Characterization of a class of Symmetric Group

E. E. Edeghagba ${ }^{1 \star}$, K. I. Rabiu ${ }^{2}$ and G. I. Tajudeen ${ }^{3}$

$1^{*}, 2$, Department of Mathematical Science, Bauchi State University, Gadau, Nigeria.
3, Department of Mathematics and Statistics, School of Science and Tecgnology, Abubakar Tatari Ali Polytechnic, Bauchi, Nigeria.
*Corresponding Author email: eghosaelijah@yahoo.co.uk

Article Info

Received: 19 January 2018 Revised: 21 January 2019
Accepted: 25 April 2019 Available online: 13 May 2019

Abstract

This paper studies a class of permutation group on a nonempty set $X=\{1,2,3, \ldots, n\}$ that maps even integer to even integer and odd integer to odd integer. We concluded that this collection of permutations, \mathcal{B}_{n} is a group and that if n is even $\mathcal{B}_{n} \cong\left(S_{n / 2}\right)^{2}$ but if n is odd $\mathcal{B}_{n} \cong S_{(n+1) / 2} \times S_{(n-1) / 2}$.

Keywords: Symmetric group; Permutation; Dihedral group; Generators; Relations; Cayley's Theorem.
MSC2010: 20B35

1 Introduction

The notion of deriving subgroups of a symmetric group have appeared in several research works carried out by different researchers [1, 2, 3, 4, 5].
A subgroup of a symmetric group is called a permutation group. The notion of subgroups of symmetric group is used with several slightly different meanings, all related to the act of permuting (rearranging in an ordered fashion) objects or values. Informally, a permutation of a set of values is an arrangement of those values into a particular order.
It is often convenient to represent group elements as "words" in a few symbols, having certain relations.
The problem of describing all groups of order n for a positive integer n by giving one presentation by generators and relations for each isomorphism type of group of order n was initiated by Cayley [6] in 1878. He called it the general problem for finite groups.
Then W. Von Dyck (1856-1934), an American mathematician in the 1880s was the one who systematically invented the notion of 'presentation' of a group, where he derived the presentation of S_{4} given by $\left\langle x, y: x^{4}=y^{2}=(x y)^{3}=e\right\rangle$, as an example. This work has led to a branch of group theory called Combinatorial Group Theory.
Good introductions to group theory are provided in the following [7, 8, 9, 10, 11]. Important concepts we use in describing the computations in this paper are the following. A finite presentation

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1, Pr. 455-467
$\langle A \mid R\rangle$ consists of a finite set A of generators and a finite set R of relators, which are words in the generators and their inverses.
If G_{1} and G_{2} are groups presented as follows $G_{1}=\left\langle A_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle A_{2} \mid R_{2}\right\rangle$, it is well known that their direct product has a presentation $G_{1} \times G_{2}=\left\langle A_{1}, A_{2} \mid R_{1}, R_{2}, x y=y x\left(x \in A_{1}, y \in A_{2}\right)\right\rangle$. An immediate consequence of this is that $G_{1} \times G_{2}$ is finitely generated if and only if both G_{1} and G_{2} are finitely generated, and is finitely presented if and only if both G_{1} and G_{2} are finitely presented.
Thus the study of the structure of groups via their generators and relators have appeared in several literatures. In [12], the authors in their study of endomorphisms of groups of order 36, presented the 14 pairwise non-isomorphic groups of order 36 using their presentations.
Our research deals with identification of certain kind of subset of the symmetry group such that each element of this subset, which of course are permutations, preserves parity of the integers (i.e. even integer are mapped to even integer and odd integer are mapped to odd integer) and then characterize this subset by group presentation. Thus, in this work we were able to prove that this subset as derived turns out to be a permutation group of the given symmetric group. This subset is denoted by \mathcal{B}_{n}.
In the section of main result we give some characterizations of this subset, \mathcal{B}_{n} and that \mathcal{B}_{n} is isomorphic to an existing group.
Section two gives some preliminary notions, while in section three we presented the main result of the paper.
Finally, in section four we give some description and construction of a general way of deriving this permutation group for some finite positive integer n.
The aim of this research is to study certain collection of permutations of the symmetric group which turns out to be a subgroup of the symmetric group and isomorphic to existing group.

2 Preliminary

We give some basic definitions and results for the benefit of all.
Definition 1. [9] A permutation of a set A is simply a bijection from A to itself.
Definition 2. [13] The family of all the permutations of a set X, denoted by S_{X}, is called the symmetric group on X. When $X=\{1,2, \ldots, n\}, S_{X}$ is usually denoted by S_{n}, and it is called the symmetric group on n letters.

Definition 3. A transposition is a permutation which exchanges any two element and keeps all others fixed.
Definition 4. [14] Let $\pi \in S_{n}$, so that π is a permutation of the set $\{1,2, \ldots, n\}$. The support of π is defined to be the set of all such that $\pi(i) \neq i$, in symbols supp (π). Now let r be an integer satisfying $1 \leq r \leq n$. Then π is called an r-cycle if $\operatorname{supp}(\pi)=\left\{i_{1}, i_{2}, \ldots, i_{i_{2}}\right\}$, with distinct i_{j}, where $\pi\left(i_{1}\right)=i_{2}, \pi\left(i_{2}\right)=i_{3}, \ldots, \pi\left(i_{r-1}\right)=i_{r}$ and $\pi\left(i_{r}\right)=i_{1}$. So π moves the integers $i_{1}, i_{2}, \ldots, i_{r}$ anticlockwise around a circle, but fixes all other integers: often π is written in the form $\pi=\left(i_{1} i_{2} \cdots i_{r}\right)\left(i_{r+1}\right) \cdots\left(i_{n}\right)$ where the presence of a 1 -cycle (j) means that $\pi(j)=j$.
Definition 5. [14] Permutations $\pi, \tau \in S_{n}$ are called disjoint if their supports are disjoint, i.e., they do not both move the same element.
Definition 6. The group of symmetries of a regular polygon of n sides is called dihedral group of degree n, denoted $D_{2 n}$. It is generated by two elements r (rotation) and s (reflection) satisfying the relations

$$
\begin{equation*}
r^{n}=1, s^{2}=1, \text { and } s r s=r^{-1} . \tag{2.1}
\end{equation*}
$$

Definition 7. [15] Let (G, \circ) be a group and $a \in G$. If there exists a positive integer n such that $a^{n}=e$, then the smallest such positive integer is called the order of a. If no such positive integer n exists, then we say that a is of infinite order.

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pr. 455-467

Definition 8. [9] A subset S of elements of a group G with the property that every element of G can be written as a (finite) product of elements of S and their inverses is called a set of generators of G. We shall indicate this notationally by writing $G=\langle S\rangle$ and say G is generated by S or S generates G.
Definition 9. [15] Let $(G, *)$ and $\left(G_{1}, *_{1}\right)$ be groups and ϕ a mapping from G into G_{1}. Then ϕ is called a homomorphism of G into G_{1} if for all $a, b \in G$,

$$
\phi(a * b)=\phi(a) *_{1} \phi(b)
$$

Thus ϕ is said to be an isomorphism if ϕ is bijective. In this case, we write $G \simeq G_{1}$ and say that G and G_{1} are isomorphic.

Theorem 1. (Cayley'sTheorem)[11]. Every group is isomorphic to a group of permutations.
Theorem 2. [15]. Let $D_{2 n}$ be the dihedral group of degree n. Then the following assertions hold.
(i) Every element of $D_{2 n}$ is of the form $r^{i} s^{j}, 0 \leq i<n, 0 \leq j<2$.
(ii) $D_{2 n}$ has exactly $2 n$ elements, i.e., $o\left(D_{2 n}\right)=2 n$.
(iii) $D_{2 n}$ is a noncommutative group.
Theorem 3. Let G be generated by elements a and b where $a^{n}=1$ for some $n \geq 3, b^{2}=1$, and bab $b^{-1}=a^{-1}$. Then there is a subjective homomorphism $D_{2 n} \rightarrow G$ and if G has order $2 n$, then this homomorphism is an isomorphism.

Theorem 4. [9] Let $\pi, \lambda \in S_{n}$ such that π and λ are disjoint. Then $\pi \circ \lambda=\lambda \circ \pi$, i.e., π and λ commute.
Theorem 5. [16] The order of any permutation σ is the least common multiple of the length of its disjoint cycles.

Proposition 1. [13] Let G be a finite group. Let H and K be subgroups of G, then

$$
o(H K)=\frac{o(H) o(K)}{o(H \cap K)}
$$

where $H K=\{h k: h \in H, k \in K\}$.
Proposition 2. [13] If G is a group containing normal subgroups H and K with $H \cap K=\{1\}$ and $H K=G$, then $G \cong H \times K$.

3 Main Results

Remark 1. The fact that a permutation α on a nonempty set X is usually written as $\alpha: X \rightarrow X$, even though in general the nature of the set X is not of much importance. But since we consider X to be finite and countable then X can be put in a 1-1 correspondence with a subset of the natural numbers (counting numbers). Therefore, our notion of preserving parity of counting numbers is not out of place.

Definition 10. The set $\mathcal{B}_{n} \subset S_{n}$ is the set whose elements are permutations that maps even integer to even integer and odd integer to odd integer.

Proposition 3. Let S_{n} be the symmetric group on $X=\{1,2,3, \ldots, n\}$. Then \mathcal{B}_{n} is a subgroup of S_{n}.
Proof. Let $\alpha, \beta \in \mathcal{B}_{n}$. We show that \mathcal{B}_{n} is closed under the composition operation. We look at three cases:
Case I: Suppose α and β fix every even integer. Then since α and β move at least one odd integer, it follows that for x an odd number in X, there exists an odd integer say y in X such that $\beta(x)=y$. Thus

IJMAO

$$
\alpha \beta(x)=\alpha(\beta(x))=\alpha(y)
$$

which is also an odd integer. Thus $\alpha \beta \in \mathcal{B}_{n}$.
Case II: Suppose α and β fix every odd integer and move at least one even integer. The argument follows from Case I.
Case III. We can assume WLOG that α moves at least one even integer and β moves at least one odd integer. Then for an odd integer i, we have that

$$
\alpha \beta(i)=\alpha(\beta(i))=\alpha(j)=j
$$

for some odd integer j, where $\beta(i)=j$. Now suppose i is an even integer, then

$$
\alpha \beta(i)=\alpha(\beta(i))=\alpha(i)=k
$$

for some even integer k, where $\alpha(i)=k$. Hence $\alpha \beta \in \mathcal{B}_{n}$. Next, let $\alpha \in \mathcal{B}_{n}$ and α^{-1} be any given permutation on X. Then for $x, y \in X$ such that

$$
\alpha(x)=y \text { and } \alpha^{-1}(y)=x
$$

Clearly, $\alpha^{-1} \in \mathcal{B}_{n}$, since if x is an odd integer then y must also be an odd integer where α is one to one. Similar argument holds for when x is an even integer. Hence since α is one to one and onto it follows that

$$
\mathcal{I}(y)=y=\alpha(x)=\alpha\left(\alpha^{-1}(y)\right)=\alpha \alpha^{-1}(y)=\left(\alpha \alpha^{-1}\right)(y)
$$

and

$$
\mathcal{I}(x)=x=\alpha^{-1}(y)=\alpha^{-1}(\alpha(x))=\alpha^{-1} \alpha(x)=\left(\alpha^{-1} \alpha\right)(x)
$$

Where I is the identity permutation. Thus

$$
\alpha^{-1} \alpha=\mathcal{I}=\alpha \alpha^{-1}
$$

Hence α^{-1} is the inverse of α. Associativity follows immediately. Since if every element is fixed, then even integer is mapped to even integer while odd integer is mapped to odd integer. Hence $I \in \mathcal{B}_{n}$. So we have shown that \mathcal{B}_{n} is a group and therefore a subgroup of S_{n}.

Proposition 4. If $n=4$ or 5 , then the maximum order of the elements in \mathcal{B}_{n} is equal to o $\left(\mathcal{B}_{n}\right) / 2$.
Corollary 1. If $n \leqslant 5$, the $\mathcal{B}_{n} \cong D_{2 \times o\left(\mathcal{B}_{n}\right) / 2}$.
We present a characterization for $n=5$.
$\mathcal{B}_{5}=\left\{\alpha_{0}=(1), \alpha_{1}=(13), \alpha_{2}=(15), \alpha_{3}=(35), \alpha_{4}=(24), \beta_{1}=(135), \beta_{2}=(153), \tau_{1}=(13)(24), \tau_{2}=\right.$ $\left.(15)(24), \tau_{3}=(35)(24), \sigma_{1}=(135)(24), \sigma_{2}=(153)(24)\right\}$.

Proposition 5. Given the group \mathcal{B}_{5}. Then \mathcal{B}_{5} can be generated by two elements subject to the following relations

$$
\beta^{2}=1, \alpha^{6}=1 \text { and } \alpha \beta=\beta \alpha^{-1}
$$

for $\alpha, \beta \in \mathcal{B}_{5}$.

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1, pr. 455-467

Proof. First we show that \mathcal{B}_{5} contains an element of order 2 . Let $\beta \in \mathcal{B}_{5}$ such that β fixes all odd integer, clearly β is of order 2 . Now let $\beta=\beta_{1} \circ \beta_{2}$ for $\beta_{1}, \beta_{2} \in \mathcal{B}_{5}$, for which β_{1} fixes all even numbers and one odd number, and β_{2} fixes all odd numbers. Clearly, $\beta=\beta_{1} \circ \beta_{2}$ is the composition of disjoint permutations, β_{1} and β_{2} and by Theorem $5, \beta$ is of order 2 . Since \mathcal{B}_{5} is a group then $\beta \in \mathcal{B}_{5}$. Next, if $\beta \in \mathcal{B}_{5}$ fixes all even numbers and fixes one odd number in \mathcal{B}_{5}, certainly β is of order 2 . Hence there exists an element of order 2 in \mathcal{B}_{5}. Next we show that \mathcal{B}_{5} contains an element of order 6 . Let $\alpha_{1}, \alpha_{2} \in \mathcal{B}_{5}$ where α_{1} fixes all even numbers and α_{2} fixes all odd numbers in \mathcal{B}_{5}. Clearly, $\alpha=\alpha_{1} \circ \alpha_{2}$ is the composition of disjoint permutations α_{1} and α_{2}. Then again by Theorem $5, \alpha$ is of order 6 and since \mathcal{B}_{5} is a group then $\alpha \in \mathcal{B}_{5}$. Hence there exists an element of order 6 in \mathcal{B}_{5}. Therefore, there exist permutations α and β in \mathcal{B}_{5} such that $\beta^{2}=1$, and $\alpha^{6}=1$. Hence we have the following distinct permutations; $\alpha^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}=1$. Let

$$
\begin{equation*}
\beta \neq \alpha^{i}, \forall i \in\{1,2,3,4,5,6\} . \tag{3.1}
\end{equation*}
$$

From equation (3.1) it must be that β is a cycle of odd numbers. This follows from the fact that α^{i} for $i=3$ is a 2 -cycle of even numbers which must be the cycle (24). Thus if α^{i} is a transposition disjoint from β then by Theorem 5

$$
o\left(\alpha^{i} \beta\right)=2
$$

Implying that

$$
\alpha^{i} \beta=\beta^{-1} \alpha^{-i}=\beta \alpha^{-i} \Rightarrow \alpha^{i} \beta=\beta \alpha^{-i} .
$$

Next, let α^{i} be a composition of disjoint cycles. Then since α is a composition of a 3 -cycle of odd integer and a 2 -cycle of even numbers. It follows that any power of α that is a composition of disjoint cycles can only be a 3-cycles of odd numbers and 2-cycles of even numbers. Hence if

$$
\alpha^{i}=\alpha_{1} \alpha_{2}
$$

Then by associative property it follows that

$$
\begin{equation*}
\alpha^{i} \beta=\left(\alpha_{1} \alpha_{2}\right) \beta=\alpha_{1}\left(\alpha_{2} \beta\right) \tag{3.2}
\end{equation*}
$$

So from (3.2) if α_{2} is the 3-cycle of odd numbers then $\alpha_{2} \beta$ is a 2 -cycle of odd numbers. Thus by Theorem 5

$$
o\left(\alpha_{1}\left(\alpha_{2} \beta\right)\right)=2
$$

and so

$$
\left(\alpha_{1} \alpha_{2}\right) \beta=\left(\left(\alpha_{1} \alpha_{2}\right) \beta\right)^{-1}
$$

Hence

$$
\alpha^{i} \beta=\left(\alpha^{i} \beta\right)^{-1}=\beta^{-1} \alpha^{-i}=\beta \alpha^{-i} \Rightarrow \alpha^{i} \beta=\beta \alpha^{-i} .
$$

Now for the case where α^{i} is a 3 -cycle, then it must be a cycle of odd numbers. Thus $\alpha^{i} \beta$ is a 2 -cycle and so

$$
o\left(\alpha^{i} \beta\right)=2
$$

Hence

$$
\alpha^{i} \beta=\beta \alpha^{-i}
$$

Therefore we have shown that the relation

IJMAO

$$
\alpha^{i} \beta=\beta \alpha^{-i}
$$

holds in \mathcal{B}_{5}. In particular for $i=1$

$$
\alpha \beta=\beta \alpha^{-1}
$$

Now for $\alpha, \beta \in \mathcal{B}_{5}$ we show that α and β generates \mathcal{B}_{5} such that $\alpha^{6}=1$ and $\beta^{2}=1$. Therefore, from our argument above we have that $\alpha^{i}, i \in\{1,2, \ldots, 6\}$ are distinct elements. Thus

$$
\beta \alpha^{i} \neq \beta \alpha^{j}, \text { for } 0 \leq i \leq 5,
$$

with $i \neq j$ so

$$
\mathcal{B}_{5}=\left\{\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \beta \alpha^{0}, \beta \alpha^{1}, \beta \alpha^{2}, \beta \alpha^{3}, \beta \alpha^{4}, \beta \alpha^{5}\right\} .
$$

Therefore $\mathcal{B}_{5}=\langle\alpha, \beta\rangle$.

Clearly, from above we have that \mathcal{B}_{5} is not commutative. For example the elements $\alpha_{1}, \tau_{3} \in \mathcal{B}_{5}$ do not commute with themselves;
$\alpha_{1} \tau_{3}=(13)((35)(24))=(135)(24)=\sigma_{1}$
and
$\tau_{3} \alpha_{1}=((35)(24))(13)=(153)(24)=\sigma_{2}$.
Hence, let $\alpha=\sigma_{2}$ and $\beta=\alpha_{3}$ therefore $\mathcal{B}_{5}=\left\langle\sigma_{2}, \alpha_{3}\right\rangle$. Where

$$
\left\langle\sigma_{2}\right\rangle=\{(1),(153)(24),(135),(24),(153),(135)(24)\}
$$

and

$$
\left\langle\alpha_{3}\right\rangle=\{(1),(35)\} .
$$

Therefore,

$$
\begin{aligned}
& \left\langle\sigma_{2}\right\rangle\left\langle\alpha_{3}\right\rangle=\{(1),(153)(24),(135),(24),(153),(135)(24),(35), \\
& (13)(24),(15),(24)(35),(13),(15)(24)\}=\mathcal{B}_{5} .
\end{aligned}
$$

Next we show that $\sigma_{2} \alpha_{3}=\alpha_{3} \sigma_{2}^{-1}$

$$
\sigma_{2} \alpha_{3}=((153)(24))(13)=\tau_{2} \text { and } \alpha_{3}\left(\sigma_{2}\right)^{-1}=(13)((153)(24))^{-1}=\tau_{2}
$$

Hence the relation, $\sigma_{2} \alpha_{3}=\alpha_{3} \sigma_{2}^{-1}$ exists between the generators.
From the above results and computations it follows that \mathcal{B}_{5} is a group and of course a subgroup of S_{5} which is generated by two elements σ_{2} and α_{3} satisfying the relation

$$
\sigma_{2}^{6}=\alpha_{0}, \quad \alpha_{3}^{2}=\alpha_{0}, \quad \sigma_{2} \alpha_{3}=\alpha_{3} \sigma_{2}^{-1}
$$

where α_{0} is the identity permutation.
Hence, by Cayley's Theorem and Corollary 3 we assert the existence of an isomorphic copy of the dihedral group D_{12} in the symmetric group S_{5}. Therefore the following corollary.

Corollary 2. The subgroup \mathcal{B}_{5} of the symmetric group S_{5} is isomorphic the dihedral group D_{12}.
Therefore, the group \mathcal{B}_{5} is give by the presentation

$$
\mathcal{B}_{5}=\left\langle\alpha, \beta \mid \beta^{2}=\alpha^{6}=1, \beta \alpha=\alpha^{-1} \beta\right\rangle .
$$

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pp. 455-467
where $\beta=(13)$ and $\alpha=(135)(24)$.
Below we give the Cayley's table for the group \mathcal{B}_{5}.

\circ	α_{0}	α_{3}	α_{4}	α_{2}	α_{1}	β_{1}	β_{2}	τ_{3}	τ_{1}	τ_{2}	σ_{1}	σ_{2}
α_{0}	α_{0}	α_{3}	α_{4}	α_{2}	α_{1}	β_{1}	β_{2}	τ_{3}	τ_{1}	τ_{2}	σ_{1}	σ_{2}
α_{3}	α_{3}	α_{0}	τ_{3}	β_{1}	β_{2}	α_{2}	α_{1}	α_{4}	σ_{2}	σ_{1}	τ_{2}	τ_{1}
α_{4}	α_{4}	τ_{3}	α_{0}	τ_{2}	τ_{1}	σ_{1}	σ_{2}	α_{3}	α_{1}	α_{2}	β_{1}	β_{2}
α_{2}	α_{2}	β_{2}	τ_{2}	α_{0}	β_{1}	α_{1}	α_{3}	σ_{2}	σ_{1}	α_{4}	τ_{1}	τ_{3}
α_{1}	α_{1}	β_{1}	τ_{1}	β_{2}	α_{0}	α_{3}	α_{2}	σ_{1}	α_{4}	σ_{2}	τ_{3}	τ_{2}
β_{1}	β_{1}	α_{1}	σ_{1}	α_{3}	α_{2}	β_{2}	α_{0}	τ_{1}	τ_{2}	τ_{3}	σ_{2}	α_{4}
β_{2}	β_{2}	α_{2}	σ_{2}	α_{1}	α_{3}	α_{0}	β_{1}	τ_{2}	τ_{3}	τ_{4}	α_{1}	σ_{1}
τ_{3}	τ_{3}	α_{4}	α_{3}	σ_{1}	σ_{2}	τ_{2}	τ_{1}	α_{0}	β_{2}	β_{1}	α_{2}	α_{1}
τ_{1}	τ_{1}	σ_{1}	α_{1}	σ_{2}	α_{4}	τ_{3}	τ_{2}	β_{1}	α_{0}	β_{2}	α_{3}	α_{2}
τ_{2}	τ_{2}	σ_{2}	α_{2}	α_{4}	σ_{1}	τ_{1}	τ_{3}	β_{2}	β_{1}	α_{0}	α_{1}	α_{3}
σ_{1}	σ_{1}	τ_{1}	β_{1}	τ_{3}	τ_{2}	σ_{2}	α_{4}	α_{1}	α_{2}	α_{3}	β_{2}	α_{0}
σ_{2}	σ_{2}	τ_{2}	β_{2}	τ_{1}	τ_{3}	α_{4}	σ_{1}	α_{2}	α_{3}	α_{1}	α_{0}	β_{1}

Figure 1: Cayley's Table for \mathcal{B}_{5}
Next we present a characterization for $n=6$.
The set \mathcal{B}_{6} contains the following elements:
(1), (13), (15), (35), (24), (26), (46), (13)(24), (13)(26), (13)(46),
(15)(24), (15)(26), (15)(46), (35)(24), (35)(26), (35)(46), (135), (153),
(246), (264), (135)(24), (135)(26), (135)(46), (153)(24), (153)(26),
(153)(46), (246)(13), (246)(15), (246)(35), (264)(13), (264)(15),
(264)(35), (135)(246), (135)(264), (153)(246), (153)(264).

Clearly, \mathcal{B}_{6} is not isomorphic to any dihedral group. The obvious reason for this is because in \mathcal{B}_{6}, there does not exist any element (permutation) of order half the order of \mathcal{B}_{6}. Therefore the group \mathcal{B}_{6}, can not be generated by two elements, α, β subject to the relations,

$$
\alpha^{n}=1, \beta^{2}=1, \alpha \beta=\beta \alpha^{-1}
$$

\mathcal{B}_{6} is of order 36 , but clearly by Theorem 5 the maximum order of elements in \mathcal{B}_{6} is 6 which is less than 18.

We claim that the group \mathcal{B}_{6} is given by the presentation $G=\langle a, b, c, d| a^{2}=b^{2}=c^{3}=d^{3}=1$, $d a=$ $\left.a d^{-1}, c b=b c^{-1}, a b=b a, a c=c a, b d=d b, c d=d c\right\rangle$. Proving this we set $a \mapsto(13), b \mapsto(24), c \mapsto$ (246), $d \mapsto(135)$. Since every relations satisfied by $\{a, b, c, d\}$ are satisfied by $\{(13),(24),(246),(135)\}$, clearly we have a (unique) homomorphism $\varphi: G \rightarrow \mathcal{B}_{6}$. Hence G is a homomorphic image of \mathcal{B}_{6}. Therefore, we need show that φ is injective.

Proposition 6. Let H be a subgroup of \mathcal{B}_{6}. If H is an isomorphic copy of D_{6} in \mathcal{B}_{6} such that each of the generators of H are not permutations of disjoint cycles in \mathcal{B}_{6}, then H is a normal subgroup in \mathcal{B}_{6}.
Proof. Suppose $H \leq \mathcal{B}_{6}$ and $H \cong D_{6}$. Let $H=\langle a, b\rangle$, then $H=\left\{a^{i} b^{k}: 0 \leqslant i \leqslant 1,0 \leqslant k \leqslant 2\right\}$. Suppose $\alpha \in H$, then $\alpha=a^{i} b^{k}$ for some i and k. For a nontrivial $\beta \in \mathcal{B}_{6}$, we must show that $\beta \alpha \beta^{-1} \in H$.
Case I : Assume $\beta \in H$ then $\beta=a^{j} b^{l}$ for some $0 \leqslant j \leqslant 1,0 \leqslant l \leqslant 2$. It follows that

$$
\begin{aligned}
& \beta \alpha \beta^{-1}=\left(a^{j} b^{l}\right)\left(a^{i} b^{k}\right)\left(a^{j} b^{l}\right)^{-1}=\left(a^{j} b^{l}\right)\left(a^{i} b^{k}\right)\left(b^{-l} a^{j}\right) \\
& =\left(a^{j} b^{l}\right)\left(a^{i} b^{k} b^{-l}\right) a^{j}=\left(a^{j} b^{l}\right)\left(a^{i} b^{k-l}\right) a^{j}=a^{j}\left(b^{l} b^{-(k-l)}\right) a^{i} a^{j} \\
& =a^{j} b^{l-(k-l)} a^{i+j}=a^{j} a^{i+j} b^{-(l-(k-l))}=a^{(i+2 j)} b^{(k-2 l)} \\
& =a^{m} b^{n} \\
& \text { where } m \equiv i+2 j(\bmod 2) \text { and } n \equiv k-2 l(\bmod 3) .
\end{aligned}
$$

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications
Vol. 2019, No. 1, pr. 455-467

The formulation above holds since every element of H has the unique representation, $a^{i} b^{k}, 0 \leqslant i \leqslant$ $1,0 \leqslant k \leqslant 2$ and any product of two elements in this form can be reduced to this form, where all exponents are reduced accordingly. Thus $\beta \alpha \beta^{-1} \in H$.
Case II : Assume $\beta \notin H$, it suffices to prove that for $\alpha \in H, \beta \alpha \beta^{-1}=a^{i} b^{k} \in H$ for some $0 \leqslant i \leqslant 1,0 \leqslant$ $k \leqslant 2$, for $\alpha=a^{i} b^{k}$. Since the generators a and b are not products of disjoint cycles then we consider first, the case were β and α are disjoint permutations, then it follows that

$$
\beta \alpha \beta^{-1}=\beta\left(a^{i} b^{k}\right) \beta^{-1}=\beta \beta^{-1}\left(a^{i} b^{k}\right)=\left(a^{i} b^{k}\right) .
$$

Thus $\beta \alpha \beta^{-1} \in H$.
Next we consider the case were α and β are not disjoint. Therefore, the permutation, β must be product of disjoint cycles of order 3 or 6 . If β should be otherwise (i.e. a 2 -cycle or 3 -cycle permutation), then it must be that β is disjoint from α or an element of H, a contradiction.
Thus, let $\beta=\beta_{1} \beta_{2}$, where β_{1} and β_{2} are disjoint permutations. Since α and β are not disjoint permutations it follow that either α and β_{1} or α and β_{2} are not disjoint. WLOG we assume α and β_{1} are not disjoint.

$$
\begin{aligned}
& \beta \alpha \beta^{-1}=\left(\beta_{1} \beta_{2}\right)^{-1} \alpha\left(\beta_{1} \beta_{2}\right)=\beta_{1}^{-1} \beta_{2}^{-1} \alpha \beta_{1} \beta_{2} \\
& =\beta_{2}^{-1} \beta_{2} \beta_{1}^{-1} \alpha \beta_{1}=\beta_{1}^{-1} \alpha \beta_{1} .
\end{aligned}
$$

Therefore, by definition of H, it follows that $\beta_{1}^{-1} \alpha \beta_{1} \in H$ since $\beta_{1}^{-1} \alpha \beta_{1}$ must either be a 2 -cycle or a 3 -cycle permutation. Hence $\beta^{-1} \alpha \beta \in H$. This completes the prove.

The condition in Proposition 6, that the generators of H are not permutations of disjoint cycles in \mathcal{B}_{6}, is very essential. For example the subgroup $K=\{(1),(13)(24),(15)(26),(35)(46)$,
(135)(246), (153)(264)\} generated by $\{(13)(24),(135)(246)\}$ (permutations of which each is a product of disjoint cycles) is isomorphic to D_{6} but not normal in \mathcal{B}_{6}. For (35)(24) $\notin K$, then $((35)(24))(13)(24)((35)(24))^{-1}=(15)(24) \notin K$.

Corollary 3. The group \mathcal{B}_{6} contains isomorphic copies of the dihedral group D_{6} which are normal in \mathcal{B}_{6}.
Therefore, from Proposition 6 above, the subgroups
$G_{1}=\{(1),(13),(15),(35),(135),(153)\}$ and
$G_{2}=\{(1),(24),(26),(46),(246),(264)\}$ of \mathcal{B}_{6} generated by the sets $\{(13),(135)\}$ and $\{(24),(246)\}$ respectively are subject to the following relations $\left\{(13)^{2}=(135)^{3}=((13)(135))^{2}=1\right\}$ and $\left\{(24)^{2}=\right.$ $\left.(246)^{3}=((24)(246))^{2}=1\right\}$ respectively. We have that $o\left(G_{1}\right)=6$ and $o\left(G_{2}\right)=6$, and clearly $G_{1} \cap G_{2}=(1)$.

Thus, by Proposition 1 it follows that $o\left(G_{1} G_{2}\right)=36$ and by Proposition 6 we have that G_{1} and G_{2} are isomorphic to D_{6} and clearly are normal in \mathcal{B}_{6}.
Hence, by Proposition 2, $G_{1} G_{2} \cong G_{1} \times G_{2}$, hence $o\left(G_{1} \times G_{2}\right)=36$. Therefore, since G_{1} and G_{2} are isomorphic to D_{6} then,

$$
D_{6}=\left\langle a, d \mid a^{2}=d^{3}=1, d a=a d^{-1}\right\rangle \cong G_{1} \text {, for } a \mapsto(13), d \mapsto(135)
$$

and

$$
D_{6}=\left\langle b, c \mid b^{2}=c^{3}=1, c b=b c^{-1}\right\rangle \cong G_{2} \text {, for } b \mapsto(24), c \mapsto(246)
$$

Thus,
$D_{6} \times D_{6}=\langle a, b, c, d| a^{2}=b^{2}=c^{3}=d^{3}=1, d a=a d^{-1}, c b=b c^{-1}, a b=b a, a c=c a, b d=d b, c d=$

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pp. 455-467
$d c\rangle \cong G_{1} \times G_{2}=G$.
Hence we have that φ is injective. Therefore, $\mathcal{B}_{6} \cong D_{6} \times D_{6}$.
Next we present a characterization for $n=7$.
The set \mathcal{B}_{7} contains the following elements:
(1), (13), (15), (17), (35), (37), (57), (24), (26), (46), (13)(24),
(13)(26), (13)(46), (15)(24), (15)(26), (15)(46), (17)(24), (17)(26),
(17)(46), (35)(24), (35)(26), (35)(46), (37)(24), (37)(26), (37)(46),
(57)(24), (57)(26), (57)(46), (13)(57), (15)(37), (17)(35), (13)(57)(24),
(13)(57)(26), (13)(57)(46), (15)(37)(24), (15)(37)(26), (15)(37)(46),
(17)(35)(24), (17)(35)(26), (17)(35)(46), (135), (153), (137), (173),
(157), (175), (357), (375), (246), (264), (135)(24), (135)(26),
(135)(46), (153)(24), (153)(26), (153)(46), (137)(24), (137)(26),
(137)(46), (173)(24), (173)(26), (173)(46), (157)(24), (157)(26),
(157)(46), (175)(24), (175)(26), (175)(46), (357)(24), (357)(26),
(357)(46), (375)(24), (375)(26), (375)(46), (246)(13), (246)(15),
(246)(17), (246)(35), (246)(37), (246)(57), (264)(13), (264)(15),
(264)(17), (264)(35), (264)(37), (264)(57), (135)(246),
(135)(264), (153)(246), (153)(264). (137)(246), (137)(264),
(173)(246), (173)(264), (157)(246), (157)(264), (175)(246),
(175)(264), (357)(246), (357)(264) (375)(246), (375)(264),
(13)(57)(246), (13)(57)(264), (15)(37)(246), (15)(37)(264),
(17)(35)(246), (17)(35)(264), (1357), (1573), (1735), (1537),
(1375), (1753), (1357)(24), (1357)(26), (1357)(46), (1375)(24),
(1375)(26), (1375)(46), (1537)(24), (1537)(26), (1537)(46),
(1573)(24), (1573)(26), (1573)(46), (1735)(24), (1735)(26),
(1735)(46), (1753)(24), (1753)(26), (1753)(46), (1357)(246),
(1357)(264), (1375)(246), (1375)(264), (1537)(246), (1537)(264),
(1573)(246), (1573)(264), (1735)(246), (1735)(264),
(1753)(246), (1753)(264).

For the symmetric group S_{7}, \mathcal{B}_{7} has 144 elements and the maximum order of elements in \mathcal{B}_{7} is $12<72$ and so \mathcal{B}_{7} is not isomorphic to any dihedral group.

We claim that the group \mathcal{B}_{7} is given by the presentation $H=\langle a, b, c, d| a^{2}=b^{2}=c^{3}=d^{4}=(a d)^{3}=$ $\left.1, a b=b a, c b=b c^{-1}, a c=c a, b d=d b, c d=d c\right\rangle$. Proving this we set $a \mapsto(13), b \mapsto(24), c \mapsto$ (246), $d \mapsto(1357)$. Since every relations satisfied by $\{a, b, c, d\}$ are satisfied by $\{(13),(24),(246),(1357)\}$, clearly we have a (unique) homomorphism $\phi: H \rightarrow \mathcal{B}_{7}$. Hence H is a homomorphic image of \mathcal{B}_{7}. Next we show that ϕ is injective.

Corollary 4. The group \mathcal{B}_{7} contains isomorphic copies of the symmetric groups S_{4} and S_{3} which are normal in \mathcal{B}_{7}.

Therefore, from Corollary 4 above we have that \mathcal{B}_{7} contains subgroups;
$H_{1}=\{(1),(13),(15),(17),(35),(37),(57),(13)(57),(15)(37)$,
(17)(35), (135), (137), (153), (157), (173), (175), (357), (375), (1357),
(1375), (1537), (1573), (1735), (1753), \}
and
$H_{2}=\{(1),(24),(26),(46),(246),(264)\}$,
which are generated by the sets $\{(13),(1357)\}$ and $\{(24),(246)\}$ respectively. Clearly, these generators are subject to the following relations $\left\{(13)^{2}=(1357)^{4}=((13)(1357))^{3}=1\right\}$ and $\left\{(24)^{2}=(246)^{3}=\right.$ $\left.1,(24)(246)=(246)^{-1}(24)\right\}$ respectively. It follows then that $o\left(H_{1}\right)=24$ and $o\left(H_{2}\right)=6$. Thus,

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pp. 455-467
$H_{1} \cap H_{2}=(1)$.
Thus by Proposition 1 it follows that $o\left(H_{1} H_{2}\right)=144$ and by Corollary 4 we have that H_{1} and H_{2} are isomorphic to S_{4} and S_{3} respectively. Clearly they are normal in \mathcal{B}_{7}.
Hence, by Proposition 2, $H_{1} H_{2} \cong H_{1} \times H_{2}$, hence $o\left(H_{1} \times H_{2}\right)=144$. Therefore, since H_{1} is isomorphic to S_{4} and H_{2} is isomorphic to S_{3} then,

$$
S_{4}=\left\langle a, d \mid a^{2}=d^{4}=(a d)^{3}=1\right\rangle \cong H_{1}, \text { for } a \mapsto(13), d \mapsto(1357)
$$

and

$$
S_{3}=\left\langle b, c \mid b^{2}=c^{3}=1, c b=b c^{-1}\right\rangle \cong H_{2}, \text { for } b \mapsto(24), c \mapsto(246)
$$

Thus,
$S_{4} \times S_{3}=\left\langle a, b, c, d \mid a^{2}=b^{2}=c^{3}=d^{4}=(a d)^{3}=1, a b=b a, c b=b c^{-1}, a c=c a, b d=d b, c d=d c\right\rangle \cong$ $H_{1} \times H_{2}=H$.

Hence we have shown that ϕ is injective. Therefore, $\mathcal{B}_{7} \cong S_{4} \times S_{3}$.
Next we present a characterization for $n=8$ and $n=9$.
For the symmetric groups S_{8} and S_{9}, \mathcal{B}_{8} and \mathcal{B}_{9} have 576 and 2880 elements respectively. Of course they are not isomorphic to any dihedral group.

Corollary 5. The group \mathcal{B}_{8} contains isomorphic copies of the symmetric group S_{4} which are normal in \mathcal{B}_{8}.
The subgroups: $H_{1}=\{(1),(13),(15),(17),(35),(37),(57),(13)(57)$,
(15)(37), (17)(35), (135), (137), (153), (157), (173), (175), (357),
(375), (1357), (1375), (1537), (1573), (1735), (1753), \} and
$H_{2}=\{(1),(24),(26),(28),(46),(48),(24)(68),(26)(48),(28)(46),(246)$,
(248), (264), (268), (284), (286), (468), (486), (2468), (2486), (2648),
(2684), (2846), (2864)\}, of \mathcal{B}_{8} generated by the sets $\{(13),(1357)\}$ and
$\{(24),(2468)\}$, respectively and subject to the following relations $\left\{(13)^{2}=(1357)^{4}=((13)(1357))^{3}=1\right\}$ and $\left\{(24)^{2}=(2468)^{4}=(24)(2468)^{3}=1\right\}$ respectively are normal in \mathcal{B}_{8}. Clearly, $o\left(H_{1}\right)=o\left(H_{2}\right)=24$ and $H_{1} \cap H_{2}=(1)$.
Thus by Proposition 1 it follows that $o\left(H_{1} H_{2}\right)=576$. By Corollary 5 we have that H_{1} and H_{2} are both isomorphic to S_{4}.

Therefore, we have that;

$$
S_{4}=\left\langle a, d \mid a^{2}=d^{4}=(a d)^{3}=1\right\rangle \cong H_{1}, \text { for } a \mapsto(13), d \mapsto(1357)
$$

and

$$
S_{4}=\left\langle b, c \mid b^{2}=c^{4}=(b c)^{3}=1\right\rangle \cong H_{2}, \text { for } b \mapsto(24), c \mapsto(2468)
$$

Thus,
$S_{5} \times S_{4}=\left\langle a, b, c, d \mid a^{2}=b^{2}=c^{4}=d^{4}=(a d)^{3}=(b c)^{3}=1, a b=b a, a c=c a, b d=d b, c d=d c\right\rangle \cong$ $H_{1} \times H_{2}$.
Clearly, $H_{1} H_{2}=\mathcal{B}_{8}$. Therefore, by Proposition 2, we have that $H_{1} H_{2} \cong H_{1} \times H_{2}$.
Hence, $\mathcal{B}_{8} \cong S_{4} \times S_{4}$.

Corollary 6. The group \mathcal{B}_{9} contains isomorphic copies of the symmetric groups S_{4} and S_{5} which are normal in \mathcal{B}_{9}.

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pp. 455-467

Let H_{1} and H_{2} subgroups be subgroups of \mathcal{B}_{9} generated by the sets $\{(13),(13579)\}$ and $\{(24),(2468)\}$, respectively and subject to the following relations
$\left\{(13)^{2}=(13579)^{5}=((13)(13579))^{4}=\left((13579)(13)(13579)^{-2}(13)\right.\right.$
$\left.(13579))^{2}=1\right\}$ and $\left\{(24)^{2}=(2468)^{4}=(24)(2468)^{3}=1\right\}$ respectively.
Thus by Proposition 1 it follows that $o\left(H_{1} H_{2}\right)=2880$. By Corollary 6 we have that H_{1} is isomorphic to S_{5} and H_{2} is isomorphic to S_{4}.

Therefore, we have that;

$$
S_{5}=\left\langle a, d \mid a^{2}=d^{5}=(a d)^{4}=\left(d a d^{-2} a d\right)^{2}=1\right\rangle \cong H_{1}, \text { for } a \mapsto(13), d \mapsto(13579)
$$

and

$$
S_{4}=\left\langle b, c \mid b^{2}=c^{4}=(b c)^{3}=1\right\rangle \cong H_{2}, \text { for } b \mapsto(24), c \mapsto(2468)
$$

Thus,
$S_{5} \times S_{4}=\langle a, b, c, d| a^{2}=b^{2}=c^{4}=d^{5}=(a d)^{4}=(b c)^{3}=\left(d a d^{-2} a d\right)^{2}=1, a b=b a, a c=c a, b d=$ $d b, c d=d c\rangle \cong H_{1} \times H_{2}$.
Clearly, $H_{1} H_{2}=\mathcal{B}_{9}$. Therefore, by Proposition 2, we have that $H_{1} H_{2} \cong H_{1} \times H_{2}$.
Hence, $\mathcal{B}_{9} \cong S_{5} \times S_{4}$.
From our constructions above, where $S_{3} \cong D_{6}$ and $D_{12} \cong D_{6} \times C_{2}$, for $C_{2} \cong S_{2}$, we have the following result.

Proposition 7. For the group \mathcal{B}_{n}, if n is even, then $\mathcal{B}_{n} \cong S_{n / 2} \times S_{n / 2}$ and if n is odd, then $\mathcal{B}_{n} \cong$ $S_{(n+1) / 2} \times S_{(n-1) / 2}$.

4 Discussion

In this section we present some generalizations, which will be useful and considered as a starting point for further research in this direction. We present some combinatoric and set theoretic notions enabling us to deal with these structures easily.
In the previous section we were able to give some characterization of \mathcal{B}_{n}, where we obtained \mathcal{B}_{n} by collecting the permutations on the set $X=\{1,2,3,4,5, \ldots, n\}$ which maps even number to even number and odd number to odd number. But in some sense we could see that this is a partition of the set X into even numbers and odd numbers. Then we obtain the symmetric groups arising from each of the partitions and after which the product of these symmetric groups is taken i.e. $S_{A} S_{B}=\{a b: a \in A, b \in B\}$. Clearly this contains the identity element. This product turns out to be the permutation group \mathcal{B}_{n} of the symmetric group, S_{n} on the given nonempty set. Therefore given a set $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, X$ can be partitioned into two disjoint subset such that

$$
X=A \cup B
$$

Where subset A is the set containing the elements indexed with the even numbers and subset B the set containing the elements indexed with odd numbers. Therefore, we have the following two cases in obtaining the elements of the subset A and subset B for a given n.
Case 1: For n an odd positive integer;

$$
A=\left\{a_{2}, a_{4}, \ldots, a_{n-1}\right\} \text { and } B=\left\{a_{1}, a_{3}, \ldots, a_{n}\right\}
$$

Thus $o(A)=(n-1) / 2$ and $o(B)=(n+1) / 2$.
Case II: if n is an even integer;

$$
A=\left\{a_{2}, a_{4}, \ldots, a_{n}\right\} \text { and } B=\left\{a_{1}, a_{3}, \ldots, a_{n-1}\right\}
$$

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2019, No. 1 , pp. 455-467

Thus $o(A)=o(B)=n / 2$
Therefore, the collection of all the permutations on each of the subset is the corresponding symmetric group, donated by S_{A} and S_{B} for the subsets A and B respectively. Clearly,

$$
S_{A} \cap S_{B}=\left(a_{1}\right) \quad \text { (The identity permutation). }
$$

Hence, since S_{A} and S_{B} are disjoint up to the identity permutation and by our product, we have that,

$$
o\left(S_{A} S_{B}\right)=((n+1) / 2)!\times((n-1) / 2)!, \quad \text { for } n \text { an odd number, }
$$

and

$$
o\left(S_{A} S_{B}\right)=((n / 2)!)^{2}, \quad \text { for } n \text { an even number. }
$$

For example, if $n=5$ clearly, $o(A)=(5-1) / 2=2$ and $o(B)=(5+1) / 2=3$ and the order of $S_{A} S_{B}$ is 12. That is, in cycle form
$S_{A} S_{B}=\left\{\left(a_{1}\right),\left(a_{3} a_{5}\right),\left(a_{1} a_{5}\right),\left(a_{1} a_{3}\right),\left(a_{1} a_{5} a_{3}\right),\left(a_{1} a_{3} a_{5}\right),\left(a_{2} a_{4}\right),\left(a_{2} a_{4}\right)\left(a_{3} a_{5}\right)\right.$,
$\left.\left(a_{2} a_{4}\right)\left(a_{1} a_{5}\right),\left(a_{2} a_{4}\right)\left(a_{1} a_{3}\right),\left(a_{2} a_{4}\right)\left(a_{1} a_{5} a_{3}\right),\left(a_{2} a_{4}\right)\left(a_{1} a_{3} a_{5}\right)\right\}$
where $S_{A}=\left\{\left(a_{1}\right),\left(a_{2} a_{4}\right)\right\}$ and $S_{B}=\left\{\left(a_{1}\right),\left(a_{3} a_{5}\right),\left(a_{1} a_{5}\right),\left(a_{1} a_{3}\right),\left(a_{1} a_{5} a_{3}\right)\right.$,
$\left.\left(a_{1} a_{3} a_{5}\right)\right\}$. Clearly, $S_{A} S_{B}$ is equivalent to \mathcal{B}_{5} as presented above. Should $a_{i}, i \in\{1,2, \ldots, 5\}$ be replace by the set $\{1,2, \ldots, 5\}$ then $S_{A} S_{B}$ is equal to \mathcal{B}_{5}. Therefore in replacing the set $\left\{a_{1}, \ldots, a_{n}\right\}$ with the set $\{1,2, \ldots, n\}, \mathcal{B}_{n}$ can be represented as product of the two symmetric groups obtained from the partition of the set $\{1,2, \ldots, n\}$ into two subsets of even and odd numbers (i.e., disjoint subsets) respectively.

5 Conclusion

In this paper we studied a particular class of permutation on a given finite set. Our study considered permutations that map even integer to even integer and likewise odd integer to odd integer. It was established that this collection of permutations, \mathcal{B}_{n} is a permutation group. In particular, it was observe that this group, \mathcal{B}_{n} is isomorphic to $S_{(n+1) / 2} \times S_{(n-1) / 2}$ if n is odd and to $S_{n / 2} \times S_{n / 2}$ if n is even.
Our next task which is ongoing, is intended to investigate more on the algebraic and combinatoric properties of this group and then investigating its subclasses using some activation functions[17].

Acknowledgment

The authors are most grateful for the constructive and instructive comments of the reviewer which greatly improved this work.

References

[1] J.J. Cannon, B.C. Cox, D.F. Holt, Computing the subgroups of a permutation group, J. Symbolic Comput. 31, 2001, 149-161.
[2] J.J. Cannon, D.F. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput. 37, 2004, 589-609.
[3] J. Kempe, L. Pyber, and A. Shalev, Permutation groups, minimal degrees and quantum computing, Groups, Geometry, and Dynamics 1, 2007, 553-584.
[4] R. Sulaiman, Subgroups Lattice of Symmetric Group S4; International Journal of Algebra, Vol. 6, 2012, no. 1, 29-35.
[5] J.J. Cannon, D.F. Holt, The Transitive Permutation Groups of Degree 32, J. Experimental Math., 17, 2008, 307-314.
[6] A. Cayley, Desiderata and Suggestions. No. 1. The Theory of Groups, Amer. J. Math., (1), 1878, 50-52.
[7] C.F. Gardiner, A First Course in Group Theory, Springer-Verlag, Berlin, 1997.
[8] H.E. Rose, A Course on Finite Groups, Springer-Verlag London Limited 2009.
[9] D. S. Dummit, R. M. Foote, Abstract Algebra, (3rd ed), John Wiley and Sons, Inc., 2004.
[10] I.N. Herstein, Abstract Algebra (3rd ed.), Prentice Hall Inc., Upper Saddle River, 1996.
[11] J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London, 1992.
[12] A. Leibak, P. Puusemp, On endomorphisms of groups of order 36 , Proceedings of the Estonian Academy of Sciences, 2016, 65, 3, 237-254.
[13] J. J. Rotman, Advanced Modern Algebra, Prentice Hall, 2003.
[14] D. J. S. Robinson, An Introduction to Abstract Algebra, Walter de Gruyter Berlin, New York 2003.
[15] D. S. Malik, J. N. Mordeson, M.K. Sen, MTH 581-582: Introduction to Abstract Algebra, United States of America, 2007.
[16] G. Birkhoff, S. MacLane,A Survey of Modern Algebra , (4th ed.), Macmillan Publishing Co., Inc., 1977.
[17] M. O. Oluwayemi, O. A. Fadipe-Joseph, New Subclasses of Univalent Functions Defined Using a Linear Combination of Generalised Salagean and Ruscheweyh Operators, International Journal of Mathematical Analysis and Optimization: Theory and Applications, 2017, 187-200

