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Abstract

The importance of statistical distributions in describing and predicting real world events cannot
be over-emphasized. The Gompertz distribution is one example of a widely-used distribution,
with many applications to survival analysis. In this paper, several properties of the Gompertz
distribution are studied. The two-parameter Gompertz distribution is shown to be identical to
the three-parameter Gompertz exponential distribution. Functions used in reliability analysis
related to the Gompertz distribution are reviewed. Properties of maximum likelihood estimate
(MLE) parameter estimates for the Gompertz distribution are studied: the bias and root mean
squared error of parameter estimates are expressed as a function of sample size and parameter
values. When the Gompertz shape parameter is large, MLE parameter estimates may fail to
exist because of parameter degeneracy, as the two-parameter Gompertz distribution approaches
a 1-parameter exponential distribution. The distribution is �tted to real life data sets from
both industrial and biological applications. Compared to several 3-parameter distributions,
the Gompertz distribution provides signi�cantly better �ts to the industrial data sets chosen,
but the 3-parameter generalized Gompertz distribution gives a better �t to guinea pig lifetime
data.

Keywords: Gompertz distribution, Skewed data, Maximum likelihood, Parameters, Reliability,
Survival function, Hazard function, Quantile function.
MSC2010: 62N86

1 Introduction

Statistical distributions and their properties are used in modeling naturally occurring phenomena.
A large number of distributions have been de�ned and studied in the literature, which are found
to be applicable in real life. The normal distribution addresses real-valued variables that tend to
cluster at a single mean value. The Poisson distribution models discrete rare events. [1] studied the
Gompertz distribution and calculated the moment generating function in terms of incomplete or
complete gamma functions, and their results are either approximate or left in an integral form. The
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development of new compound distributions that are more �exible than existing distributions is an
important new trend in the theory and application of distributions. For instance, the beta-Gompertz
distribution [2] and the generalized Gompertz distribution (GGD) [3] were both introduced to
model skewed data; while the Exponentiated Generalized Weibull-Gompertz distribution and the
Gompertz- Lomax distribution (which extends the Lomax distribution using the Gompertz family
of distributions) were introduced to take care of non-normal data [4]
The exponential distribution is perhaps the most widely applied statistical distribution for reliability
studies. The exponentiated Gompertz distribution de�ned and studied by [5] is obtained by raising
the cumulative distribution function (cdf) of the Gompertz distribution to a parameter θ.
The current paper focuses on the two-parameter Gompertz distribution. The paper examines
various properties of the distribution, including its relation to the three-parameter Gompertz
exponential distribution and the accuracy of maximum likelihood estimates of parameter values.
The Gompertz distribution is also applied to both industrial and biological data, and resulting �ts
are compared to �ts for the three-parameter Gompertz distribution, as well as other three-parameter
distributions.

1.1 Reduction of Gompertz-exponential distribution to Gompertz distribution

The cumulative distribution function and probability density function of the exponential distribution
with parameter λ are given by

G(x) = 1− exp(−λx);λ > 0 (1.1)

G(x) = λexp(−λx);λ > 0 (1.2)

respectively where λ is referred to as the rate parameter. According to [?] the cdf and pdf of the
Gompertz generalized family of distributions are given by

F (x) = 1− exp
(
(θ/γ)

(
1− (1−G(x))−γ

))
; θ > 0, γ > 0 (1.3)

f(x) = θg(x) [1−G(x)]−γ−1 exp
(
(θ/γ)

(
1− (1−G(x))−γ

))
; θ > 0, γ > 0 (1.4)

where θ and γ are additional shape parameters which are introduced to vary tail weights. G(x)
and g(x) are the cdf and pdf of the parent (or baseline) distribution respectively. The pdf of the
Gompertz-exponential distribution is derived by inserting the densities in equation (1.1) and (1.2)
into equation (1.4)

f(x) = θλexp(λγx)exp ((θ/γ) (1− expλγx)) ;x > 0, θ > 0, γ > 0, λ > 0 (1.5)

The cdf of Gompertz-exponential distribution is derived by inserting the density in equation (1.1)
into (1.3),

F (x) = 1− exp ((θ/γ) (1− expλγx)) ;x > 0, θ > 0, γ > 0, λ > 0 (1.6)

γ, λ and θ in equation (1.5) and (1.6) may be combined into two independent parameters t, z
de�ned as follows: z = θ/γ, t = λγ. Therefore,

f(x) = tzexp(tx)exp (z [1− exp(tx)]) ;x > 0, t > 0, z > 0 (1.7)

F (x) = 1− exp (z [1− exp(tx)]) ;x > 0, t > 0, z > 0 (1.8)

equations (1.7) and (1.8) are the pdf and cdf of Gompertz distribution with parameters t and z
respectively. From equation (1.8) it follows that t−1f(x/t) is independent of t. This implies that
the parameter t only changes the horizontal and vertical scaling of the pdf without a�ecting the
shape of the distribution. The possible shapes of the Gompertz probability may thus be obtained
by plotting t−1f(x) as a function of tx for di�erent values of z, as shown in Figure 1
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Figure 1: Possible Gompertz density shapes

1.2 Functions used in reliability analysis

The expressions for the reliability function, hazard function (or failure rate), and quantile function
for the Gompertz distribution are derived as follows.

1.2.1 Reliability function

The reliability or survival function can be obtained from

S(x) = 1− F (x) (1.9)

Therefore, the survival function of the Gompertz distribution is given by

S(x) = exp (z [1− exp(tx)]) ;x > 0, t > 0, z > 0 (1.10)

1.2.2 Hazard Function

The hazard function can be obtained from

h(x) = f(x)/S(x) (1.11)

which implies
h(x) = tzexp(tx);x > 0, t > 0, z > 0 (1.12)

1.2.3 Quantile Function and Median

The quantile function can be derived from Q(u) = F−1(u). Letting F (x) = u , so that u = F (x) =
1− exp (z [1− exp(tx)]) and solving for x, we obtain

x = (1/t)log [1− (1/z)log(1− u)] (1.13)

Therefore,
Q(u) = (1/t)log [1− (1/z)log(1− u)] (1.14)

where 0 ≤ u ≤ 1. The median of the Gompertz distribution can be derived by substituting u = 0.5
in equation(1.14)

Median = (1/t)log [1− (1/z)log(0.5)] (1.15)

Other quantiles can also be derived from equation(1.14) by substituting the appropriate values ofu.
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1.3 Maximum likelihood parameter estimation for the Gompertz distribution

The parameters of the Gompertz distribution can be estimated using the method of Maximum
Likelihood Estimation (MLE) as follows: let x1, x2, ..., xn denote random samples each having the
pdf of the Gompertz distribution, then the likelihood function is given by

f(x1, x2, ..., xn; t, z) =

n∏
i=1

{tzexp(tx)exp (z [1− exp(tx)])} . (1.16)

Let l denote the log-likelihood function:

l = logf(x1, x2, ..., xn; t, z)

Then,

l = nlogt+ nlogz + t

n∑
i=1

xi + z

n∑
i=1

[1− exp(txi)]

Solving dl/dt = 0 and dl/dz = 0 simultaneously gives the maximum likelihood estimates of
parameters t and z.

0 = ∂l/∂t = n/t+

n∑
i=1

xi + z

n∑
i=1

xiexp(txi) (1.17)

0 = ∂l/∂z = n/t+

n∑
i=1

[1− exp(txi)] (1.18)

Solving (18) for z leads to

z =
−n∑n

i=1 [exp(txi)− 1]
(1.19)

Substituting this expression −n∑n
i=1[1−exp(txi)]

for z into equation(1.18), we obtain

∑n
i=1 txiexp(txi)∑n
i=1 [1− exp(txi)]

− (1/n)

n∑
i=1

txi − 1 = 0. (1.20)

Through algebraic manipulation, equation (1.21) may be shown to be equivalent to

([txiexp(txi)]− [exp(txi)] [txi])− [exp(txi)− 1− txi] = 0 (1.21)

where the square brackets [. . . ] denote average: [yi] ≡
∑n
i=1 yi. The solution to equation (1.22) may

be found numerically, and then then z may be obtained using (1.20) using the value for t obtained
from (1.22). The limiting behavior of the left-hand side of (1.22) when t −→ ∞ and when t −→ 0
may be characterized as follows.
i. When t −→∞ the �rst term in (1.22) dominates all the other terms, so the left side of (1.22) is
always positive when t −→∞.
ii. When t −→ 0, we may replace the exponential terms in (1.22) with their Taylor series and solve
for the lowest order terms. This gives the following expression:

[
txi + t2x2i +O(t3)

]
− [txi]

[
1 + txi +O(t2)

]
−
[
1

2
t2x2i +O(t3)

]
(1.22)

which simpli�es to
1

2
t2
((
[x2i ]− [xi]

2
)
− [xi]

2
)
+O(t3) (1.23)
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We may recognize (
(
[x2i ]− [xi]

2
)
as the variance of the sample xi. Accordingly, when t −→ 0 the

left-hand side of (21) is positive or negative depending on whether or not the standard deviation of
the sample xi is larger or smaller than the sample mean.
The above results imply that the left-hand side of (1.22) has a sign change somewhere on the
positive t axis as long as the standard deviation of the sample xi is smaller than the sample mean.
Since the expression in (1.22) is a continuous function of t, we conclude that in this case there must
be a root. where the sign of (1.22) changes from negative to positive, which implies that the root
corresponds to a local minimum of the log likelihood. It follows that if the standard deviation of
the sample xi is smaller than the mean, then positive MLE parameters will always exist; but if the
standard deviation is not smaller than the mean, then MLE parameters may not exist. (Note that
t = 0 is also a solution to (1.22), but this leads to the result that z =∞ from (1.20).)
In our empirical studies (see Section 2.1) we observed that when simulated data was generated using
a Gompertz distribution with large values of z, then Equation (1.22) frequently failed to have a
solution. This may be explained as follows. When z >> 1, then the exponent z(1− exp(tx)) in the
Gompertz cdf expression (1.8) will be large in magnitude and negative in sign unless tx << 1. In
this case, exp(tx) is closely approximated by its Taylor series: exp(ti) ' 1+tx+O(t2x2). Replacing
this in (1.8) gives the result that

F (x) ' 1− exp(−ztx), x > 0, t > 0(whenz >> 1) (1.24)

It follows from (1.24) that there is degeneracy in the distribution parameters when z >> 1: if
z >> 1, then any parameter set (t′,z′) with z′/t′ = z/t will produce nearly the same distribution
as the parameter set (t, z). This degeneracy is what leads to the non-existence of solutions to the
MLE equation. Notice that for an exponential distribution, the standard deviation is equal to the
mean: so according to the result of the previous paragraph, then MLE parameter estimates may
not exist for samples drawn from a distribution that is exponential (or nearly exponential).

2 Materials and Methods

2.1 Empirical study of Gompertz distribution maximum likelihood estimates

In order to evaluate the bias and variance of MLE parameter estimates as a function of sample size
and actual parameter values, R software was used to generate samples of size 50, 100, 150, 200, 300, and400
with a replication m = 100000, from Gompertz distributions with parameter values t = 1 and
z = 0.125, 0.25, 0.5, 1, 2, and4. In the simulations t was not varied: since, t changes only the scale
and not the shape of the distribution, it follows that results for di�erent t values may be directly
inferred from the results for t = 1. As mentioned in Section 2.3, for some samples the MLE
equations had no solutions: when this occurred, the random sample was regenerated so that a total
of 100000 estimates of t and z were used in each bias and variance calculation.

2.2 Comparison of �ts to industrial data

A comparison was made of di�erent distribution �ts using data on the strengths of 1.5cm glass
�bres of workers at the UK national Physical Laboratory. The data has previously been used by
[7], [8] and [4]. The second data represents the lifetimes of 50 devices, drawn from [9] and also
used by [3]. For both datasets, the 2-parameter Gompertz �t was compared with 3-parameter
Kumaraswamy-Exponential, Generalized Gompertz, and three-parameter Lindley �ts.

2.3 Survival analysis of biological lifetime data

The �exibility of Gompertz distribution in analyzing lifetime data was compared to that of the
Generalized Gompertz distribution. The parameters of each distribution were �rst estimated using
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R software via the maximum likelihood method. The values of the parameters were then inserted
into the survival and hazard functions of each distribution together with the values of the random
variable X. The data representing the survival times (in days) of 72 guinea pigs infected with
virulent tubercle bacilli, observed and reported by [10] and subsequently used by [11].

3 Results

3.1 Gompertz maximum likelihood estimators' statistics

This section presents results for the empirical study of MLE parameter estimation described in
Section 2.1
Empirical biases in MLE estimates for t and z shown in the log-log plots in Figure 2. Each line in
the plot corresponds to a di�erent actual z value for the underlying sampled distribution: as noted
in Section 2.1, t = 1 was used for all sampled distributions. The straight-line dependence of the
biases in z and t indicates that bias is inversely proportional to sample size.

Figure 2: Log-log plots of empirical biases for MLE estimates of t and z as a function of sample
size. Di�erent curves are for di�erent actual values of z for the sampled distribution (indicated by
`zVal' in the legend), while the actual value of t was 1 for all cases. Error bars show plus or minus
two standard deviations in the bias estimates.

Figure 3 gives log-log plots of bias as a function of the parameter z. It is evident that
biases increase as the parameter z increases: as indicated in Section 2.3, increasing values of z
correspond to increasing parameter degeneracy, so that di�erent parameter sets give rise to very
similar distributions. The slopes of the curves for t biases start less than 1 but tend towards 1 for
larger values of z, indicating sublinear dependence; while the slopes of the curves for z bias are
larger, indicating superlinear dependence of z bias on the parameter z.

Figure 4 shows the root mean squared error (RMSE) and standard deviations for MLE estimates
for t and z as a function of sample size. Error bars at each data point show RMSE (top value)
and standard deviation (lower value): the error bars are scarcely visible, indicating little di�erence
between the two values. In the log-log plots, the lines have a slope of −1/2, indicating that the
RMSEs vary as the inverse square root of the sample size (as is usually the case with standard
deviations of estimators). However, for large values of z the RMSE of the MLE z estimates for
small sample size become very large: this re�ects the instability of z parameter estimation when z
is large and sample size is small, due to the parameter degeneracy discussed in Section 2.3.

Figure 5 shows the root mean squared error (RMSE) for MLE estimates for t and z as a function
of parameter z. The plots show that parameter estimates become increasingly inaccurate as the
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Figure 3: Log-log plots of empirical bias for MLE estimates of t and z as a function of z. Error
bars show plus or minus two standard deviations in the empirical bias estimates.

Figure 4: Log-log plots of empirical RMSE and standard deviations for MLE estimates for t and z,
as a function of sample size. Error bars at each data point show RMSE (top value) and standard
deviation (lower value): the error bars are scarcely visible, indicating little di�erence between the
two.

value of z increases. MLE estimates of z for large values of z are very inaccurate, due to the
parameter degeneracy alluded to earlier.

In general, the �gures show that the bias for MLE parameter estimates is a small faction of the
RMSE, so bias correction would provide minimal improvement over the MLE estimates of t and z.

3.2 Distribution �ts to industrial data

This section presents results of the comparisons between distributional �ts of industrial data
described in Section 3.2.

3.2.1 Descriptive statistics for industrial datasets

Tables 1 and 2 show the descriptive statistics of the two industrial datasets used, from [7] and [9],
respectively.
Table 1 shows that the data has a moderate negative skewness (by comparison, the exponential
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Figure 5: Log-log plots of empirical RMSE errors of MLE estimates for t and z, as a function of
sample size.

Table 1: Descriptive statistics for strengths of 1.5cm glass �bres (from [7]

Min. Q1 Q2 Q3 Mean Max. Variance Skewness Kurtosis
0.55 1.375 1.590 1.685 1.507 2.240 0.1051 -0.8999 3.9238

distribution has a skewness of 2), and excessive kurtosis of about 0.9, implying that the tails are
somewhat heavier than a normal distribution.

Table 2: Descriptive Statistics for lifetimes of 50 devices (from [9]

Min. Q1 Q2 Q3 Mean Max. Variance Skewness Kurtosis
0.10 13.50 48.50 81.25 45.69 86.00 1078.15 -0.1378 1.4139

Table 2 shows that the data has excessive kurtosis of about -1.6, implying thinner tails than the
normal distribution.

3.2.2 Performance comparisons for di�erent distribution �ts to industrial datasets

Table 3 shows the performance of di�erent distribution �ts to the glass �bre data.

The distribution with the lowest AIC is judged to be the best out of the competing distributions.
With this regard, the competing distributions can be ranked in the following order (best to the least):
Two- Parameter Gompertz exponential distribution, Kumaraswamy Exponential distribution, Generalized
Gompertz distribution and Three-Parameter Lindley distribution.
Table 4 shows the performance of di�erent distribution �ts to the device lifetime data.

Once again, the Gompertz distribution has the lowest AIC, this time followed in order by
Generalized Gompertz, Kumaraswamy Exponential, and Three-Parameter Lindley.

3.3 Biological survival analysis results

This section presents results from distributional �ts of biological data described in Section 3.3.
Using the guinea pig survival data from [10] the maximum likelihood Gompertz parameters aret =
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Table 3: Performance of Compared Distributions using data on 1.5cm glass �bres

Distributions Parameter Estimates -Log likelihood AIC

Gompertz
t = 3.6474
z = 0.002417 14.8081 33.6162

Kumaraswamy-Exponential
θ = 1756
λ = 7.001 15.9137 37.8274
γ = 0.2599

Generalized Gompertz
θ = 0.49258
λ = 0.48005 83.20132 172.4026
γ = 0.54581

Three-Parameter Lindley
θ = 0.499886
λ = 0.002048 102.9163 211.8325
γ = 0.01903

Table 4: Performance of Compared Distributions using data on Lifetimes of 50 devices

Distributions Parameter Estimates -Log likelihood AIC

Gompertz
t = 0.47858
z = 0.02030 235.3308 474.6617

Generalized Gompertz
θ = 0.00143
λ = 0.044 235.3920 476.7840
γ = 0.2599

Kumaraswamy-Exponential
θ = 0.12631
λ = 0.46598 238.4378 482.8756
γ = 0.15839

Three-Parameter Lindley
θ = 0.004952
λ = 0.010351 322.0525 650.105
γ = 0.0001513

0.0044273, z = 0.6729702, while for the Generalized Gompertz distribution, the maximum likelihood
estimated parameters are θ = 3.37335, λ = 0.010394451 and γ = 0.000421141. The results of the
survival analysis of the guinea pigs are tabulated in Table 5 and displayed graphically in Figure 6.

Figure 6 shows that the generalized Gompertz �t is visibly superior to the Gompertz distribution
�t in the case of guinea pig data. The Gompertz �t fails to detect the in�ection point around 150
days, while the generalized Gompertz �t does a much better job.
The hazard functions estimated from Gompertz and generalized Gompertz distributions are tabulated
in Table 6, and displayed graphically in Figure 7.

.
Figure 7 shows that the hazard functions for Gompertz and generalized Gompertz �ts are quite

di�erent. The Gompertz distribution estimates much greater hazards at small and large times,
while in mid-range the two hazard functions are in fairly good agreement.

4 Discussion

The results of the research described in this paper may be summarized as follows:
The Gompertz distribution was shown to be identical with the 3-parameter Gompertz-exponential
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Table 5: Survival analysis for Gompertz and Generalized Gompertz distributions using guinea pig
data

Time x(days) Survivial counts Survival rates S(x)
Actual Gomp. Gen. Gomp. S(x) Gomp. Gen. Gomp.

10 71 70 72 0.98611 0.9699955 0.9995919
50 68 61 68 0.94444 0.8464131 0.9511673
100 61 49 55 0.84722 0.6874185 0.7611461
150 36 38 38 0.5 0.5302375 0.5289144
200 23 28 24 0.31944 0.3835151 0.3359761
250 14 18 14 0.19444 0.255997 0.2015553
300 8 11 8 0.11111 0.1545932 0.1163765
350 5 6 5 0.06944 0.08238942 0.06537859
400 4 3 3 0.05556 0.03756901 0.03595709
450 2 1 1 0.02778 0.01410215 0.01942711
500 1 0 1 0.01389 0.00415241 0.01033027

Figure 6: Actual and �tted guinea pig survival count data

distribution. Typically, introducing additional parameters into a distribution typically increases its
�exibility, but at the cost of increased mathematical complexity and higher AIC and BIC values
that are used in model �tting. Our result shows that no bene�t is gained in utilizing the 3-parameter
Gompertz-exponential distribution, and the simpler 2-parameter formula should be used instead.
Results on MLE parameter estimation for Gompertz distributions included the following:

• When Gompertz distributions with large values of z are sampled, the MLE parameter estimates
for z and t may fail to exist. We explained this result by showing mathematically that
Gompertz distributions for large z values approach exponential distributions, and the two
parameters z and t become degenerate since the exponential distribution is a 1-parameter
family.

• There are statistically signi�cant biases in MLE parameter estimates based on samples taken
from Gompertz distributions. Biases increase with decreasing sample sizes, and with increasing
values of z. Because of these biases, the RMSE values for the parameter estimates are
larger than the corresponding standard deviations. However these di�erences are very slight,
indicating that bias correction would produce very little improvement in the parameter
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Table 6: Hazard functions of Gompertz and generalized Gompertz distribution

Time x (days) h(x) of Gompertz h(x) of generalized Gompertz
10 0.003114313 0.00001295406
50 0.003717683 0.001087316
100 0.004638846 0.003969643
150 0.005788254 0.006653175
200 0.007222461 0.008616968
250 0.009012033 0.009961473
300 0.01124502 0.01087898
350 0.0140313 0.01152673
400 0.01750796 0.01201241
450 0.02184606 0.01240443
500 0.02725905 0.0127446

Figure 7: Hazard functions for Gompertz and generalized Gompertz �ts

estimates.

• The RMSE values for parameter estimates decrease with increasing sample size as expected,
and also increase with increasing z, which re�ects the degeneracy into the 1-parameter family
of exponential distributions alluded to above.

Results on �tting performance of the Gompertz distribution compared to various 3-parameter
distributions were mixed. For two industrial data sets, The Gompertz �ts were superior as determined
by AIC, showing that the Gompertz distribution can provide good �ts with a reduced number of
parameters. For guinea pig lifetime data, the generalized Gompertz distribution was better able to
approximate the S-shaped distribution. The Gompertz distribution is limited in the shapes it can
assume, because as shown in Figure 1 only the z parameter a�ects the shape of the distribution,
while the t distribution only changes the scale.

5 Conclusions

The Gompertz distribution serves as a useful intermediate alternative between the 1-parameter
exponential distribution and more sophisticated 3-parameter distributions. In some cases, the
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Gompertz distribution gives better �ts to lifetime data than 3-parameter alternatives. When
the shape parameter z is large, MLE parameter estimates are unreliable, and the exponential
distribution should be used instead. Although MLE parameter estimates are biased, the bias is
much smaller than the RMSE of the parameter estimates, so bias correction will not e�ectively
improve the estimates.
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