posterior distribution. The Bayesian approach also enables the analyst to consider
the case where several di�erent models are entertained and it is required to choose a single model
to represent the process, Chat�eld [7]. Kalman [8] estimated coe�cient of non-linear di�erential
equations using an optimal sequential estimation techniques often referred to as Kalman �lter.
Essentially Kalman �ltering is a method of signal processing which provides optimal estimates of
the current state of a dynamical system.
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Kalman's derivation took place within the context of state space models whose core is the recursive
least square estimation. Within the state space notation, the Kalman �lter derivation rests on the
assumption of normality of the initial state vector, and as well as the disturbances of the system.
The state of a system is de�ned to be a minimum set of information from the present and past such
that the future behavior of the system can be completely described by the knowledge of the present
and the future input. The state space representation is based on the Markov property, which implies
that given the present state, the future of a system is independent of its past. Kalman [8] procedure
is the most e�cient category of prediction models that have an adaptive behavior. In application
of Kalman �ltering theory, the mathematical formulation of the problem and the computational
techniques involved may depend heavily on the computational simplicities of the system model
which is used. Kalman �ltering is designed to strip unwanted noise out of the stream of data
and it addressed the question of getting accurate information out of inaccurate data. A major
practical advantage of the Kalman �lter is that the calculations are recursive, so that although the
current estimates are based on the whole past history of measurements, there is no need for an ever
expanding memory, Chat�eld [7].

The Kalman �ltering approach means that received data can be processed sequentially rather
than as a batch. Kalman [7] de�ned �ltering as any mathematical operation which uses past data or
measurements on a given dynamical system to make more accurate statement about present, future
or past variables in that system. Kalman has based the construction of the �lter in probabilistic
theory, more speci�cally on the conditionally Gaussian properties of random variables. The state
space model is reduced as an autoregressive moving average (ARMA) process. Akaike [9] was the
�rst to demonstrate that state space models can be reduced to an ARMA (p, q) model. The
relationship between the state space model and its reduced forms gives considerable insight into the
potential e�ectiveness of the di�erent ARMA models, Harvey [10]; Chat�eld [7]. ARMA models,
typically are parsimonious model, Box and Jenkins [11]; Box et al. [12] and is based on the premise
that the autocorrelation function (ACF) and the related statistics can be accurately estimated and
are stable over time.

2 Recursive Bayesian Estimation

For dynamic state estimation, the discrete time approach is wide spread and convenient with the
state vector, x ∈ <n assumed to evolve according to the system model:

xk+1 = f(xk, ωk) (2.1)

Where fk : <n ×<m → <n the system transition is function and ω ∈ Rn is a white noise sequence
independent of past and current states. The pdf of ωk is assumed known and at discrete time,
measurements yk ∈ <p become available. These measurements (Ages) are related to the state
vector via the observation equation

yk = hk(xk, vk) (2.2)

Where hk : <n × <r → <p is the measurement function and vk ∈ <r is another white noise
sequence of known pdf independent of past and present states and the system noise. The initial
pdf of the state vector p(x1|D0) ≡ p(x1) is assumed available together with the functional forms
fi and hi for i = 1, 2, ..., k the available information at time step k is the set of measurements
Dk = {yi : i = 1, 2, ..., k}. The requirement in the study is to construct the of the current state
given all the available information: p(xk|Dk).

The pdf in principles are obtained recursively in two stages: prediction and update. Suppose
that the required pdf p(xk−1|Dk−1) at time step k − 1 is available, then using the system model it
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is possible to obtain the prior of the state at time step k:

p(xk|Dk−1) =

∫
p(xk|xk−1)p(xk−1|Dk−1)dxk−1. (2.3)

At time step k the measurement yk become available and is used to update the prior via Bayes'
rule:

p(xk|Dk) =
p(yk|xk)p(xk|Dk−1)

p(yk|Dk−1)
(2.4)

where the normalizing denominator is given by

p(yk|Dk−1) =

∫
p(yk|xk)p(xk|Dk−1)dxk (2.5)

The conditional pdf of yk given xk, p(yk|xk) is de�ned by the measurement model (2.2) and the
known statistics of vk . In the update equation (2.4), the measurement yk is used to modify the
predicted prior from the previous time step to obtain the required posterior of the state. The
recurrence relations (2.3) and (2.4) constitute the formal solution to the Bayesian estimation
problem. Equation (2.3) and (2.4) follows the conditional independence assumption between
observations. The search for improved approximate implementation procedures for general recursive
Bayesian �lters has been an active area of research for many years. Many alternative approaches
have been suggested and these can be broadly split into three group : analytic approximations
where the aim is to use some form of distributional approximation to estimate the pdf numerical
approximations where a grid of nodes is used as the basis for numerical integration strategies and
functional approximations; and most recently Monte Carlo methods where random samples are
utilized to e�ectively give �ltering by simulation Gordon et al [6]. Analytic solution to this problem
is feasible through Kalman �lter.

3 Analytic Approximation using Kalman Filtering Algorithm

The Kalman �lter provides an e�cient recursive estimator for the unobserved state of a linear
dynamic system from a series of noisy measurements. Kalman �lters are based on linear dynamical
systems discretized in time domain. They are modeled on a Markov chain built on linear operators
perturbed by Gaussian noise. For the linear Gaussian estimation problem, the required probability
density function (pdf) remains Gaussian at every iteration of the �lter. The pair of equations in (2.3)
and (2.4) constitute the general form of the state space model. The errors in the measurement (or
observation) equation in (2.1) and the state (or transition) equation in (2.2) are generally assumed
to be serially uncorrelated and also to be uncorrelated with each other at all time periods.

The prediction in (2.3) of the recursive Bayesian estimation can be approximated as

p(xk|Dk−1) =

∫
p(xk|xk−1)p(xk−1|Dk−1)dxk−1 ≈ N−1

N∑
i=1

p(xk|xk−1) (3.1)

In (3.1), the probabilistic model of the state evolution p(xk|xk−1) is a Markov model and is de�ned
by the system equation (2.1) and the know statistics of ωk−1 The n−dimensional hidden state
process x(k+1) follows a �rst order Markovian dynamics, as it only depends on the previous state
at time k and is corrupted by a correlated or uncorrelated state noise process ω(k) . The Kalman
�lter relations propagate fk and hk as linear, while ωk and vk are updated as additive Gaussian
noise of known variance.
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The Kalman �lter recursively evaluates the estimator of the state vector conditional on the past
observations up to time (k − 1). This means that only the estimated state from the previous time
step and the current measurements are needed to compute the estimate for the current state. In
contrast to batch estimation techniques, no history of observation and or estimates is required.
Thus the state of the �lter is represented by two variables: X̂k|k , the a− posterior state estimate at
time k given observations up to and including at time k; and Pk|k the a- posteriori error covariance
matrix which is a measure of the estimated accuracy of the state estimate. The predicted a-priori
state is given as

X̂k|k−1 = FkX̂k−1|k−1 +Bkuk (3.2)

And the predicted a- priori estimate covariance:

Pk|k−1 = FkPk−1|k−1F
′
k +Qk (3.3)

Equations (3.2) and (3.3) are the prediction equations. Equation (3.3) follows from standard results
on variance-covariance matrices for vector random variables, Chat�eld [[7]]. When new observation
has been observed, the estimator for Xk can be modi�ed to take account of this extra information.
At time (k− 1), the best forecast of yt is given as HkX̂k|k−1 so that the prediction error is given by

ξt = yk −HkX̂k|k−1 (3.4)

ξt in (3.4) is called the prediction error. This quantity can be used to update the estimate of Xk and
of its variance-covariance matrix and the best way to do this is by means of the following equation

X̂k = X̂k|k−1 +Ktξt (3.5)

and
Pt = Pk|k−1 −KkFkP − k|k − 1 (3.6)

where
Kt = Pk|k−1Fk[FkPk|k−1F

′
k + σ2

v ]
−1 (3.7)

Kk in (3.7) is called the Kalman gain matrix and is a vector of size (m×1). Equation (3.5) and (3.6)
constitute the second updating stage of the Kalman �lter and are called the updating equations.
The true state is assumed to be an unobserved Markov process and the measurements are the
observed states of a hidden Markov model. Markov processes are an important class of models
because they are fairly general and good numerical techniques exist for computational statistics
about time evolutions of probability distributions of state variables. The transition probability for
events is determined by the Markov chain. The transition probability is a conditional probability
for the next state given the current state. The analysis has been performed on the data and the
Bayesian Dynamical system modeling implemented in an R package. In order to handle this process
within the framework of the classical time series analysis, the observed number of patients with
hypertension must be transformed by di�erencing the process in order to get a stationary process.
The transform process is then

yk = (1−B)dXk (3.8)

Such a model is called an integrated model because the stationary model that is �tted to the
di�erence data has to be summed or integrated to provide a model for the original non stationary
data. Describing the dth di�erence of Xk is said to be an ARIMA(p, d, q) process. In practice, the
�rst di�erencing is often formal to be adequate to make a series stationary. It may turn out that
there is more than one plausible model and based on the use of Akaike information criterion (AIC
), the goodness of �t of di�erent models is to be compared by assuming that the data are normally
distributed. The AIC is de�ned as

AIC = −2maximized log− likelihood+ 2n ≈ T lnσ2 + 2n+ const (3.9)
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where T is the length of the observed series after any di�erencing, n is the number of �tted
parameters and σ2 is the estimated white noise variance. The model with the smallest value
of the AIC is judged to be the most appropriate.

4 Applications and Results

Data were collected from the University of Lagos Medical Centre on the total number of patients,
and the number of patients with high blood pressure (HBP) within di�erent age groups in each
month of the year 2015 and 2016 respectively as shown in Tables 1 and 2. The collated data
is graphically displayed in Figures 1, 2 and 3 given below. The total number of patients within
a particular age group h is represented by Nh while nh represents the number of patients with
hypertension within the age group. The following age groups are considered: below 30, 30-40,
41-50, 51-60, and above 60 years respectively.

Table 1: Number of Patients with Hypertension within Di�erent Age Groups in 2015

Table 2: Number of Patients with Hypertension within Di�erent Age Groups in 2016

The �rst step in state space modeling is to �nd an optimal autoregressive (AR) model that
�ts the data. The selection of a tentative model is frequently accomplished by matching estimated
autocorrelations with the theoretical autocorrelation and partial autocorrelation functions. Table
3 is the ACF, PACF and the AIC of the observed number of patients with hypertension and the
correlogram is as in Figures 2 and 3. The R package use the Akaike Information Criterion (AIC)
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Figure 1: Histogram of Hypertensive Patients

Figure 2: Time Plot of Hypertensive Patients
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Figure 3: Stationary Series of Hypertensive Patients

to provide an optimal or best �t for the autoregressive model. The Gauss Markov signal model
generated from the observed number of patients with hypertension data using ARMA (p,q) model
is

X̂t = 0.478X̂t−1 + ωt, t ≥ 0

With mean equal to zero and σ2
ω = 0.993

The Kalman gain Kk as de�ned in (3.7) is Kk = 0.0083. The prediction error variance as de�ned
in (3.4) is ξ = 0.091 . The Kalman �lter is asymptotically given as

X̂t|t = 0.437X̂t−1|t−1 + 0.0083yt

Table 3: Sample ACF, PACF and AIC for State Space

Based on the ACF, PACF and AIC of the observed number of patients with hypertension in
Table 3, the study recommends an AR (1). The R package use the Akaike's Information Criterion
(AIC) to provide an optimal or best �t for the observed number of patients with hypertension. The
value of the AIC is minimum at p = 1 . The correlogram is on Figures 4 and 5.
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Figure 4: ACF of Hypertensive Patients Series

Figure 5: Partial ACF of Hypertensive Patients Series
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5 Conclusion

Bayesian inference has found application in a wide range of activities, including science, engineering,
philosophy, medicine, sport and law; Davison [13]; Jackman [14]; Ogundeji and Okafor [15]. Bayesian
analysis is not without problems, however in practice one is forced to establish prior beliefs in
the form of prior probability distributions on the model under consideration. For linear Gaussian
estimation problem the required probability distribution function remains Gaussian at every iteration
of the �lter, and the Kalman �lter relations propagates and update the mean and covariance of the
distribution.
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